

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Heptyl-1,3,6,8-tetraazatricyclo-[4.3.1.1^{3,8}]undecan-1-ium iodide

Augusto Rivera,^a* John Sadat-Bernal,^a Jaime Ríos-Motta,^a Karla Fejfarová^b and Michal Dušek^b

^aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and ^bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic Correspondence e-mail: ariverau@unal.edu.co

Received 31 August 2011; accepted 6 September 2011

Key indicators: single-crystal X-ray study; T = 160 K; mean σ (C–C) = 0.004 Å; R factor = 0.027; wR factor = 0.065; data-to-parameter ratio = 24.2.

The title compound $C_{14}H_{29}N_4^{+}\cdot I^-$ salt, was obtained by the reaction of cage adamanzane-type aminal 1,3,6,8-tetraaza-tricyclo[4.3.1.1^{3,8}]undecane with heptyl iodide. In the cation, the bond lengths and angles are within normal ranges, except for one N-C(ring) bond distance of 1.542 (3) Å, which is unexpectedly long compared with related compounds. In the crystal, ions are linked through C-H···I hydrogen bonds. The crystal studied was a non-merohedral twin with a minor twin domain of 6.56 (5)%.

Related literature

For the preparation of the title compound, see: Rivera *et al.* (2011). For synthetic applications of quaternary ammonium salts, see: Starks (1971). For related structures, see: Betz & Klüfers (2007); Lee *et al.* (2011).

Experimental

Crystal data $C_{14}H_{29}N_4^+ \cdot I^ M_r = 380.3$ Monoclinic, $P2_1/n$ a = 8.8325 (2) Å

b = 15.3276 (3) A
c = 12.4792 (2) Å
$\beta = 100.072 \ (2)^{\circ}$
V = 1663.41 (6) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 1.92 \text{ mm}^{-1}$

Data collection

Agilent Xcalibur diffractometer	22619 measured reflections
with Atlas (Gemini ultra Cu)	4183 independent reflections
detector	3517 reflections with $I > 3\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.031$
(CrysAlis PRO; Agilent, 2010)	
$T_{\min} = 0.871, T_{\max} = 1$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.065$ S = 1.614183 reflections

Table 1 Hydrogen-bond geometry (Å, °).

ingulogen cona geometry (i i,).

 $\frac{D - H \cdots A}{C2 - H2a \cdots I1^{i}} \quad \begin{array}{c} D - H & H \cdots A & D \cdots A & D - H \cdots A \\ \hline 0.96 & 2.94 & 3.858 (2) & 161 \\ \hline \\ Symmetry code: (i) - x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}. \\ \hline \end{array}$

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *JANA2006* (Petříček *et al.*, 2006); molecular graphics: Diamond (Brandenburg & Putz, 2005); software used to prepare material for publication: *JANA2006*.

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic. JS-B acknowledges the Facultad de Ciencias de la Universidad Nacional de Colombia for a fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2371).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Betz, R. & Klüfers, P. (2007). Acta Cryst. E63, 04279.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.

- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Lee, J.-D., Han, W.-S., Suh, I.-H. & Kang, S. O. (2011). Acta Cryst. E67, o2148. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
- Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Palatinus, L. (2011). *Chem. Cent. J.* Submitted.
- Starks, C. M. (1971). J. Am. Chem. Soc. 93, 195-199.

organic compounds

 $0.31 \times 0.24 \times 0.16 \text{ mm}$

T = 160 K

173 parameters

 $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

H-atom parameters constrained

supporting information

Acta Cryst. (2011). E67, o2629 [https://doi.org/10.1107/S1600536811036403]

1-Heptyl-1,3,6,8-tetraazatricyclo[4.3.1.1^{3,8}]undecan-1-ium iodide

Augusto Rivera, John Sadat-Bernal, Jaime Ríos-Motta, Karla Fejfarová and Michal Dušek

S1. Comment

Quaternary ammonium salts are used as phase transfer catalysts for a wide range of organic reactions involving immiscible solvent systems (Starks, 1971). Therefore, we have decided to synthesize a new series of new *N*-alkylated quaternary ammonium salts, based on the Menschutkin reaction (Rivera *et al.*, 2011) of 1,3,6,8-tetraazatricyclo-[4.3.1.1^{3,8}]undecane with an alkyl halide. In the present work, the structure of a new compound, 1-heptyl-1,3,6,8-tretra-azatricyclo[4.3.1.1^{3,8}]undeca-1-ium iodide, is described.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymetric unit of title molecule, $C_{14}H_{29}N_4^+$, I[•], contains a 1-heptyl-1,3,6,8-tretraazatricyclo[4.3.1.1^{3,8}]undeca-1-ium cation and one iodide anion. Bond lenghts and angles in the title compound are normal, however the bond length N1—C1 [1.542 (3) Å] in the quaternary nitrogen is longer than the corresponding values observed in related structure [1.527 (3) Å] (Betz & Klüfers, 2007). In the cation, the torsion angle on the ethylene bridge is slightly distorted from the exact D_{2d} symmetry [N2—C5 —C6—N4 torsion angle = 7.2 (4)°]. In the crystal, ions are linked by C—H…I hydrogen bonds (Figure 2), which is shorter (Table 1) than the corresponding contacts in related structure (Lee, *et al.*, 2011). The main conformational feature is that the torsion angles in the heptyl chain are further removed from the ideal *all-trans* conformation, notably in C11—C12—C13—C14 fragment, which differ in the relative orientations [C—C—C—C torsion angle = 67.8 (3)°].

S2. Experimental

The synthetic method has been described earlier (Rivera *et al.*, 2011), except that heptyl idodide was used as alkylating agent. Single crystals suitable for X-ray analysis were obtained by crystallization from methanol solution. M.p. = 409-410 K. MS (ESI⁺): m/z 253.2441 [C₂H₁₄N₄+C₂H₁₅].

S3. Refinement

Hydrogen atoms were placed to ideal positions and refined as riding with C–H distance 0.96 Å. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The isotropic atomic displacement parameters of hydrogen atoms were set to 1.2 (CH₂) or 1.5 (CH₃) times U_{eq} of the parent atom.

Figure 1 A view of (**I**) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal packing of the title compound view along *a* axis.

1-Heptyl-1,3,6,8-tetraazatricyclo[4.3.1.1^{3,8}]undecan-1-ium iodide

Crystal data

 $C_{14}H_{29}N_4^{+}\cdot I^{-}$ $M_r = 380.3$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.8325 (2) Å b = 15.3276 (3) Å c = 12.4792 (2) Å $\beta = 100.072$ (2)° V = 1663.41 (6) Å³ Z = 4

F(000) = 776 $D_x = 1.518 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.7107 \mathbf{A} Cell parameters from 12607 reflections $\theta = 2.9-29.2^{\circ}$ $\mu = 1.92 \text{ mm}^{-1}$ T = 160 KIrregular shape, colourless $0.31 \times 0.24 \times 0.16 \text{ mm}$ Data collection

$T_{\min} = 0.871, \ T_{\max} = 1$
22619 measured reflections
4183 independent reflections
3517 reflections with $I > 3\sigma(I)$
$R_{\rm int} = 0.031$
$\theta_{\rm max} = 29.3^\circ, \theta_{\rm min} = 2.9^\circ$
$h = -11 \rightarrow 12$
$k = -20 \longrightarrow 19$
$l = -16 \rightarrow 16$
116 constraints
H-atom parameters constrained
Weighting scheme based on measured s.u.'s w =
$1/(\sigma^2(I) + 0.0004I^2)$
$(\Delta/\sigma)_{\rm max} = 0.016$
$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. The refinement was carried out against all reflections. The conventional *R*-factor is always based on *F*. The goodness of fit as well as the weighted *R*-factor are based on *F* and F^2 for refinement carried out on *F* and F^2 , respectively. The threshold expression is used only for calculating *R*-factors *etc*. and it is not relevant to the choice of reflections for refinement.

The crystal studied was a non-merohedral twin with a minor twin domain of 6.56 (5)%. The overlaps of reflection between the twin domains were calculated by Jana2006 software using the twinning matrix and user- defined treshold 0.15 degs for full overlap. Due to no support for twinning in the official CIF dictionary the twinning matrix has been saved in the CIF file using special _jana_cell_twin_matrix keyword.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the *SHELX* program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.255234 (19)	0.362795 (11)	0.161798 (13)	0.03611 (6)	
N1	0.1652 (2)	0.66563 (12)	0.09078 (15)	0.0265 (6)	
N2	0.4475 (2)	0.65925 (13)	0.13273 (16)	0.0299 (6)	
N3	0.3065 (2)	0.60189 (13)	-0.03990 (16)	0.0314 (6)	
C1	0.1645 (3)	0.75253 (15)	0.0285 (2)	0.0343 (8)	
C2	0.3103 (3)	0.65513 (15)	0.17770 (19)	0.0285 (7)	
C3	0.1707 (3)	0.59276 (16)	0.00795 (18)	0.0304 (7)	
C4	0.4444 (3)	0.59596 (16)	0.04572 (19)	0.0321 (8)	
C5	0.5050 (4)	0.74388 (18)	0.1150 (3)	0.0570 (12)	
C6	0.4250 (4)	0.7963 (2)	0.0231 (3)	0.0625 (13)	
N4	0.2865 (3)	0.76063 (14)	-0.03149 (18)	0.0417 (8)	
C7	0.2995 (3)	0.68432 (18)	-0.0992 (2)	0.0406 (9)	
C8	0.0209 (3)	0.66349 (16)	0.13859 (19)	0.0318 (8)	
C9	0.0031 (3)	0.58651 (17)	0.2112 (2)	0.0362 (8)	
C10	-0.1575 (3)	0.58205 (17)	0.2378 (2)	0.0361 (8)	
C11	-0.1784 (3)	0.50740 (18)	0.3136 (2)	0.0376 (8)	

supporting information

C12	-0.3416 (3)	0.4983 (2)	0.3350 (2)	0.0490 (10)
C13	-0.3676 (3)	0.4201 (2)	0.4036 (2)	0.0543 (11)
C14	-0.2874 (4)	0.4242 (2)	0.5197 (3)	0.0644 (13)
H1a	0.067925	0.759245	-0.019773	0.0411*
H1b	0.168363	0.800294	0.078623	0.0411*
H2a	0.312341	0.699798	0.231869	0.0343*
H2b	0.30621	0.600427	0.214549	0.0343*
H3a	0.172331	0.537227	0.043705	0.0365*
H3b	0.081192	0.596113	-0.047999	0.0365*
H4a	0.452199	0.538155	0.075802	0.0385*
H4b	0.534905	0.602573	0.013598	0.0385*
H5a	0.612201	0.739939	0.110647	0.0684*
H5b	0.514452	0.777325	0.180856	0.0684*
H6a	0.406609	0.853891	0.048084	0.075*
H6b	0.492883	0.806321	-0.02793	0.075*
H7a	0.389014	0.689961	-0.132646	0.0488*
H7b	0.214378	0.683107	-0.158738	0.0488*
H8a	0.011991	0.716719	0.177567	0.0381*
H8b	-0.066861	0.666772	0.081196	0.0381*
H9a	0.076657	0.591093	0.277414	0.0435*
H9b	0.024842	0.533548	0.175699	0.0435*
H10a	-0.181244	0.636201	0.269808	0.0433*
H10b	-0.230927	0.576603	0.171639	0.0433*
H11a	-0.147264	0.453761	0.284218	0.0451*
H11b	-0.109258	0.514772	0.38146	0.0451*
H12a	-0.411644	0.496068	0.266936	0.0588*
H12b	-0.370287	0.550579	0.368846	0.0588*
H13a	-0.475937	0.412162	0.40143	0.0651*
H13b	-0.337479	0.367937	0.370327	0.0651*
H14a	-0.178217	0.42272	0.52221	0.0966*
H14b	-0.317757	0.375148	0.558892	0.0966*
H14c	-0.314979	0.477258	0.552303	0.0966*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.03178 (10)	0.03586 (11)	0.03959 (11)	-0.00013 (7)	0.00324 (7)	0.01196 (7)
N1	0.0256 (10)	0.0264 (10)	0.0269 (10)	0.0031 (8)	0.0033 (8)	-0.0015 (8)
N2	0.0258 (10)	0.0313 (11)	0.0314 (11)	0.0012 (8)	0.0019 (9)	-0.0028 (9)
N3	0.0340 (11)	0.0326 (11)	0.0276 (10)	0.0013 (9)	0.0050 (9)	-0.0032 (9)
C1	0.0380 (14)	0.0266 (13)	0.0377 (14)	0.0063 (11)	0.0052 (12)	0.0061 (11)
C2	0.0283 (12)	0.0314 (13)	0.0245 (11)	0.0047 (10)	0.0006 (10)	-0.0018 (9)
C3	0.0320 (13)	0.0281 (12)	0.0297 (12)	-0.0004 (10)	0.0013 (10)	-0.0054 (10)
C4	0.0310 (13)	0.0315 (13)	0.0342 (13)	0.0049 (11)	0.0068 (11)	-0.0007 (11)
C5	0.0535 (19)	0.0419 (17)	0.081 (2)	-0.0115 (15)	0.0258 (18)	-0.0055 (16)
C6	0.056 (2)	0.057 (2)	0.076 (2)	-0.0098 (17)	0.0148 (18)	-0.0051 (18)
N4	0.0476 (14)	0.0321 (12)	0.0487 (13)	0.0000 (10)	0.0170 (11)	0.0071 (10)
C7	0.0456 (16)	0.0481 (16)	0.0287 (13)	0.0058 (13)	0.0076 (12)	0.0075 (12)

supporting information

C8 C9 C10 C11 C12 C13	0.0272 (12) 0.0341 (13) 0.0304 (13) 0.0344 (14) 0.0326 (15) 0.0458 (18)	0.0331 (13) 0.0379 (14) 0.0367 (14) 0.0394 (15) 0.0578 (19)	0.0348 (13) 0.0366 (13) 0.0409 (14) 0.0379 (14) 0.0547 (18)	0.0050 (10) 0.0017 (12) 0.0003 (11) -0.0011 (11) -0.0084 (13) -0.0162 (15)	0.0049 (11) 0.0060 (11) 0.0055 (11) 0.0035 (12) 0.0026 (13)	-0.0008 (11) 0.0039 (11) 0.0015 (11) 0.0021 (11) 0.0159 (15) 0.0130 (16)
C13	0.0458 (18)	0.059 (2)	0.0562 (18)	-0.0162(15)	0.0040 (15)	0.0130 (16)
C14	0.058 (2)	0.083 (3)	0.0521 (19)	-0.0093(19)	0.0083 (17)	0.0134 (18)

Geometric parameters (Å, °)

N1—C1	1.542 (3)	N4—C7	1.459 (4)
N1—C2	1.536 (3)	C7—H7a	0.96
N1—C3	1.528 (3)	С7—Н7ь	0.96
N1—C8	1.499 (3)	C8—C9	1.512 (4)
N2—C2	1.424 (3)	C8—H8a	0.96
N2C4	1.453 (3)	C8—H8b	0.96
N2—C5	1.424 (4)	C9—C10	1.514 (4)
N3—C3	1.437 (3)	С9—Н9а	0.96
N3—C4	1.476 (3)	С9—Н9b	0.96
N3—C7	1.460 (3)	C10—C11	1.517 (4)
C1—N4	1.421 (4)	C10—H10a	0.96
C1—H1a	0.96	C10—H10b	0.96
C1—H1b	0.96	C11—C12	1.517 (4)
C2—H2a	0.96	C11—H11a	0.96
C2—H2b	0.96	C11—H11b	0.96
С3—Н3а	0.96	C12—C13	1.515 (4)
C3—H3b	0.96	C12—H12a	0.96
C4—H4a	0.96	C12—H12b	0.96
C4—H4b	0.96	C13—C14	1.498 (4)
C5—C6	1.475 (4)	C13—H13a	0.96
С5—Н5а	0.96	C13—H13b	0.96
C5—H5b	0.96	C14—H14a	0.96
C6—N4	1.402 (4)	C14—H14b	0.96
С6—Н6а	0.96	C14—H14c	0.96
С6—Н6b	0.96	C14—C9 ⁱ	3.829 (4)
C1—N1—C2	112.07 (17)	C6—N4—C7	116.3 (2)
C1—N1—C3	106.73 (17)	N3—C7—N4	113.6 (2)
C1—N1—C8	106.94 (18)	N3—C7—H7a	109.4709
C2—N1—C3	106.25 (17)	N3—C7—H7b	109.4704
C2—N1—C8	112.29 (18)	N4—C7—H7a	109.472
C3—N1—C8	112.51 (18)	N4—C7—H7b	109.4716
C2—N2—C4	111.04 (18)	H7a—C7—H7b	105.0122
C2—N2—C5	116.9 (2)	N1—C8—C9	116.1 (2)
C4—N2—C5	116.9 (2)	N1—C8—H8a	109.4708
C3—N3—C4	109.67 (18)	N1—C8—H8b	109.4713
C3—N3—C7	109.3 (2)	С9—С8—Н8а	109.4716
C4—N3—C7	112.12 (19)	C9—C8—H8b	109.471

N1—C1—N4	113.9 (2)	H8a—C8—H8b	101.9387
N1—C1—H1a	109.4716	C8—C9—C10	111.4 (2)
N1—C1—H1b	109.4717	С8—С9—Н9а	109.4711
N4—C1—H1a	109.4708	С8—С9—Н9b	109.4714
N4—C1—H1b	109.4711	С10—С9—Н9а	109.4709
H1a—C1—H1b	104.657	С10—С9—Н9b	109.4708
N1—C2—N2	112.32 (19)	Н9а—С9—Н9b	107.4338
N1—C2—H2a	109.4714	C9—C10—C11	113.1 (2)
N1—C2—H2b	109.4711	C9—C10—H10a	109.4709
N2—C2—H2a	109.4715	C9—C10—H10b	109.4711
N2—C2—H2b	109.4706	C11—C10—H10a	109.4712
H2a—C2—H2b	106.4595	C11—C10—H10b	109.4712
N1—C3—N3	109.72 (19)	H10a—C10—H10b	105.6299
N1—C3—H3a	109.4716	C10-C11-C12	113.7 (2)
N1—C3—H3b	109.4707	C10-C11-H11a	109.4711
N3—C3—H3a	109.471	C10—C11—H11b	109.4709
N3—C3—H3b	109.4713	C12-C11-H11a	109.4715
Н3а—С3—Н3ь	109.223	C12—C11—H11b	109.4715
N2—C4—N3	113.9 (2)	H11a—C11—H11b	104.9043
N2—C4—H4a	109.4712	C11—C12—C13	114.5 (2)
N2—C4—H4b	109.4712	C11—C12—H12a	109.471
N3—C4—H4a	109.4716	C11—C12—H12b	109.4716
N3—C4—H4b	109.471	C13—C12—H12a	109.4711
H4a—C4—H4b	104.6525	C13—C12—H12b	109.4712
N2—C5—C6	118.8 (3)	H12a—C12—H12b	103.914
N2—C5—H5a	109.4717	C12—C13—C14	114.9 (3)
N2—C5—H5b	109.4715	С12—С13—Н13а	109.4717
С6—С5—Н5а	109.4709	С12—С13—Н13ь	109.4715
С6—С5—Н5b	109.4709	C14—C13—H13a	109.4714
H5a—C5—H5b	98.1968	C14—C13—H13b	109.4712
C5—C6—N4	115.1 (3)	H13a—C13—H13b	103.4432
С5—С6—Н6а	109.4709	C13—C14—H14a	109.4716
С5—С6—Н6b	109.4718	C13—C14—H14b	109.4709
N4—C6—H6a	109.4712	C13—C14—H14c	109.4713
N4—C6—H6b	109.4714	H14a—C14—H14b	109.4705
Н6а—С6—Н6b	103.2278	H14a—C14—H14c	109.4719
C1—N4—C6	117.1 (2)	H14b—C14—H14c	109.4712
C1—N4—C7	112.3 (2)		
C11—C12—C13—C14	67.8 (4)	N2-C5-C6-N4	7.2 (4)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C2—H2 <i>a</i> …I1 ⁱⁱ	0.96	2.94	3.858 (2)	161

Symmetry code: (ii) -x+1/2, y+1/2, -z+1/2.