

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diiodidobis{4-[2-(2-methylphenyl)ethenyl]pyridine-*kN*{cadmium

Dong Liu

College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, People's Republic of China Correspondence e-mail: dongliu@chnu.edu.cn

Received 3 September 2011; accepted 14 September 2011

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.006 Å; R factor = 0.029; wR factor = 0.058; data-to-parameter ratio = 20.6.

In the title complex, $[CdI_2(C_{14}H_{13}N)_2]$, the Cd atom lies on a twofold rotation axis that relates the I atom and the 4-(2methylstyryl)pyridine ligand to their counterparts. Therefore the asymmetric unit contains one crystallographically independent half-molecule. The Cd atom adopts a tetrahedral coordination geometry, coordinated by two I atoms and two N atoms from the symmetry-related 4-(2-methylstyryl)pyridine ligands.

Related literature

For Cd complexes with similar structures, see: Hu & Englert (2002); Hu et al. (2003). Park et al. (2010). For Cd-I and Cd-N bond lengths, see: Pickardt & Staub (1999); Deng et al. (2009); Deiters et al. (2006); Amoedo-Portela et al. (2003).

Experimental

Crystal data

$[CdI_2(C_{14}H_{13}N)_2]$	
$M_r = 756.72$	
Monoclinic, C2/c	
a = 26.739 (5) Å	
b = 7.3613 (15) Å	
c = 16.072 (3) Å	
$\beta = 120.67 \ (3)^{\circ}$	

Data collection

Rigaku MercuryCCD area-detector diffractometer Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{\min} = 0.354, \ T_{\max} = 0.452$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.058$ S = 0.833106 reflections

 $V = 2721.0 (12) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 3.09 \text{ mm}^{-1}$ T = 223 K $0.35 \times 0.30 \times 0.25 \text{ mm}$

11814 measured reflections 3106 independent reflections 2204 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.051$

151 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.92 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.57$ e Å⁻³

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

This work was supported by the Research Start-Up Fund for New Staff of Huaibei Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2302).

References

- Amoedo-Portela, A., Carballo, R., Casas, J. S., Garcia-Martinez, E., Sanchez-Gonzalez, A., Sordo, J. & E. M. Vazquez-Lopez, (2003). Polyhedron, 22, 1077-1083
- Deiters, E., Bulach, V. & Hosseini, M. W. (2006). New J. Chem. 30, 1289-1294. Deng, H. Y., He, J. R., Pan, M., Li, L. & Su, C. Y. (2009). CrystEngComm, 11,
- 909-917 Hu, C. H. & Englert, U. (2002). CrystEngComm, 4, 20-25.
- Hu, C. H., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519-529.
- Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.
- Park, B. K., Eom, G. H., Kim, S. H., Kwak, H., Yoo, S. M., Lee, Y. J., Kim, C., Kim, S. J. & Kim, Y. (2010). Polyhedron, 29, 773-786.
- Pickardt, J. & Staub, B. (1999). Z. Naturforsch. Teil B, 54, 329-336.
- Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, m1407 [https://doi.org/10.1107/S1600536811037573] Diiodidobis{4-[2-(2-methylphenyl)ethenyl]pyridine-κ/V}cadmium

Dong Liu

S1. Comment

In the past decades, the chemistry of cadmium coordination compounds has attracted much attention owing to their interesting synthetic chemistry and potential applications to luminescence. In this paper, we report the crystal structure of the title compound, a new cadmium complex obtained by the reaction of CdI_2 and 4-(2-methylstyryl)pyridine.

The title complex crystallizes in the triclinic space group $P_{\overline{1}}$, and the asymmetric unit consists of one crystallographically independent half-molecule. As shown in Fig. 1, each Cd atom is tetrahedrally coordinated by two I atoms and two N atoms from two 4-(2-methylstyryl)pyridine ligands. The mean Cd–I and Cd–N bond lengths are similar with those of the reported complexes (Park *et al.*, 2010; Pickardt *et al.*, 1999; Deng *et al.*, 2009; Deiters *et al.*, 2006; Amoedo-Portela *et al.*, 2003).

S2. Experimental

To a 10 mL Pyrex glass tube was loaded CdI_2 (37 mg, 0.1 mmol), 4-(2-methylstyryl)pyridine (20 mg, 0.1 mmol) and 3 ml of H₂O. The tube was sealed and heated in an oven to 160 °C for 3 d, and then cooled to ambient temperature at the rate of 5°C h⁻¹ to form yellow crystals.

S3. Refinement

All the H atoms were placed in geometrically idealized positions (C–H = 0.95 Å for phenyl/pyridyl/vinyl groups and C–H = 0.98 Å for methyl groups) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ for phenyl/pyridyl/vinyl groups and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups.

Figure 1

Coordination environment of Cd in the compound with nonhydrogen atoms represented by thermal ellipsoids draw at 30% probability level, hydrogen atoms are drawn as spheres of arbitrary radius. [Symmetry code, i: - x, y, - z - 1/2.]

Diiodidobis{4-[2-(2-methylphenyl)ethenyl]pyridine-*kN*}cadmium

Crystal data

$[CdI_2(C_{14}H_{13}N)_2]$	F(000) = 1448
$M_r = 756.72$	$D_{\rm x} = 1.847 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 6049 reflections
a = 26.739 (5) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 7.3613 (15) Å	$\mu = 3.09 \text{ mm}^{-1}$
c = 16.072 (3) Å	T = 223 K
$\beta = 120.67 \ (3)^{\circ}$	Block, yellow
$V = 2721.0 (12) Å^3$	$0.35 \times 0.30 \times 0.25 \text{ mm}$
Z = 4	
Data collection	
Rigaku MercuryCCD area-detector	11814 measured reflections
diffractometer	3106 independent reflections
Radiation source: fine-focus sealed tube	2204 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.051$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Absorption correction: multi-scan	$h = -33 \rightarrow 31$
(REQAB; Jacobson, 1998)	$k = -9 \rightarrow 6$
$T_{\min} = 0.354, \ T_{\max} = 0.452$	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from
$wR(F^2) = 0.058$	neighbouring sites
S = 0.83	H-atom parameters constrained
3106 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0229P)^2]$
151 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.92 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.57 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.0000	1.22721 (5)	0.7500	0.03840 (11)	
I1	0.053615 (12)	1.38570 (3)	0.66568 (2)	0.05147 (10)	
N1	0.06294 (12)	1.0045 (4)	0.8449 (2)	0.0370 (7)	
C1	0.04379 (17)	0.8800 (5)	0.8835 (3)	0.0472 (10)	
H1	0.0067	0.8965	0.8753	0.057*	
C2	0.07507 (16)	0.7311 (5)	0.9338 (3)	0.0427 (9)	
H2	0.0594	0.6495	0.9595	0.051*	
C3	0.12992 (16)	0.6994 (4)	0.9473 (3)	0.0387 (8)	
C4	0.14992 (16)	0.8297 (5)	0.9084 (3)	0.0462 (10)	
H4	0.1870	0.8169	0.9161	0.055*	
C5	0.11640 (16)	0.9759 (5)	0.8594 (3)	0.0447 (9)	
H5	0.1315	1.0611	0.8345	0.054*	
C6	0.16459 (16)	0.5436 (5)	0.9986 (3)	0.0442 (9)	
H6	0.2028	0.5398	1.0102	0.053*	
C7	0.14763 (16)	0.4041 (4)	1.0314 (3)	0.0386 (8)	
H7	0.1096	0.4109	1.0206	0.046*	
C8	0.18089 (16)	0.2417 (4)	1.0822 (2)	0.0383 (8)	
C9	0.23779 (17)	0.2147 (5)	1.1024 (3)	0.0468 (9)	
H9	0.2551	0.3034	1.0831	0.056*	
C10	0.26921 (18)	0.0622 (6)	1.1497 (3)	0.0553 (11)	
H10	0.3074	0.0467	1.1626	0.066*	
C11	0.2436 (2)	-0.0677 (5)	1.1780 (3)	0.0577 (11)	
H11	0.2644	-0.1731	1.2100	0.069*	
C12	0.18815 (18)	-0.0439 (5)	1.1597 (3)	0.0491 (10)	
H12	0.1716	-0.1337	1.1798	0.059*	

supporting information

C13	0.15574 (16)	0.1084 (4)	1.1126 (3)	0.0386 (8)
C14	0.09544 (18)	0.1297 (5)	1.0972 (3)	0.0544 (11)
H14A	0.0833	0.0160	1.1121	0.082*
H14B	0.0685	0.1622	1.0304	0.082*
H14C	0.0957	0.2244	1.1394	0.082*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0410 (2)	0.03176 (19)	0.0471 (3)	0.000	0.0258 (2)	0.000
I1	0.05478 (19)	0.04516 (15)	0.0666 (2)	0.00138 (12)	0.03979 (17)	0.01120 (12)
N1	0.0339 (17)	0.0353 (16)	0.0432 (18)	-0.0012 (13)	0.0207 (16)	0.0020 (13)
C1	0.042 (2)	0.048 (2)	0.063 (3)	0.0021 (18)	0.035 (2)	0.0091 (19)
C2	0.044 (2)	0.040 (2)	0.053 (3)	-0.0016 (17)	0.031 (2)	0.0103 (18)
C3	0.045 (2)	0.0332 (18)	0.041 (2)	-0.0024 (16)	0.025 (2)	-0.0014 (16)
C4	0.039 (2)	0.043 (2)	0.066 (3)	0.0038 (17)	0.033 (2)	0.0090 (19)
C5	0.045 (2)	0.041 (2)	0.054 (3)	-0.0046 (18)	0.029 (2)	0.0058 (18)
C6	0.034 (2)	0.052 (2)	0.046 (2)	0.0045 (17)	0.019 (2)	0.0080 (18)
C7	0.040 (2)	0.0359 (19)	0.040 (2)	-0.0001 (16)	0.021 (2)	0.0009 (16)
C8	0.047 (2)	0.0330 (18)	0.037 (2)	0.0022 (16)	0.023 (2)	-0.0013 (15)
C9	0.049 (3)	0.046 (2)	0.045 (3)	0.0011 (19)	0.023 (2)	0.0017 (18)
C10	0.048 (3)	0.063 (3)	0.046 (3)	0.012 (2)	0.018 (2)	0.000 (2)
C11	0.071 (3)	0.049 (2)	0.043 (3)	0.019 (2)	0.022 (3)	0.0122 (19)
C12	0.063 (3)	0.040 (2)	0.044 (2)	0.0043 (19)	0.028 (2)	0.0044 (18)
C13	0.049 (2)	0.0348 (18)	0.032 (2)	0.0034 (17)	0.021 (2)	-0.0007 (15)
C14	0.068 (3)	0.040 (2)	0.073 (3)	0.0037 (19)	0.049 (3)	0.0068 (19)

Geometric parameters (Å, °)

Cd1—N1 ⁱ	2.286 (3)	С7—С8	1.464 (5)	
Cd1—N1	2.286 (3)	С7—Н7	0.9400	
Cd1—I1 ⁱ	2.6898 (5)	C8—C9	1.398 (5)	
Cd1—I1	2.6898 (5)	C8—C13	1.410 (4)	
N1C5	1.342 (4)	C9—C10	1.376 (5)	
N1-C1	1.346 (4)	С9—Н9	0.9400	
C1—C2	1.366 (5)	C10—C11	1.380 (5)	
C1—H1	0.9400	C10—H10	0.9400	
С2—С3	1.389 (4)	C11—C12	1.369 (5)	
С2—Н2	0.9400	C11—H11	0.9400	
C3—C4	1.391 (4)	C12—C13	1.383 (5)	
С3—С6	1.441 (5)	C12—H12	0.9400	
C4—C5	1.365 (5)	C13—C14	1.510 (5)	
C4—H4	0.9400	C14—H14A	0.9700	
С5—Н5	0.9400	C14—H14B	0.9700	
С6—С7	1.335 (4)	C14—H14C	0.9700	
С6—Н6	0.9400			
N1 ⁱ —Cd1—N1	88.38 (14)	C6—C7—C8	128.0 (3)	

N1 ⁱ —Cd1—I1 ⁱ	104.30 (6)	С6—С7—Н7	116.0
N1—Cd1—I1 ⁱ	112.03 (6)	С8—С7—Н7	116.0
N1 ⁱ —Cd1—I1	112.03 (6)	C9—C8—C13	118.3 (3)
N1—Cd1—I1	104.29 (6)	C9—C8—C7	121.7 (3)
I1 ⁱ —Cd1—I1	128.59 (2)	C13—C8—C7	120.0 (3)
C5—N1—C1	115.8 (3)	C10—C9—C8	122.0 (3)
C5—N1—Cd1	125.8 (2)	С10—С9—Н9	119.0
C1—N1—Cd1	118.2 (2)	С8—С9—Н9	119.0
N1—C1—C2	123.9 (3)	C9—C10—C11	118.8 (4)
N1—C1—H1	118.1	C9—C10—H10	120.6
С2—С1—Н1	118.1	C11—C10—H10	120.6
C1—C2—C3	120.4 (3)	C12—C11—C10	120.3 (4)
С1—С2—Н2	119.8	C12—C11—H11	119.8
С3—С2—Н2	119.8	C10-C11-H11	119.8
C2—C3—C4	115.5 (3)	C11—C12—C13	122.0 (3)
C2—C3—C6	122.9 (3)	C11—C12—H12	119.0
C4—C3—C6	121.6 (3)	C13—C12—H12	119.0
C5—C4—C3	120.9 (3)	C12—C13—C8	118.5 (3)
C5—C4—H4	119.6	C12—C13—C14	119.5 (3)
C3—C4—H4	119.6	C8—C13—C14	122.0 (3)
N1—C5—C4	123.5 (3)	C13—C14—H14A	109.5
N1—C5—H5	118.3	C13—C14—H14B	109.5
С4—С5—Н5	118.3	H14A—C14—H14B	109.5
C7—C6—C3	126.2 (3)	C13—C14—H14C	109.5
С7—С6—Н6	116.9	H14A—C14—H14C	109.5
С3—С6—Н6	116.9	H14B—C14—H14C	109.5

Symmetry code: (i) -x, y, -z+3/2.