Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Sulfamoylanilinium nitrate

S. Pandiarajan,^a S. Balasubramanian,^a B. Ravikumar^a and S. Athimoolam^b*

^aDepartment of Physics, Devanga Arts College, Aruppukottai 626 101, India, and ^bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India Correspondence e-mail: athi81s@yahoo.co.in

Received 16 September 2011; accepted 21 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.061; data-to-parameter ratio = 10.8.

In the crystal structure of the title compound, $C_6H_9N_2O_2S^+$.. NO_3^- , the cations and anions are connected by $N-H\cdots O$ hydrogen bonds into a three-dimensional network.

Related literature

For the biological importance of the title compound, see: Kent (2000). For related structures, see: Alléaume & Decap (1965*a*,*b*); Buttle *et al.* (1936); Chatterjee *et al.* (1981); Gelbrich *et al.* (2007, 2008); Gelmboldt *et al.* (2004); Hughes *et al.* (1999); O'Connell & Maslen (1967); O'Connor & Maslen (1965); Smith *et al.* (2001); Zaouali Zgolli *et al.* (2010). For the polymorphism of sulfanilamide, see: Burger (1973). For hydrogen-bond motifs, see: Etter *et al.* (1990).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_6H_9N_2O_2S^+\cdot NO_3}^- \\ M_r = 235.22 \\ {\rm Monoclinic, } Cc \\ a = 14.1489 \ (19) \ {\rm \AA} \\ b = 8.1786 \ (11) \ {\rm \AA} \\ c = 8.6931 \ (12) \ {\rm \AA} \\ \beta = 107.129 \ (2)^\circ \end{array}$

 $V = 961.3 (2) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.34 \text{ mm}^{-1}$ T = 293 K $0.24 \times 0.22 \times 0.19 \text{ mm}$

 $R_{\rm int} = 0.017$

 $wR(F^2) = 0.061$

1694 independent reflections

1689 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD areadetector diffractometer 4345 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$

S = 1.151694 reflections 157 parameters 2 restraints H atoms treated by a mixture of independent and constrained refinement

 $\begin{array}{l} \Delta \rho_{max} = 0.17 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.25 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 840 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.06 \mbox{ (5)} \end{array}$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O2^{i}$	0.81 (3)	2.33 (3)	2.992 (2)	139 (2)
$N1 - H1B \cdots O4^{n}$	0.75(3)	2.30(3)	3.045 (3)	172 (3)
$N2 - H1N \cdots O5^{iii}$	0.93(3)	2.01(3)	2.866 (2)	151 (3)
$N2-H2N\cdotsO1^{iii}$ $N2-H3N\cdotsO5^{iv}$	0.92 (2)	1.97 (2)	2.858 (2)	163 (2)
	0.83 (3)	1.95 (3)	2.770 (2)	171 (2)

Symmetry codes: (i) $x, -y, z + \frac{1}{2}$; (ii) $x, -y + 1, z + \frac{1}{2}$; (iii) $x - \frac{1}{2}, y + \frac{1}{2}, z$; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL/PC* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL/PC*; molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL/PC*.

SPR and BRK thank the management of the Devanga Arts College for their support and encouragement and also extend their thanks to the University Grants Commission for the financial support of this work in the form of a Minor Research Project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5645).

References

- Alléaume, M. & Decap, J. (1965a). Acta Cryst. 18, 731-736.
- Alléaume, M. & Decap, J. (1965b). Acta Cryst. 19, 934-938.
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burger, A. (1973). Sci. Pharm. 4, 290-293.
- Buttle, G. A. H., Grey, W. H. & Stephenson, D. (1936). *Lancet*, **1**, 1286–1290. Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). *Acta Cryst.* B**37**, 1835–
- 1838. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, 0205–0207.
- Gelbrich, T., Threlfall, T. L., Bingham, A. L. & Hursthouse, M. B. (2007). Acta Cryst. C63, 0323–0326
- Gelmboldt, V. O., Ennan, A. A., Ganin, E. V., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2004). J. Fluorine Chem. 125, 1951–1957.
- Hughes, D. S., Hursthouse, M. B., Threlfall, T. & Tavener, S. (1999). Acta Cryst. C55, 1831–1833.
- Kent, M. (2000). Advanced Biology. New York: Oxford University Press Inc. O'Connell, A. M. & Maslen, E. N. (1967). Acta Cryst. 22, 134–145.
- O'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363-366.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G., Wermuth, U. D. & White, J. M. (2001). Acta Cryst. E57, o1036– 01038.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, o1488.

supporting information

Acta Cryst. (2011). E67, o2788 [https://doi.org/10.1107/S1600536811038827]

4-Sulfamoylanilinium nitrate

S. Pandiarajan, S. Balasubramanian, B. Ravikumar and S. Athimoolam

S1. Comment

Sulfanilamide, a sulfonamide antibacterial, acts as competitive inhibitor of the enzyme dihydropteroate synthetase (DHPS), an enzyme involved in folate synthesis which involves *para*-aminobenzoic acid (PABA). PABA is needed in enzymatic reactions that produce folic acid which acts as a coenzyme in the synthesis of purine, pyrimidine and other amino acids (Kent, 2000). Sulfonamide drugs were the first antimicrobial drugs, and paved the way for the antibiotic revolution in medicine. The antibacterial activity of sulfanilamide, was first investigated by Buttle (Buttle *et al.*, 1936). The use of sulfanilamide was eclipsed by its prodrugs, the more effective sulfadrugs, shortly afterwards. From literature, it is observed that sulfadrugs are remarkably polymorphic. The polymorphs of sulfanilamide was extensively investigated over a number of years (Burger, 1973). There are three well known polymorphs, usually represented as α , β and γ sulfanilamides (Alléaume & Decap, 1965*a*,*b*; O'Connor & Maslen, 1965; O'Connell & Maslen, 1967). Based on the above specifics, we are interested on the investigation of hydrogen bonding tendancy and its reactivity with different inorganic/organic acids.

The asymmetric part of the unit cell, contains a protonated sulfomylanilinium cation and a nitrate anion (Fig 1). The protonation on the one of the N sites is confirmed from C—N bond distance. The other geometrical parameters of the cation are in agreement with the reported structures of 4-homosulfanilamide hydrochloride (Chatterjee *et al.*, 1981), 4-aminobenzenesulfonamide (Gelbrich *et al.*, 2008), bis(4-Aminosulfonyl)benzeneammonium hexafluorosilicate (Gelmboldt *et al.*, 2004), 4-sulfonamidoanilinium 3,5-dinitrosalicylate (Smith *et al.*, 2001) and 4-sulfamoylanilinium chloride (Zaouali Zgolli *et al.*, 2010).

The crystal structure is stabilized through intricate three dimensional hydrogen bonding network formed through N— H···O hydrogen bonds (Fig 2, Table 1). The N atom of the $-NH_2$ group of the cation is hydrogen bonded with O atom of the S=O group making a zigzag chain C(4) motif extending along *c* axis of the unit cell (Etter *et al.*, 1990). Further, the N atom of the $-NH_3$ group of the cation is hydrogen bonded with another O atom of the S=O group making a head-to-tail like chain C(8) motif extending along diagonal of the *ab*-plane. Nitrate anions are sandwiched between these two chains leading to a unusual asymmetric ring $R_5^5(16)$ motif which involves four cation and one anion. Also, cations are linked through anion by two N—H···O hydrogen bonds [*viz.*, N1—H1B···O4 (*x*, 1 - *y*, 1/2 + *z*) and N2—H3N···O5 (-1/2 + *x*, 3/2 - *y*, -1/2 + *z*)] forming a chain $C_2^2(12)$ motif extending along diagonal of the *bc*-plane.

S2. Experimental

Colourless crystals of 4-sulfamoylanilinium nitrate suitable for single-crystal X-ray analysis were obtained by slow evaporation at room temperature from an aquous solution of sulphanilamide and nitric acid.

S3. Refinement

The H atoms bonded to N located were refined istropically. All other H atoms were positioned geometrically and refined by the riding model approximation with d(C-H) = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with atom numbering scheme and 50% probability displacement ellipsoids.

Figure 2

Packing diagram of the title compound viewed down the *b*-axis. H-bonds are shown as dashed lines.

4-Sulfamoylanilinium nitrate

Crystal data

C₆H₉N₂O₂S⁺·NO₃⁻ $M_r = 235.22$ Monoclinic, *Cc* Hall symbol: C -2yc a = 14.1489 (19) Å b = 8.1786 (11) Å c = 8.6931 (12) Å $\beta = 107.129$ (2)° V = 961.3 (2) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector	1689 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.017$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$
Graphite monochromator	$h = -16 \rightarrow 16$
ω scans	$k = -9 \rightarrow 9$
4345 measured reflections	$l = -10 \rightarrow 10$
1694 independent reflections	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.025$	$w = 1/[\sigma^2(F_o^2) + (0.043P)^2 + 0.0928P]$
$wR(F^2) = 0.061$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.15	$(\Delta/\sigma)_{\rm max} = 0.001$
1694 reflections	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
157 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: SHELXTL/PC,
Primary atom site location: structure-invariant	$Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4}$
direct methods	Extinction coefficient: 0.050 (3)
Secondary atom site location: difference Fourier map	Absolute structure: Flack (1983), 840 Friedel pairs
Hydrogen site location: inferred from neighbouring sites	Absolute structure parameter: 0.06 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 488

 $\theta = 2.3 - 24.3^{\circ}$

 $\mu = 0.34 \text{ mm}^{-1}$ T = 293 K

Block. colourless

 $0.24 \times 0.22 \times 0.19 \text{ mm}$

 $D_{\rm x} = 1.625 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2432 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displac	ement parameters (Ų)
---	----------------------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.29701 (12)	0.3638 (2)	0.66596 (19)	0.0342 (3)
C2	0.20184 (13)	0.3652 (2)	0.5630 (2)	0.0403 (3)

H2	0.1737	0.2705	0.5098	0.048*
C3	0.14895 (12)	0.5103 (2)	0.5403 (2)	0.0428 (4)
H3	0.0845	0.5138	0.4721	0.051*
C4	0.19244 (12)	0.6488 (2)	0.6193 (2)	0.0334 (3)
C5	0.28819 (14)	0.6483 (2)	0.7208 (2)	0.0414 (4)
Н5	0.3166	0.7437	0.7723	0.050*
C6	0.34101 (13)	0.5037 (2)	0.7443 (2)	0.0424 (4)
H6	0.4055	0.5005	0.8122	0.051*
N1	0.39052 (16)	0.1289 (2)	0.8816 (2)	0.0511 (4)
N2	0.13535 (11)	0.79981 (18)	0.59414 (18)	0.0374 (3)
N3	0.55860 (12)	0.64779 (19)	0.6987 (2)	0.0447 (3)
01	0.45798 (12)	0.21351 (19)	0.6684 (2)	0.0596 (4)
O2	0.30328 (10)	0.05499 (16)	0.60456 (18)	0.0520 (3)
O3	0.51772 (13)	0.76152 (19)	0.7468 (2)	0.0658 (4)
O4	0.53047 (11)	0.60273 (18)	0.55635 (17)	0.0557 (3)
O5	0.63098 (11)	0.57493 (19)	0.79609 (15)	0.0522 (3)
S1	0.36568 (3)	0.17908 (4)	0.69713 (4)	0.03650 (14)
H1A	0.343 (2)	0.088 (3)	0.900 (3)	0.060 (7)*
H1B	0.4231 (19)	0.194 (4)	0.932 (3)	0.056 (7)*
H1N	0.156 (2)	0.875 (4)	0.678 (4)	0.074 (8)*
H2N	0.0721 (18)	0.783 (3)	0.599 (3)	0.045 (5)*
H3N	0.1270 (18)	0.837 (3)	0.503 (3)	0.052 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0360 (7)	0.0310 (8)	0.0390 (7)	0.0001 (6)	0.0165 (6)	0.0030 (6)
C2	0.0376 (8)	0.0324 (7)	0.0484 (8)	-0.0050 (7)	0.0086 (7)	-0.0025 (7)
C3	0.0317 (7)	0.0412 (9)	0.0502 (9)	-0.0028 (6)	0.0038 (6)	0.0022 (7)
C4	0.0359 (8)	0.0308 (7)	0.0362 (7)	0.0028 (6)	0.0146 (6)	0.0036 (5)
C5	0.0417 (9)	0.0318 (8)	0.0459 (9)	-0.0015 (7)	0.0057 (7)	-0.0045 (7)
C6	0.0344 (7)	0.0372 (9)	0.0495 (9)	0.0017 (6)	0.0030 (6)	-0.0006 (6)
N1	0.0581 (10)	0.0410 (8)	0.0550 (9)	0.0039 (8)	0.0179 (8)	0.0072 (8)
N2	0.0387 (8)	0.0359 (7)	0.0399 (7)	0.0054 (6)	0.0152 (6)	0.0053 (6)
N3	0.0447 (9)	0.0421 (8)	0.0486 (9)	-0.0043 (6)	0.0154 (7)	-0.0024 (7)
01	0.0491 (8)	0.0516 (7)	0.0924 (11)	0.0044 (6)	0.0430 (7)	0.0048 (7)
O2	0.0521 (8)	0.0368 (7)	0.0682 (8)	0.0014 (5)	0.0194 (6)	-0.0139 (6)
03	0.0643 (9)	0.0538 (9)	0.0795 (11)	0.0092 (7)	0.0214 (7)	-0.0178 (8)
O4	0.0622 (8)	0.0551 (8)	0.0420 (6)	0.0030 (7)	0.0033 (6)	-0.0058 (6)
05	0.0586 (8)	0.0551 (8)	0.0402 (6)	0.0095 (6)	0.0105 (5)	-0.0017 (6)
S1	0.0357 (2)	0.0304 (2)	0.0475 (2)	0.00160 (14)	0.01862 (14)	-0.00021 (15)

Geometric parameters (Å, °)

C1—C2	1.380 (2)	N1—S1	1.5911 (19)
C1—C6	1.382 (2)	N1—H1A	0.81 (3)
C1—S1	1.7737 (16)	N1—H1B	0.75 (3)
C2—C3	1.386 (2)	N2—H1N	0.93 (3)

supporting information

С2—Н2	0.9300	N2—H2N	0.92 (2)
C3—C4	1.372 (2)	N2—H3N	0.83 (3)
С3—Н3	0.9300	N3—O3	1.232 (2)
C4—C5	1.382 (2)	N3—O4	1.239 (2)
C4—N2	1.457 (2)	N3—O5	1.269 (2)
C5—C6	1.382 (3)	O1—S1	1.4283 (14)
С5—Н5	0.9300	O2—S1	1.4277 (14)
С6—Н6	0.9300		
C2 C1 C6	121 65 (15)	S1 N1 H1A	110.7(10)
$C_2 = C_1 = C_0$	121.03(13) 110.47(12)	SI NI UIP	110.7(19)
$C_2 = C_1 = S_1$	119.47(12) 118.87(13)	HIA NI HIB	109(2) 125(3)
$C_{1} = C_{2} = C_{3}$	118.87 (13)	MA = NI = MIB	125(5) 1146(10)
C1 = C2 = C3	120.6	C4 = N2 = H2N	114.0(19) 111.0(14)
$C_1 - C_2 - H_2$	120.6	$H_{1N} = H_{2N}$	(14)
C_{1} C_{2} C_{2}	120.0 110 AA (1A)	C4 N2 H3N	$\frac{90}{2}$
$C_4 = C_3 = C_2$	120.3	$H_{1N} = H_{2} = H_{3N}$	112.0(17)
$C_2 C_3 H_3$	120.3	H2N N2 H3N	113(2) 104(2)
$C_2 - C_3 - C_5$	120.5	03 - N3 - 04	104(2) 121.26(17)
$C_3 - C_4 - N_2$	118 52 (14)	03—N3—05	121.20(17) 119.70(17)
$C_5 - C_4 - N_2$	119 60 (16)	04—N3—05	119.05 (16)
C_{6}	118 85 (16)	$0^{2}-10^{1}$	119.03 (10)
C6-C5-H5	120.6	02 - 101 - 101	107.54(11)
C4-C5-H5	120.6	01 - S1 - N1	106 58 (11)
C_{5} C_{6} C_{1}	119 34 (15)	02-100	107.43 (8)
C5—C6—H6	120.3	01 - 1 - 1	107.05 (8)
С1—С6—Н6	120.3	N1—S1—C1	108.78 (8)
C6 C1 C2 C3	-11(2)	C2 C1 C6 C5	0.8(3)
$c_0 - c_1 - c_2 - c_3$	1.1(2) 17076(14)	$C_2 - C_1 - C_0 - C_3$	170.05(14)
$C_1 = C_2 = C_3$	1/9.70(14)	$C_{1}^{2} = C_{1}^{1} = C_{2}^{1} = C_{2}^{1}$	-1.42(15)
$C_1 - C_2 - C_3 - C_4$	0.5(3)	$C_2 = C_1 = S_1 = O_2$	1.42(13) 179/42(14)
$C_2 - C_3 - C_4 - N_2$	-17977(16)	C_{2} C_{1} S_{1} O_{2}	179.42(14) 127.65(14)
$C_2 = C_3 = C_4 = C_5 = C_6$	-0.7(3)	$C_{1} = S_{1} = 0_{1}$	-51.51(16)
$N_{2} C_{4} C_{5} C_{6}$	179.48 (16)	$C_{}C_{1}S_{1}N_{1}$	-11754(15)
C4 - C5 - C6 - C1	0.1.(3)	$C_{1} = S_{1} = N_{1}$	63 29 (17)
07-05-00-01	0.1 (3)	C0-C1-51-M	03.29 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1A····O2 ⁱ	0.81 (3)	2.33 (3)	2.992 (2)	139 (2)
N1—H1 <i>B</i> ····O4 ⁱⁱ	0.75 (3)	2.30 (3)	3.045 (3)	172 (3)
N2—H1 <i>N</i> ···O5 ⁱⁱⁱ	0.93 (3)	2.01 (3)	2.866 (2)	151 (3)
N2—H2N···O1 ⁱⁱⁱ	0.92 (2)	1.97 (2)	2.858 (2)	163 (2)
N2— $H3N$ ···O5 ^{iv}	0.83 (3)	1.95 (3)	2.770 (2)	171 (2)

Symmetry codes: (i) x, -y, z+1/2; (ii) x, -y+1, z+1/2; (iii) x-1/2, y+1/2, z; (iv) x-1/2, -y+3/2, z-1/2.