organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(7*R*,8*S*,9*S*,12*S*)-1-Benzyloxy-13,14-didehydro-12-hydroxy-2,13-dimethoxy-Nmethylmorphinane

Xing-Liang Zheng,* Ning-Fei Jiang, Dan Luo, Hong-Sheng Gao and Ai-Shun Ding

School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, People's Republic of China Correspondence e-mail: xingliangzheng@163.com

Received 13 August 2011; accepted 13 September 2011

Key indicators: single-crystal X-ray study; T = 133 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.075; data-to-parameter ratio = 9.1.

In the title compound, $C_{26}H_{31}NO_4$, a sinomenine derivative, the angle between the two aromatic rings is $53.34 (4)^\circ$. The Ncontaining ring is in a chair conformation, while the other two non-planar rings are in a half-boat conformation. In the crystal, molecules are linked by O-H···N interactions into a C(8) chain along [100].

Related literature

For background to the biological effects (such as anti-inflammatory, analgesic, anti-rheumatoid arthritis and arrhythmia, lowering of blood pressure and immune function) of sinomenine derivatives and other related compounds, see: Liu et al. (1994, 1996, 1997); Mark et al. (2003); Ye et al. (2004). For related structures, see: Li et al. (2009); Batterham et al. (1965); Zheng & Jiang (2010); Zheng et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For the synthesis of 9S,13R,14S)-7,8-didehydro-4-benzyloxy-3,7-dimethoxy-17-methylmorphinan-6-one, a starting material in the preparation of the title compound, see: Hitotsuyanagi et al. (1995).

 $\gamma = 64.605 \ (1)^{\circ}$ V = 546.81 (2) Å³

Cu $K\alpha$ radiation

 $0.22 \times 0.18 \times 0.16 \text{ mm}$

9789 measured reflections

2925 independent reflections

Flack parameter: -0.09(14)

2918 reflections with $I > 2\sigma(I)$

 $\mu = 0.69 \text{ mm}^{-1}$

T = 133 K

 $R_{\rm int} = 0.020$

Z = 1

Experimental

Crystal data C26H31NO4

M = 421.52Triclinic, P1 a = 7.7191 (2) Å b = 8.5100 (2) Åc = 9.9630 (2) Å $\alpha = 79.971 \ (1)^{\circ}$ $\beta = 67.663 \ (1)^{\circ}$

Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2000)
  T_{\min} = 0.864, T_{\max} = 0.898
```

Refinement

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
1075 Friedel pairs

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3\cdots N1^i$	0.81 (3)	2.20 (3)	2.8966 (17)	145 (2)
C	4			

Symmetry code: (i) x + 1, y, z.

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The project was supported by the National Natural Science Foundation of China (No. 20976017) and the Scientific Research Fund of Hunan Provincial Science and Technology Department of China (No. 2009 C K3070).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2370).

References

- Batterham, T. J., Bell, K. H. & Weis, U. (1965). Aust. J. Chem. 18, 1799–1806. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem.
- Int. Ed. Engl. 34, 1555–1573. Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,
- Bruker (2000). SMAR1, SAIN1 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hitotsuyanagi, Y., Nishimura, K., Ikuta, H., Takeya, K. & Hideji Itokawa, H. (1995). J. Org. Chem. 60, 4549–4558.

- Li, Y.-F., Qian, Y., Yin, L.-H., Lv, R. & Zhu, H.-J. (2009). *Acta Cryst.* E65, o689. Liu, L., Buchner, E., Beitze, D., Schmidt-Weber, C. B., Kaever, V. &
- Emmricinne, R. W. (1996). Int. J. Immunopharmacol. 18, 529–543. Liu, L., Riese, J., Resch, K. & Kaever, V. (1994). Arzneim. Forsch. 44, 1223–
- 1226.
- Liu, Q., Zhou, L. L. & Li, R. (1997). Chin. Trad. Herb. Drugs, 28, 247-249.
- Mark, W., Schneeberger, S., Seiler, R., Stroka, D. M., Amberger, A., Offner, F., Candinas, D. & Margreiter, R. (2003). *Transplantation*, 75, 940–945.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, X. R., Yan, K. X., Wu, K. M., Feng, X. Z., Huang, Y. M. & Qiu, P. (2004). Acta Pharmacol. Sin. 39, 180–183.
- Zheng, X.-L., Chen, S.-J., Jiang, N.-F. & Zhan, S.-H. (2011). Acta Cryst. E67, 01190.
- Zheng, X.-L. & Jiang, N.-F. (2010). Acta Cryst. E66, o2817.

supporting information

Acta Cryst. (2011). E67, o2662–o2663 [https://doi.org/10.1107/S1600536811037226]

(7*R*,8*S*,9*S*,12*S*)-1-Benzyloxy-13,14-didehydro-12-hydroxy-2,13-dimethoxy-*N*-methylmorphinane

Xing-Liang Zheng, Ning-Fei Jiang, Dan Luo, Hong-Sheng Gao and Ai-Shun Ding

S1. Comment

We have synthesized a new sinomenine derivative, the title compound (7*R*,8*S*,9*S*,12*S*)-13,14-didehydro-1-benzyloxy-*N*-methyl-2,13- dimethoxy-12-hydroxymorphinane, C₂₆H₃₁NO₄ and report its crystal structure. The molecular structure of the title compound is shown in Fig. 1. The angle between the two aromatic planar rings is 53.34 (4)°. The N-containing ring approximates the chair conformation ($Q_T = 0.6052$ (17) Å $\theta = 171.70$ (16)° & $\varphi = 330.4$ (11)°) while other non-planar rings; C5—C10 & C7/C8/C11—C14 approximate have half-boat conformation ($Q_T = 0.5304$ (17) Å $\theta = 48.94$ (18)° & $\varphi = 207.8$ (2)°; $Q_T = 0.5065$ (18) Å, $\theta = 51.5$ (2)° & $\varphi = 347.7$ (3)° respectively, Cremer & Pople, 1975). In the crystal structure de molecules are linked by O—H…N interactions into a chain along [100] with set-graph notation C(8), (Bernstein *et al.*, 1995), Fig. 2, Table 1. Similar features have been described in related compounds (Zheng & Jiang, 2010; Zheng *et al.*, 2011; Li *et al.*, 2009; Batterham *et al.*, 1965).

S2. Experimental

The title compound was obtained by reducing (9*S*,13*R*,14*S*)-7,8-Didehydro-4-benzyloxy-3,7-dimethoxy-17-methylmorphinan-6-one (which was synthesized by Hitotsuyanagi *et al.*, 1995) with lithium aluminium tetrahydride. Colorless blocks were grown from a ethyl acetate–hexane solution.

S3. Refinement

H atoms were positioned geometrically, with C—H = 0.95 (aromatic CH), 0.98 (methyl CH₃), 0.99 (methylene CH₂) or 1.00 Å (methine CH), and were constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(\text{carrier C})$ or $U_{iso}(H) = 1.5U_{eq}$ (carrier C17 C18 C19). H atom attached to O atom was refined isotropically. 1141 Friedel pairs were used for the Flack parameter refinement.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids.

Figure 2

Part of the crystal structure showing the formation of a C(8) chain along [100]. Hydrogen bond shown as dashed lines. The hydrogen atom no involved to hydrogen bond were omitted by clarity. Symmetry code: (i) x + 1, y, z.

(7R,8S,9S,12S)-1-Benzyloxy-13,14- didehydro-12-hydroxy-2,13-dimethoxy-N-methylmorphinane

Z = 1

F(000) = 226 $D_x = 1.280 \text{ Mg m}^{-3}$

 $\theta = 4.8 - 67.7^{\circ}$

 $\mu = 0.69 \text{ mm}^{-1}$

Block, colourless

 $0.22 \times 0.18 \times 0.16 \text{ mm}$

9789 measured reflections

 $\theta_{\rm max} = 65.0^\circ, \ \theta_{\rm min} = 4.8^\circ$

2925 independent reflections

2918 reflections with $I > 2\sigma(I)$

T = 133 K

 $R_{\rm int} = 0.020$

 $h = -9 \rightarrow 8$

 $k = -9 \rightarrow 10$

 $l = -11 \rightarrow 11$

Cu *K* α radiation, $\lambda = 1.54178$ Å

Cell parameters from 9563 reflections

Crystal data

 $\begin{array}{l} C_{26}H_{31}NO_4\\ M_r = 421.52\\ Triclinic, P1\\ Hall symbol: P 1\\ a = 7.7191 (2) Å\\ b = 8.5100 (2) Å\\ c = 9.9630 (2) Å\\ a = 79.971 (1)^\circ\\ \beta = 67.663 (1)^\circ\\ \gamma = 64.605 (1)^\circ\\ V = 546.81 (2) Å^3 \end{array}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.864, T_{\max} = 0.898$

Refinement

5	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of independent
$wR(F^2) = 0.075$	and constrained refinement
S = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0495P)^2 + 0.074P]$
2925 reflections	where $P = (F_o^2 + 2F_c^2)/3$
320 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
3 restraints	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 1075 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: -0.09 (14)
-	-

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	l isotropic or e	quivalent isotropi	c displacement	parameters ($(Å^2)$)
-----------------------------------	------------------	--------------------	----------------	--------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	-0.1846 (2)	0.69043 (16)	0.42381 (14)	0.0213 (3)
01	0.20888 (17)	0.54646 (13)	0.78285 (11)	0.0221 (3)

02	0.1468 (2)	0.84505 (15)	0.88590 (12)	0.0311 (3)
03	0.6444 (2)	0.43153 (16)	0.48351 (13)	0.0299 (3)
H3	0.699 (5)	0.493 (4)	0.431 (3)	0.048 (7)*
04	0.7533 (2)	0.42073 (17)	0.17433 (13)	0.0325 (3)
C1	0.1806 (2)	0.6935 (2)	0.69393 (16)	0.0196 (3)
C2	0.1435 (3)	0.8511 (2)	0.74825 (17)	0.0224 (3)
C3	0.0987(3)	1.0021 (2)	0.66552 (17)	0.0227(3)
H3A	0.0850	1.1071	0.6974	0.027*
C4	0.0742(2)	0.99827 (19)	0.53580 (16)	0.0206(3)
H4	0.0378	1.1031	0.4812	0.025*
C5	0.1011(2)	0.84563 (19)	0.48291(15)	0.0178(3)
C6	0.1651(2)	0.68794 (19)	0.10291(10) 0.55900(16)	0.0170(3)
C7	0.1781(2)	0.52104(19)	0.50805(15)	0.0186(3)
C8	0.1701(2) 0.1850(2)	0.52101(19) 0.53675(19)	0.34957(15)	0.0100(3)
H8	0.1607	0.4365	0.3328	0.023*
C9	0.0109(2)	0.70153 (19)	0.32873 (16)	0.029
H9	0.0182	0.7046	0.2260	0.023*
C10	0.0495(2)	0.85695 (19)	0.34874 (16)	0.029
H10A	0.1631	0.8670	0.2625	0.0197 (3)
H10R	-0.0738	0.9644	0.3531	0.024*
C11	0.3642(3)	0.35419 (18)	0.51321 (16)	0.024 0.0215 (3)
H11A	0.3646	0.3349	0.6140	0.0213 (3)
H11R	0.3489	0.2546	0.4878	0.026*
C12	0.5705(3)	0.2540 0.3557(2)	0.4070 0.41207(18)	0.020
H12	0.5705 (5)	0.3337 (2)	0.3919	0.0241 (5)
C13	0.5602(3)	0.2317 0.4429(2)	0.26876 (17)	0.029
C13	0.3002(3)	0.5234(2)	0.20070(17) 0.23085(15)	0.0238(3)
U14 H14	0.3007 (3)	0.5234(2) 0.5747	0.23985 (15)	0.0223 (3)
C15	-0.0260(3)	0.5747 0.50452(10)	0.1404	0.027°
U15A	-0.0250	0.30432 (19)	0.00092 (10)	0.0210(3)
	-0.0401	0.3980	0.3737	0.025*
	-0.0401	0.4940	0.7047 0.57922 (16)	0.023°
	-0.2001(2)	0.0023(2)	0.57852 (10)	0.0212(3)
	-0.3340	0.0434	0.0333	0.025*
	-0.2133	0.7070	0.0102	0.023°
	0.0780(4)	1.0089(3)	0.9494(2)	0.0391(3)
HI/A	0.1/2(4)	1.007(3)	0.899(3)	$0.042(6)^{*}$
	-0.069(4)	1.089 (3)	0.950(2)	$0.032(5)^{*}$
HI/C	0.082(4)	0.984(3)	1.044(3)	$0.043(0)^{*}$
	0.7081(3)	0.4831(3)	0.0298(2)	0.038/(3)
HIðA	0.903(3)	0.407(3)	-0.018(3)	$0.051(7)^{*}$
HI8B	0.692 (4)	0.609 (3)	0.029(2)	0.042 (6)*
HI8C	0.725 (4)	0.419(3)	-0.020(3)	0.044 (6)*
C19	-0.3610(3)	0.8391 (2)	0.4052 (2)	0.0307(4)
HI9A	-0.393 (4)	0.944 (3)	0.456 (2)	0.042 (6)*
HI9B	$-0.4^{7/7}$ (4)	0.811 (3)	0.452 (2)	0.037 (6)*
HI9C	-0.340 (4)	0.871 (3)	0.304 (3)	0.038 (6)*
C20	0.3930 (3)	0.4804 (2)	0.81955 (18)	0.0264 (4)
H20A	0.3872	0.5670	0.8776	0.032*

H20B	0.5140	0.4588	0.7299	0.032*
C21	0.4100 (3)	0.3140 (2)	0.90526 (17)	0.0231 (3)
C22	0.2758 (3)	0.3134 (2)	1.04523 (17)	0.0263 (4)
H22	0.1650	0.4186	1.0858	0.032*
C23	0.3022 (3)	0.1601 (2)	1.12647 (17)	0.0335 (4)
H23	0.2098	0.1610	1.2224	0.040*
C24	0.4635 (3)	0.0053 (2)	1.0678 (2)	0.0349 (4)
H24	0.4828	-0.0992	1.1240	0.042*
C25	0.5956 (3)	0.0046 (3)	0.9271 (2)	0.0405 (5)
H25	0.7050	-0.1009	0.8859	0.049*
C26	0.5683 (3)	0.1574 (3)	0.8465 (2)	0.0347 (4)
H26	0.6587	0.1557	0.7497	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0167 (8)	0.0222 (7)	0.0249 (6)	-0.0089 (6)	-0.0070 (5)	0.0024 (5)
01	0.0253 (7)	0.0243 (5)	0.0217 (5)	-0.0144 (5)	-0.0113 (5)	0.0073 (4)
O2	0.0463 (9)	0.0300 (6)	0.0225 (6)	-0.0164 (6)	-0.0159 (5)	-0.0007 (5)
03	0.0305 (7)	0.0379 (7)	0.0307 (6)	-0.0217 (6)	-0.0133 (5)	0.0053 (5)
O4	0.0190 (7)	0.0432 (7)	0.0286 (6)	-0.0103 (6)	-0.0016 (5)	-0.0056 (5)
C1	0.0192 (10)	0.0199 (7)	0.0201 (7)	-0.0102 (7)	-0.0065 (6)	0.0042 (6)
C2	0.0209 (10)	0.0267 (8)	0.0205 (7)	-0.0112 (7)	-0.0058 (6)	-0.0006 (6)
C3	0.0222 (10)	0.0207 (8)	0.0236 (8)	-0.0097 (7)	-0.0036 (7)	-0.0033 (6)
C4	0.0175 (9)	0.0177 (7)	0.0236 (7)	-0.0082 (7)	-0.0039 (6)	0.0023 (6)
C5	0.0125 (8)	0.0195 (7)	0.0173 (7)	-0.0070 (6)	-0.0005 (6)	0.0002 (5)
C6	0.0145 (9)	0.0184 (7)	0.0190 (7)	-0.0079 (6)	-0.0024 (6)	0.0005 (5)
C7	0.0196 (9)	0.0174 (7)	0.0198 (7)	-0.0090 (7)	-0.0068 (6)	0.0023 (5)
C8	0.0180 (9)	0.0189 (7)	0.0209 (7)	-0.0082 (7)	-0.0059 (6)	-0.0010 (5)
C9	0.0186 (9)	0.0222 (7)	0.0168 (6)	-0.0088(7)	-0.0055 (6)	0.0013 (5)
C10	0.0185 (9)	0.0187 (7)	0.0203 (7)	-0.0077 (7)	-0.0065 (6)	0.0039 (6)
C11	0.0242 (10)	0.0168 (7)	0.0249 (8)	-0.0094 (7)	-0.0096 (7)	0.0021 (6)
C12	0.0190 (9)	0.0185 (7)	0.0327 (8)	-0.0041 (7)	-0.0099 (7)	-0.0018 (6)
C13	0.0183 (10)	0.0225 (7)	0.0271 (8)	-0.0068 (7)	-0.0033 (7)	-0.0062 (6)
C14	0.0233 (10)	0.0224 (7)	0.0192 (7)	-0.0094 (7)	-0.0032 (6)	-0.0030 (6)
C15	0.0238 (9)	0.0204 (7)	0.0223 (7)	-0.0136 (7)	-0.0073 (6)	0.0027 (6)
C16	0.0192 (9)	0.0225 (7)	0.0220 (7)	-0.0109 (7)	-0.0039 (6)	-0.0008 (6)
C17	0.0616 (17)	0.0366 (10)	0.0284 (9)	-0.0220 (11)	-0.0207 (9)	-0.0039 (8)
C18	0.0260 (12)	0.0494 (12)	0.0301 (9)	-0.0144 (10)	0.0006 (8)	-0.0009 (8)
C19	0.0212 (11)	0.0330 (9)	0.0361 (10)	-0.0103 (8)	-0.0114 (8)	0.0063 (8)
C20	0.0265 (10)	0.0319 (9)	0.0279 (8)	-0.0165 (8)	-0.0151 (7)	0.0089 (6)
C21	0.0248 (10)	0.0289 (8)	0.0231 (7)	-0.0154 (7)	-0.0135 (6)	0.0061 (6)
C22	0.0345 (11)	0.0277 (8)	0.0221 (8)	-0.0173 (8)	-0.0092 (7)	-0.0010 (6)
C23	0.0539 (14)	0.0422 (10)	0.0189 (7)	-0.0343 (10)	-0.0126 (8)	0.0060 (7)
C24	0.0414 (13)	0.0320 (9)	0.0415 (10)	-0.0220 (9)	-0.0240 (9)	0.0172 (8)
C25	0.0266 (12)	0.0313 (9)	0.0521 (12)	-0.0054 (8)	-0.0115 (9)	0.0063 (8)
C26	0.0218 (11)	0.0393 (10)	0.0324 (9)	-0.0106 (8)	-0.0032 (7)	0.0069 (7)

Geometric parameters (Å, °)

N1—C19	1.457 (2)	C11—H11B	0.9900
N1—C16	1.4717 (19)	C12—C13	1.504 (2)
N1—C9	1.479 (2)	C12—H12	1.0000
O1—C1	1.3874 (18)	C13—C14	1.322 (3)
O1—C20	1.452 (2)	C14—H14	0.9500
O2—C2	1.3728 (19)	C15—C16	1.523 (2)
O2—C17	1.431 (2)	C15—H15A	0.9900
O3—C12	1.426 (2)	C15—H15B	0.9900
О3—Н3	0.81 (3)	C16—H16A	0.9900
O4—C13	1.377 (2)	C16—H16B	0.9900
O4—C18	1.424 (2)	C17—H17A	0.98 (3)
C1—C6	1.405 (2)	C17—H17B	1.04 (2)
C1—C2	1.407 (2)	C17—H17C	0.94 (3)
C2—C3	1.384 (2)	C18—H18A	0.93 (3)
C3—C4	1.383 (2)	C18—H18B	0.97 (3)
С3—НЗА	0.9500	C18—H18C	1.02 (3)
C4—C5	1.390 (2)	C19—H19A	1.00 (2)
C4—H4	0.9500	C19—H19B	0.95 (3)
C5—C6	1.408 (2)	C19—H19C	0.96 (2)
C5—C10	1.511 (2)	C20—C21	1.502 (2)
C6—C7	1.5414 (19)	C20—H20A	0.9900
C7—C11	1.537 (2)	C20—H20B	0.9900
C7—C8	1.5437 (19)	C21—C22	1.386 (2)
C7—C15	1.548 (2)	C21—C26	1.394 (3)
C8—C14	1.505 (2)	C22—C23	1.389 (2)
C8—C9	1.519 (2)	C22—H22	0.9500
С8—Н8	1.0000	C23—C24	1.391 (3)
C9—C10	1.534 (2)	С23—Н23	0.9500
С9—Н9	1.0000	C24—C25	1.384 (3)
C10—H10A	0.9900	C24—H24	0.9500
C10—H10B	0.9900	C25—C26	1.382 (3)
C11—C12	1.531 (2)	С25—Н25	0.9500
C11—H11A	0.9900	C26—H26	0.9500
C19—N1—C16	110 48 (13)	C14 - C13 - O4	126 33 (15)
C19 - N1 - C9	112 48 (12)	$C_{14} - C_{13} - C_{12}$	123 58 (15)
C_{16} N1–C9	113.97 (12)	04-C13-C12	110.06(15)
C1 - O1 - C20	115.41 (11)	C_{13} $-C_{14}$ $-C_{8}$	122.38 (14)
$C_{2}=0^{2}=C_{17}$	116 24 (13)	C_{13} $-C_{14}$ $-H_{14}$	118.8
C12—O3—H3	113.4 (19)	C8—C14—H14	118.8
C13—O4—C18	115.97 (15)	C16—C15—C7	110.79 (12)
01	119.65 (12)	C16—C15—H15A	109.5
01	118.96 (12)	С7—С15—Н15А	109.5
C6—C1—C2	120.95 (13)	C16—C15—H15B	109.5
02-C2-C3	123.84 (14)	C7—C15—H15B	109.5
02	116.36 (13)	H15A—C15—H15B	108.1

C3—C2—C1	119.75 (13)	N1—C16—C15	111.43 (12)
C4—C3—C2	119.21 (13)	N1—C16—H16A	109.3
C4—C3—H3A	120.4	C15—C16—H16A	109.3
С2—С3—НЗА	120.4	N1—C16—H16B	109.3
C3—C4—C5	121.95 (13)	C15—C16—H16B	109.3
C3—C4—H4	119.0	H16A—C16—H16B	108.0
С5—С4—Н4	119.0	O2—C17—H17A	111.8 (14)
C4—C5—C6	119.53 (13)	02—C17—H17B	110.5 (12)
C4-C5-C10	118 27 (13)	H17A - C17 - H17B	110.3 (19)
C6-C5-C10	122 12 (12)	$\Omega^2 - C_{17} - H_{17}C_{17}$	106.3(14)
C_1 C_6 C_5	122.12(12) 118.22(13)	$H_{17A} = C_{17} + H_{17C}$	107(2)
C1 - C6 - C7	110.22(13) 121.07(12)	H17B C17 H17C	107(2) 110.8(10)
$C_1 = C_0 = C_7$	121.07(12) 110.75(12)	$\frac{111}{D} = \frac{11}{C} = \frac{11}{C}$	110.3(19) 105.7(16)
$C_{3} = C_{0} = C_{1}$	119.73(13) 115.02(12)	O4 - C18 - H18P	103.7(10)
C11 - C7 - C0	115.92 (15)		110.4 (15)
CII = C/ = C8	105.00 (12)	H18A - C18 - H18B	105(2)
	112.20 (11)		111.8 (13)
C11—C7—C15	112.20 (12)	H18A—C18—H18C	112 (2)
C6—C7—C15	105.79 (12)	H18B—C18—H18C	112 (2)
C8—C7—C15	105.35 (12)	N1—C19—H19A	112.3 (14)
C14—C8—C9	112.17 (12)	N1—C19—H19B	107.5 (14)
C14—C8—C7	113.37 (12)	H19A—C19—H19B	104.5 (19)
C9—C8—C7	110.21 (12)	N1—C19—H19C	111.7 (14)
С14—С8—Н8	106.9	H19A—C19—H19C	107.0 (18)
С9—С8—Н8	106.9	H19B—C19—H19C	113.6 (19)
С7—С8—Н8	106.9	O1—C20—C21	108.89 (12)
N1—C9—C8	108.56 (11)	O1—C20—H20A	109.9
N1—C9—C10	117.45 (12)	C21—C20—H20A	109.9
C8—C9—C10	107.64 (13)	O1—C20—H20B	109.9
N1—C9—H9	107.6	C21—C20—H20B	109.9
С8—С9—Н9	107.6	H20A—C20—H20B	108.3
C10—C9—H9	107.6	C^{22} C^{21} C^{26}	118 78 (15)
C_{5} C_{10} C_{9}	114 41 (12)	C^{22} C^{21} C^{20}	121 23 (16)
C_{5} C_{10} H_{10A}	108 7	$C_{22} = C_{21} = C_{20}$	119.93 (16)
C_{0} C_{10} H_{10A}	108.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.44(17)
C_{5} C_{10} H_{10R}	108.7	$C_{21} = C_{22} = C_{23}$	110.8
C_{0} C_{10} H_{10} H_{10}	108.7	$C_{21} = C_{22} = H_{22}$	110.8
	107.6	$C_{23} = C_{22} = C_{24}$	119.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.0	$C_{22} = C_{23} = C_{24}$	120.25 (10)
C12 - C11 - C7	114./0(12)	$C_{22} = C_{23} = H_{23}$	119.9
CI2—CII—HIIA	108.0	C24—C23—H23	119.9
	108.6	C25—C24—C23	119.55 (16)
C12—C11—H11B	108.6	С25—С24—Н24	120.2
C7—C11—H11B	108.6	C23—C24—H24	120.2
H11A—C11—H11B	107.6	C26—C25—C24	119.99 (19)
O3—C12—C13	112.56 (13)	C26—C25—H25	120.0
O3—C12—C11	109.93 (13)	C24—C25—H25	120.0
C13—C12—C11	111.95 (14)	C25—C26—C21	120.97 (17)
O3—C12—H12	107.4	С25—С26—Н26	119.5
C13—C12—H12	107.4	C21—C26—H26	119.5

C11—C12—H12	107.4		
C20—O1—C1—C6	120.66 (16)	C14—C8—C9—C10	-61.20 (15)
C20-01-C1-C2	-66.93 (18)	C7—C8—C9—C10	66.14 (15)
C17—O2—C2—C3	6.7 (3)	C4—C5—C10—C9	-159.57 (14)
C17—O2—C2—C1	-170.72 (17)	C6—C5—C10—C9	17.2 (2)
O1—C1—C2—O2	2.7 (2)	N1-C9-C10-C5	74.44 (17)
C6-C1-C2-O2	175.01 (16)	C8—C9—C10—C5	-48.35 (16)
O1—C1—C2—C3	-174.81 (16)	C6—C7—C11—C12	-63.95 (17)
C6—C1—C2—C3	-2.5 (2)	C8—C7—C11—C12	60.46 (16)
O2—C2—C3—C4	-171.90 (16)	C15—C7—C11—C12	174.37 (12)
C1—C2—C3—C4	5.4 (2)	C7—C11—C12—O3	87.15 (16)
C2—C3—C4—C5	-2.6 (2)	C7—C11—C12—C13	-38.74 (17)
C3—C4—C5—C6	-3.2 (2)	C18—O4—C13—C14	-3.6 (2)
C3—C4—C5—C10	173.62 (15)	C18—O4—C13—C12	174.42 (14)
O1—C1—C6—C5	169.01 (14)	O3—C12—C13—C14	-118.18 (17)
C2-C1-C6-C5	-3.2 (2)	C11—C12—C13—C14	6.3 (2)
O1—C1—C6—C7	0.3 (2)	O3—C12—C13—O4	63.72 (17)
C2-C1-C6-C7	-171.99 (15)	C11—C12—C13—O4	-171.84 (12)
C4—C5—C6—C1	6.0 (2)	O4—C13—C14—C8	178.32 (14)
C10-C5-C6-C1	-170.68 (14)	C12—C13—C14—C8	0.5 (2)
C4—C5—C6—C7	174.93 (13)	C9—C8—C14—C13	149.84 (14)
C10—C5—C6—C7	-1.8 (2)	C7—C8—C14—C13	24.21 (19)
C1—C6—C7—C11	-52.12 (19)	C11—C7—C15—C16	-172.80 (12)
C5—C6—C7—C11	139.31 (14)	C6—C7—C15—C16	59.89 (15)
C1—C6—C7—C8	-172.72 (14)	C8—C7—C15—C16	-59.11 (14)
C5—C6—C7—C8	18.7 (2)	C19—N1—C16—C15	178.44 (13)
C1—C6—C7—C15	72.91 (18)	C9—N1—C16—C15	-53.76 (16)
C5—C6—C7—C15	-95.66 (15)	C7-C15-C16-N1	55.26 (16)
C11—C7—C8—C14	-51.48 (15)	C1	-175.36 (14)
C6—C7—C8—C14	75.26 (16)	O1—C20—C21—C22	-69.19 (19)
C15—C7—C8—C14	-170.11 (12)	O1—C20—C21—C26	113.59 (17)
C11—C7—C8—C9	-178.15 (12)	C26—C21—C22—C23	1.7 (3)
C6—C7—C8—C9	-51.41 (17)	C20—C21—C22—C23	-175.59 (15)
C15—C7—C8—C9	63.22 (14)	C21—C22—C23—C24	-0.2 (3)
C19—N1—C9—C8	-176.79 (13)	C22—C23—C24—C25	-1.0 (3)
C16—N1—C9—C8	56.45 (15)	C23—C24—C25—C26	0.8 (3)
C19—N1—C9—C10	60.90 (18)	C24—C25—C26—C21	0.6 (3)
C16—N1—C9—C10	-65.86 (16)	C22—C21—C26—C25	-1.9 (3)
C14—C8—C9—N1	170.71 (11)	C20-C21-C26-C25	175.41 (18)
C7—C8—C9—N1	-61.96 (15)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…N1 ⁱ	0.81 (3)	2.20 (3)	2.8966 (17)	145 (2)

Symmetry code: (i) x+1, y, z.