

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-[(E)-1-(4-Bromophenyl)ethylidene]-4hydroxy-2-methyl-1,1-dioxo-2H-1,2benzothiazine-3-carbohydrazide

Naveed Ahmad,^a Muhammad Zia-ur-Rehman,^b* Hamid Latif Siddigui,^a Muhammad Nadeem Arshad^c and Abdullah M. Asiri^d

^aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, ^bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, ^cX-ray Diffraction and Physical Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Lahore 54590, Pakistan, and ^dThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia

Correspondence e-mail: rehman_pcsir@hotmail.com

Received 30 August 2011; accepted 1 September 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.070; data-to-parameter ratio = 15.4.

The six-membered heterocycle in the title compound, C₁₈H₁₆BrN₃O₄S, adopts a sofa conformation. Intramolecular $N-H\cdots N$ and $O-H\cdots O$ hydrogen bonds stabilize the molecular conformation by forming a five- and a sixmembered ring, respectively. The crystal packing is stabilized by intermolecular $C-H \cdots O$ hydrogen bonds.

Related literature

For general background, see: Zia-ur-Rehman et al. (2009). For synthesis details, see: Ahmad et al. (2011). For graph-set notation of hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data C18H16BrN3O4S $M_r = 450.31$

Monoclinic, $P2_1/c$ a = 14.692 (2) Å

b = 16.562 (2) Å c = 7.5254 (10) Å $\beta = 104.820 \ (1)^{\circ}$ V = 1770.2 (4) Å³ Z = 4

Data collection

Siemens SMART diffractometer
equipped with a Bruker
KappaCCD APEXII
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.383, T_{\max} = 0.773$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of
$wR(F^2) = 0.070$	independent and constrained
S = 1.03	refinement
4490 reflections	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
292 parameters	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$\begin{array}{ccccccc} C17-H17C\cdots O2^{i} & 0.95 & (3) & 2.38 & (3) & 3.275 & (2) & 158 & (2) \\ C17-H17A\cdots O4^{ii} & 0.95 & (3) & 2.54 & (3) & 3.479 & (2) & 171 & (2) \\ N2-H2N\cdots N1 & 0.84 & (3) & 2.24 & (3) & 2.690 & (2) & 114 & (2) \\ 01-H12O & 04-H12O & 04-H1$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01 - H10 \cdots 04$ 0.82 (3) 1.86 (3) 2.5979 (18) 148 (3)	$C17 - H17C \cdots O2^{i} C17 - H17A \cdots O4^{ii} N2 - H2N \cdots N1 O1 - H1O \cdots O4$	0.95 (3) 0.95 (3) 0.84 (3) 0.82 (3)	2.38 (3) 2.54 (3) 2.24 (3) 1.86 (3)	3.275 (2) 3.479 (2) 2.690 (2) 2.5979 (18)	158 (2) 171 (2) 114 (2) 148 (3)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

NA is grateful to the Higher Education Commission of Pakistan for the award of an HEC indigenous scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5633).

References

- Ahmad, N., Zia-ur-Rehman, M., Siddiqui, H. L., Fasih Ullah, M. & Pervez, M. (2011). Eur. J. Med. Chem. 46, 2368-2377.
- Barbour, L. J. (2001). J. Supramol. Chem. pp. 189-191.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.

Mo $K\alpha$ radiation $\mu = 2.47 \text{ mm}^{-1}$

 $0.48 \times 0.36 \times 0.11 \text{ mm}$

21408 measured reflections 4490 independent reflections

3600 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int} = 0.034$

supporting information

Acta Cryst. (2011). E67, o2613 [https://doi.org/10.1107/S1600536811035641]

N'-[(*E*)-1-(4-Bromophenyl)ethylidene]-4-hydroxy-2-methyl-1,1-dioxo-2*H*-1,2-benzothiazine-3-carbohydrazide

Naveed Ahmad, Muhammad Zia-ur-Rehman, Hamid Latif Siddiqui, Muhammad Nadeem Arshad and Abdullah M. Asiri

S1. Comment

In continuation of our on-going research on various biologically active benzothiazine derivatives (Zia-ur-Rehman *et al.*, 2009; Ahmad *et al.*, 2011) synthesis and crystal structure of the title molecule (**I**) is reported here.

In the crystal structure of the title compound (**I**), two fused rings (benzene & thiazine) are twisted with a dihedral angle of 13.61 (10)° while the later (C1/C6/C7/C8/N1/S1) adopts half chair conformation [Nitrogen (0.3564 (10)Å and sulfur (-0.3114 (9) Å) atoms show maximum deviation from the least square plane]. The bromophenyl ring (C11—C16) is oriented almost at the same dihedral angle that measures 27.93 (7)° and 26.23 (8)° with respect to the thiazine and aromatic ring (C1—C6). Intramolecular hydrogen bonding through O—H…O and N—H…N interactions gives rise to two different rings $S_1^{1}(6)$ **A** and $S_1^{1}(5)$ **B** respectively (Figure 1). Rings generated from intramolecular hydrogen bondings are fused and twisted at dihedral angle of 5.01 (82)Å and both are inclined at 22.00 (47)Å and 18.83 (27)Å with respect to the thiazine ring. Molecules of the title compound (**I**) are involved in symmetry related C—H…O weak interactions which form inversion dimers and give rise to the formation of a twelve membered ring $R_2^2(12)$ (Bernstein *et al.*, 1995). The dimers are further linked through another C—H…O interaction generating from *N*-methyl hydrogen and sulfone oxygen atoms giving rise to two dimensional polymeric network along *bc* plane (Figure 2., Table 1).

S2. Experimental

A mixture of 4-hydroxy-2*H*-1,2-benzothiazine-3-carbohydrazide 1,1-dioxide (2.0 mmol), 4-bromo acetophenone (2.0 mmol), *ortho* phosphoric acid (2 drops) and methanol (50 ml) was refluxed for a period of seven hours. The content was cooled to 5° C in an ice bath, filtered and the solids were washed with cold methanol to get the pure compound. The product was crystallized from ethanol to get the suitable crystals. Yield: 82%.

S3. Refinement

The coordinates of all H atoms were refined with U(H) set to $1.2U_{eq}$ for all N and aromatic C atoms and $1.5U_{eq}$ for O and C_{methyl}.

Figure 1

The title molecule with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1999).

Figure 2

The unit cell packing of the title compound; H bonds have been plotted with dashed lines and H-atoms not involved in hydrogen bonds have been excluded for clarity.

N'-[(*E*)-1-(4-Bromophenyl)ethylidene]-4-hydroxy-2-methyl- 1,1-dioxo-2*H*-1,2-benzothiazine-3-carbohydrazide

Crystal data

$C_{18}H_{16}BrN_3O_4S$	F(000) = 912
$M_r = 450.31$	$D_{\rm x} = 1.690 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6699 reflections
a = 14.692 (2) Å	$\theta = 2.9 - 28.6^{\circ}$
b = 16.562 (2) Å	$\mu = 2.47 \; \mathrm{mm^{-1}}$
c = 7.5254 (10) Å	T = 173 K
$\beta = 104.820 \ (1)^{\circ}$	Block, light yellow
V = 1770.2 (4) Å ³	$0.48 \times 0.36 \times 0.11 \text{ mm}$
7 = 4	

Data collection

Siemens SMART	21408 measured reflections
diffractometer equipped with a Bruker	4490 independent reflections
KappaCCD APEXII	3600 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.034$
Graphite monochromator	$\theta_{\rm max} = 28.9^{\circ}, \theta_{\rm min} = 1.9^{\circ}$
φ and ω scans	$h = -19 \longrightarrow 19$
Absorption correction: multi-scan	$k = -22 \longrightarrow 22$
(SADABS; Bruker, 2001)	$l = -10 \rightarrow 10$
$T_{\min} = 0.383, \ T_{\max} = 0.773$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from
$\mathcal{D}(\mathcal{F}^2) = 0.070$	

 $wR(F^2) = 0.070$ neighbouring sitesS = 1.03H atoms treated by a mixture of independent4490 reflectionsand constrained refinement292 parameters $w = 1/[\sigma^2(F_o^2) + (0.0314P)^2 + 1.043P]$ 0 restraintswhere $P = (F_o^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant
direct methods $(\Delta/\sigma)_{max} = 0.001$ $\Delta \rho_{max} = 0.44$ e Å⁻³
 $\Delta \rho_{min} = -0.40$ e Å⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.74833 (13)	0.08528 (11)	0.1120 (2)	0.0143 (4)	
C2	0.83074 (14)	0.10149 (12)	0.0597 (3)	0.0192 (4)	
C3	0.87895 (14)	0.03747 (13)	0.0071 (3)	0.0214 (4)	
C4	0.84550 (14)	-0.04104 (12)	0.0080 (3)	0.0191 (4)	
C5	0.76259 (13)	-0.05643 (11)	0.0574 (3)	0.0153 (4)	
C6	0.71272 (12)	0.00689 (11)	0.1115 (2)	0.0125 (3)	
C7	0.62439 (12)	-0.00730 (10)	0.1649 (2)	0.0118 (3)	
C8	0.58824 (12)	0.04814 (10)	0.2620 (2)	0.0126 (3)	
C9	0.49476 (12)	0.03746 (10)	0.2936 (2)	0.0122 (3)	
C10	0.35797 (12)	0.15959 (11)	0.5072 (2)	0.0126 (3)	
C11	0.25982 (12)	0.16068 (11)	0.5279 (2)	0.0127 (3)	
C12	0.19684 (13)	0.09850 (11)	0.4527 (2)	0.0143 (4)	
C13	0.10540 (13)	0.09808 (12)	0.4725 (3)	0.0171 (4)	
C14	0.07621 (12)	0.16057 (12)	0.5683 (3)	0.0168 (4)	
C15	0.13608 (13)	0.22345 (12)	0.6414 (3)	0.0166 (4)	

C16	0.22758 (13)	0.22328 (11)	0.6209 (2)	0.0146 (4)
C17	0.70484 (14)	0.11010 (12)	0.5184 (3)	0.0177 (4)
C18	0.42638 (14)	0.22228 (12)	0.6057 (3)	0.0179 (4)
N1	0.63983 (10)	0.12026 (9)	0.3325 (2)	0.0127 (3)
N2	0.46422 (11)	0.10249 (9)	0.3728 (2)	0.0132 (3)
N3	0.37590 (10)	0.10297 (9)	0.4031 (2)	0.0134 (3)
O1	0.58057 (9)	-0.07719 (8)	0.10541 (17)	0.0144 (3)
O2	0.74855 (9)	0.22587 (8)	0.26881 (19)	0.0195 (3)
O3	0.60735 (9)	0.18640 (8)	0.02540 (19)	0.0185 (3)
O4	0.44888 (9)	-0.02546 (7)	0.25045 (17)	0.0147 (3)
S1	0.68413 (3)	0.16496 (3)	0.17764 (6)	0.01416 (10)
Br1	-0.047586 (14)	0.160120 (14)	0.60056 (3)	0.02823 (7)
H1O	0.530(2)	-0.0778 (16)	0.134 (4)	0.042*
H2	0.8547 (18)	0.1523 (15)	0.064 (3)	0.034*
H2N	0.5020 (19)	0.1414 (16)	0.401 (3)	0.034*
Н3	0.9330 (18)	0.0479 (15)	-0.028 (3)	0.034*
H4	0.8796 (18)	-0.0832 (15)	-0.022 (3)	0.034*
Н5	0.7398 (17)	-0.1094 (15)	0.056 (3)	0.034*
H12	0.2183 (17)	0.0564 (15)	0.385 (3)	0.034*
H13	0.0610 (17)	0.0546 (16)	0.420 (3)	0.034*
H15	0.1165 (17)	0.2691 (15)	0.707 (3)	0.034*
H16	0.2668 (18)	0.2657 (15)	0.667 (3)	0.034*
H17A	0.6686 (19)	0.0859 (16)	0.592 (4)	0.042*
H17B	0.758 (2)	0.0739 (16)	0.512 (4)	0.042*
H17C	0.727 (2)	0.1614 (16)	0.566 (4)	0.042*
H18A	0.488 (2)	0.2076 (17)	0.624 (4)	0.042*
H18B	0.4183 (18)	0.2313 (16)	0.732 (4)	0.042*
H18C	0.4163 (19)	0.2714 (17)	0.549 (4)	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0125 (8)	0.0151 (9)	0.0161 (9)	0.0036 (7)	0.0051 (7)	0.0024 (7)
C2	0.0163 (9)	0.0179 (10)	0.0260 (10)	-0.0013 (7)	0.0100 (8)	0.0032 (8)
C3	0.0145 (9)	0.0274 (11)	0.0252 (11)	0.0027 (8)	0.0101 (8)	0.0029 (8)
C4	0.0178 (10)	0.0220 (10)	0.0188 (10)	0.0065 (8)	0.0072 (8)	-0.0013 (8)
C5	0.0173 (9)	0.0162 (9)	0.0125 (9)	0.0020 (7)	0.0039 (7)	-0.0005 (7)
C6	0.0124 (8)	0.0136 (8)	0.0109 (8)	0.0026 (7)	0.0021 (7)	0.0014 (6)
C7	0.0115 (8)	0.0113 (8)	0.0120 (8)	-0.0003 (6)	0.0021 (7)	0.0026 (6)
C8	0.0119 (8)	0.0125 (8)	0.0135 (9)	-0.0008 (7)	0.0032 (7)	0.0011 (7)
C9	0.0131 (8)	0.0140 (8)	0.0093 (8)	0.0013 (7)	0.0025 (6)	0.0032 (6)
C10	0.0120 (8)	0.0143 (8)	0.0110 (8)	-0.0003 (7)	0.0023 (6)	0.0025 (7)
C11	0.0115 (8)	0.0159 (9)	0.0111 (8)	-0.0001 (7)	0.0034 (6)	0.0034 (7)
C12	0.0151 (9)	0.0131 (9)	0.0148 (9)	0.0004 (7)	0.0042 (7)	0.0012 (7)
C13	0.0138 (9)	0.0170 (9)	0.0200 (10)	-0.0018 (7)	0.0035 (7)	0.0005 (7)
C14	0.0099 (8)	0.0218 (9)	0.0196 (9)	0.0012 (7)	0.0055 (7)	0.0039 (7)
C15	0.0168 (9)	0.0188 (9)	0.0152 (9)	0.0020 (7)	0.0057 (7)	-0.0006 (7)
C16	0.0162 (9)	0.0148 (9)	0.0132 (9)	-0.0004 (7)	0.0045 (7)	-0.0004 (7)

supporting information

C17	0.0179 (10)	0.0177 (10)	0.0171 (10)	-0.0017 (8)	0.0036 (8)	-0.0016 (7)
C18	0.0153 (9)	0.0185 (10)	0.0211 (10)	-0.0032 (7)	0.0067 (8)	-0.0036 (8)
N1	0.0127 (7)	0.0103 (7)	0.0166 (8)	-0.0011 (6)	0.0064 (6)	0.0000 (6)
N2	0.0103 (7)	0.0151 (8)	0.0150 (8)	-0.0007 (6)	0.0045 (6)	-0.0001 (6)
N3	0.0114 (7)	0.0164 (8)	0.0132 (7)	0.0008 (6)	0.0042 (6)	0.0024 (6)
01	0.0136 (6)	0.0134 (6)	0.0163 (7)	-0.0016 (5)	0.0043 (5)	-0.0008(5)
O2	0.0179 (7)	0.0126 (6)	0.0297 (8)	-0.0017 (5)	0.0093 (6)	0.0000 (5)
O3	0.0158 (7)	0.0167 (7)	0.0239 (7)	0.0040 (5)	0.0069 (6)	0.0058 (5)
O4	0.0141 (6)	0.0146 (6)	0.0160 (6)	-0.0021 (5)	0.0048 (5)	0.0004 (5)
S1	0.0124 (2)	0.0112 (2)	0.0204 (2)	0.00122 (16)	0.00694 (17)	0.00262 (17)
Brl	0.01334 (10)	0.03465 (13)	0.03960 (14)	0.00017 (8)	0.01204 (9)	-0.00172 (10)

Geometric parameters (Å, °)

C1—C2	1.392 (3)	C12—C13	1.389 (3)
C1—C6	1.399 (3)	C12—H12	0.96 (3)
C1—S1	1.7646 (18)	C13—C14	1.390 (3)
C2—C3	1.388 (3)	C13—H13	0.98 (3)
C2—H2	0.91 (2)	C14—C15	1.383 (3)
C3—C4	1.391 (3)	C14—Br1	1.8956 (18)
С3—Н3	0.91 (3)	C15—C16	1.392 (3)
C4—C5	1.385 (3)	C15—H15	0.99 (3)
C4—H4	0.92 (3)	C16—H16	0.92 (3)
C5—C6	1.398 (2)	C17—N1	1.488 (2)
С5—Н5	0.94 (3)	C17—H17A	0.95 (3)
С6—С7	1.472 (2)	C17—H17B	1.00 (3)
C7—O1	1.344 (2)	C17—H17C	0.95 (3)
С7—С8	1.363 (2)	C18—H18A	0.92 (3)
C8—N1	1.441 (2)	C18—H18B	1.00 (3)
С8—С9	1.463 (2)	C18—H18C	0.91 (3)
С9—О4	1.239 (2)	N1—S1	1.6488 (15)
C9—N2	1.361 (2)	N2—N3	1.374 (2)
C10—N3	1.291 (2)	N2—H2N	0.84 (3)
C10—C11	1.490 (2)	O1—H1O	0.82 (3)
C10—C18	1.502 (3)	O2—S1	1.4326 (14)
C11—C16	1.400 (3)	O3—S1	1.4318 (14)
C11—C12	1.403 (2)		
C2—C1—C6	122.01 (17)	C12—C13—H13	121.4 (14)
C2-C1-S1	120.07 (14)	C14—C13—H13	119.5 (14)
C6-C1-S1	117.92 (13)	C15—C14—C13	121.17 (17)
C3—C2—C1	118.53 (18)	C15-C14-Br1	119.05 (14)
С3—С2—Н2	119.8 (16)	C13—C14—Br1	119.79 (14)
C1—C2—H2	121.6 (16)	C14—C15—C16	119.24 (17)
C2—C3—C4	120.41 (18)	C14—C15—H15	122.6 (14)
С2—С3—Н3	118.7 (16)	C16—C15—H15	118.2 (14)
С4—С3—Н3	120.8 (16)	C15—C16—C11	121.13 (17)
C5—C4—C3	120.63 (18)	C15—C16—H16	119.1 (16)

С5—С4—Н4	119.9 (15)	C11—C16—H16	119.7 (16)
C3—C4—H4	119.5 (15)	N1—C17—H17A	106.1 (16)
C4—C5—C6	120.16 (18)	N1—C17—H17B	110.2 (15)
C4—C5—H5	120.3 (15)	H17A—C17—H17B	110 (2)
С6—С5—Н5	119.5 (15)	N1—C17—H17C	109.3 (16)
C5—C6—C1	118.24 (16)	Н17А—С17—Н17С	110 (2)
C5—C6—C7	121.59 (16)	H17B—C17—H17C	111 (2)
C1 - C6 - C7	120.17 (15)	C10-C18-H18A	1138(17)
01 - C7 - C8	122.64 (16)	C10-C18-H18B	110.2(15)
01-C7-C6	115 28 (15)	H18A - C18 - H18B	105 (2)
C8-C7-C6	122.03 (16)	C10-C18-H18C	102(2) 1121(17)
C7-C8-N1	122.03(10) 121.02(15)	H18A - C18 - H18C	112.1(17)
C7 - C8 - C9	121.02(15) 121.10(16)	H18B-C18-H18C	106(2)
$N_1 - C_8 - C_9$	117.86 (15)	$\frac{1100}{100} = \frac{1100}{1100} = \frac{1100}{1100}$	100(2) 113 77(14)
Ω_{1}^{\prime} Ω_{2}^{\prime} Ω_{3}^{\prime} Ω_{2}^{\prime} Ω_{3}^{\prime} Ω_{3	117.00(15) 124.22(16)	C8 N1 S1	113.77(14) 112.18(12)
04 - 09 - 102	124.22(10) 121.07(16)	$C_{17} N_{1} S_{1}$	112.16(12) 116.15(12)
$V_{-}^{-} = C_{3}^{-} = C_{3}^{-}$	121.97(10) 112.81(15)	$C_1 = N_1 = S_1$	110.15(12)
$N_2 = C_3 = C_8$	115.01(15)	$C_9 = N_2 = N_3$	120.30(13)
N3 - C10 - C11	115.10(10) 125.02(10)	C9-N2-H2N	110.3(18)
N_{3} $-C_{10}$ $-C_{18}$	125.95 (16)	$N_3 - N_2 - H_2 N_2$	123.0(18)
	118.91 (16)	C10—N3—N2	116.92 (15)
C16—C11—C12	118.21 (16)	C/—OI—HIO	108.1 (19)
C16—C11—C10	121.45 (16)	03—\$1—02	119.83 (8)
C12—C11—C10	120.34 (16)	O3—SI—NI	107.72 (8)
C13—C12—C11	121.10 (17)	O2—S1—N1	108.04 (8)
C13—C12—H12	120.6 (15)	O3—S1—C1	109.24 (9)
C11—C12—H12	118.3 (15)	O2—S1—C1	109.01 (8)
C12—C13—C14	119.14 (17)	N1—S1—C1	101.43 (8)
C6—C1—C2—C3	-0.5 (3)	C11—C12—C13—C14	0.1 (3)
S1—C1—C2—C3	-179.37 (15)	C12—C13—C14—C15	1.0 (3)
C1—C2—C3—C4	-0.4 (3)	C12—C13—C14—Br1	-178.89 (14)
C2—C3—C4—C5	1.4 (3)	C13—C14—C15—C16	-1.0 (3)
C3—C4—C5—C6	-1.6 (3)	Br1-C14-C15-C16	178.84 (14)
C4—C5—C6—C1	0.7 (3)	C14-C15-C16-C11	0.0 (3)
C4—C5—C6—C7	179.99 (17)	C12-C11-C16-C15	1.1 (3)
C2-C1-C6-C5	0.3 (3)	C10-C11-C16-C15	-179.30 (17)
S1—C1—C6—C5	179.21 (13)	C7—C8—N1—C17	-88.2 (2)
C2-C1-C6-C7	-178.95 (17)	C9—C8—N1—C17	93.45 (19)
S1—C1—C6—C7	-0.1 (2)	C7—C8—N1—S1	46.2 (2)
C5-C6-C7-O1	-19.8 (2)	C9—C8—N1—S1	-132.15 (14)
C1—C6—C7—O1	159.41 (16)	O4—C9—N2—N3	-2.8(3)
C5—C6—C7—C8	162.47 (17)	C8—C9—N2—N3	176.94 (15)
C1—C6—C7—C8	-18.3 (3)	C11—C10—N3—N2	176.67 (14)
O1—C7—C8—N1	176.41 (15)	C18—C10—N3—N2	-3.4(3)
C6—C7—C8—N1	-6.1 (3)	C9—N2—N3—C10	167.98 (16)
01	-5.3 (3)	C8—N1—S1—O3	60.35 (14)
C6—C7—C8—C9	172.21 (16)	C17 - N1 - S1 - O3	-166.41(13)
C7—C8—C9—O4	7.4 (3)	C8-N1-S1-O2	-168.87(12)
	···· (-)	······································	

supporting information

N1	-174.25 (15)	C17—N1—S1—O2	-35.63 (15)
C7—C8—C9—N2	-172.33 (16)	C8—N1—S1—C1	-54.33 (13)
N1	6.0 (2)	C17—N1—S1—C1	78.91 (14)
N3-C10-C11-C16	-173.38 (16)	C2-C1-S1-O3	98.82 (17)
C18—C10—C11—C16	6.6 (3)	C6—C1—S1—O3	-80.10 (16)
N3-C10-C11-C12	6.2 (2)	C2-C1-S1-O2	-33.83 (18)
C18-C10-C11-C12	-173.73 (17)	C6—C1—S1—O2	147.26 (14)
C16—C11—C12—C13	-1.1 (3)	C2-C1-S1-N1	-147.64 (16)
C10-C11-C12-C13	179.26 (16)	C6-C1-S1-N1	33.45 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
C17—H17 <i>C</i> ···O2 ⁱ	0.95 (3)	2.38 (3)	3.275 (2)	158 (2)	
C17—H17 <i>A</i> ···O4 ⁱⁱ	0.95 (3)	2.54 (3)	3.479 (2)	171 (2)	
N2—H2 <i>N</i> ···N1	0.84 (3)	2.24 (3)	2.690 (2)	114 (2)	
01—H1 <i>O</i> ···O4	0.82 (3)	1.86 (3)	2.5979 (18)	148 (3)	

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) -*x*+1, -*y*, -*z*+1.