V = 1268.48 (5) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.33 \times 0.15 \times 0.08$  mm

3399 independent reflections 2806 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $\mu = 0.09 \text{ mm}^{-1}$ 

T = 200 K

 $R_{\rm int} = 0.032$ 

1 restraint

 $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^-$ 

 $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ 

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 4-((*E*)-{2-[*N*-(1,5-Dimethyl-3-oxo-2phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)carboximidoyl]benzylidene}amino)-1,5-dimethyl-2-phenyl-2,3-dihydro-1*H*-pyrazol-3-one

# Kim Potgieter, Eric Hosten, Thomas Gerber and Richard Betz\*

Nelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa

Correspondence e-mail: richard.betz@webmail.co.za

Received 20 September 2011; accepted 23 September 2011

Key indicators: single-crystal X-ray study; T = 200 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.079; data-to-parameter ratio = 9.8.

The title compound,  $C_{30}H_{28}N_6O_2$ , is a symmetric diimine derived from *ortho*-dibenzaldehyde. Both C=N bonds are (*E*)-configured. The terminal *N*-bonded phenyl groups adopt staggered conformations relative to their respective parent heterocycles, the relevant least-squares planes intersect at angles of 32.35 (11) and 38.59 (10)°. In the crystal, C-H···O contacts connect the molecules into chains along the *b* axis and give rise to a  $C_1^1(14)C_1^1(14)$  and a  $R_2^2(12)$  pattern on different levels of graph-set analysis. The shortest intercentroid distance between two centroids was found at 4.2074 (11) Å between the two five-membered heterocycles.

### **Related literature**

For the crystal structure of another diimine capable of acting as a chelate ligand, see: Yumata *et al.* (2011). For graph-set analysis of hydrogen bonds, see: Etter *et al.* (1990); Bernstein *et al.* (1995). For details on puckering analysis, see: Cremer & Pople (1975). For general information about the chelate effect, see: Gade (1998).



### Experimental

Crystal data  $C_{30}H_{28}N_6O_2$   $M_r = 504.58$ Monoclinic,  $P2_1$  a = 12.6048 (2) Å b = 7.3389 (2) Å c = 14.3877 (3) Å  $\beta = 107.622$  (1)°

#### Data collection

Bruker APEXII CCD diffractometer

12317 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$  $wR(F^2) = 0.079$ S = 1.013399 reflections 347 parameters

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                       | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------------------------|--------------|-------------------------|------------------------|--------------------------------------|
| $C45 - H45A \cdots O2^{i}$ $C55 - H55A \cdots O1^{ii}$ | 0.98<br>0.98 | 2.59<br>2.61            | 3.535 (2)<br>3.536 (3) | 161<br>158                           |
|                                                        | 0.50         | 2101                    | 0.000 (0)              | 100                                  |

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank Mr John Robbins for financial and logistical support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2383).

### References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Gade, L. H. (1998). Koordinationschemie, 1. Auflage, Weinheim: Wiley-VCH.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yumata, N., Gerber, T., Hosten, E. & Betz, R. (2011). Acta Cryst. E67, o2175.

# supporting information

Acta Cryst. (2011). E67, o2785–o2786 [https://doi.org/10.1107/S1600536811039158]

4-((*E*)-{2-[*N*-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)carboximidoyl]benzylidene}amino)-1,5-dimethyl-2-phenyl-2,3-dihydro-1*H*-pyrazol-3-one

# Kim Potgieter, Eric Hosten, Thomas Gerber and Richard Betz

# S1. Comment

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to metal complexes exclusively applying comparable monodentate ligands (Gade, 1998). In our continuous efforts in elucidating the rules guiding the formation of coordination compounds applying nitrogen-containing chelate ligands, we determined the structure of the title compound to allow for comparative studies in envisioned coordination compounds. Structural information about another diimine capable of acting as a chelate ligand is apparent in the literature (Yumata *et al.*, 2011).

Both C=N double bonds are (*E*)-configured. The least-squares planes defined by the five-membered heterocycles on the one hand and the central phenyl moiety on the other hand enclose angles of 3.16(10) and  $4.47(10)^\circ$ , respectively. The nitrogen-bonded phenyl moieties adopt staggered conformations relative to their respective parent heterocycles, the relevant least-squares planes intersect at angles of 32.35(11) and  $38.59(10)^\circ$ . A conformation analysis of the five-membered heterocycles (Cremer & Pople, 1975) is invariably precluded by the small puckering amplitude (Fig. 1).

In the crystal, C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii are present. These are observed between H atoms of the methyl groups and the ketonic O atoms. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for these interactions is  $C^{1}_{1}(14)C^{1}_{1}(14)$  on the unitary level and emphasizes the presence of two antidromic chains whereas a  $R^{2}_{2}(12)$  descriptor on the binary level highlights the existence of cyclic patterns. In total, the molecules are connected to infinite chains along the crystallographic *b* axis. The shortest intercentroid distance between two centers of gravity was found at 4.2074 (11) Å (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

## S2. Experimental

A solution of 0.99 g of phthalaldehyde in 20 cm<sup>3</sup> of methanol was added dropwise to a stirred solution of 3.00 g of 4aminoantipyrine in 30 cm<sup>3</sup> of methanol. The solution was refluxed under nitrogen for 15 minutes. Upon cooling, a yellow precipitate formed which was filtered and dried under reduced pressure. The product was recrystallized from methanol to produce yellow crystals.

## S3. Refinement

Aromatic carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to  $1.2U_{eq}(C)$ . The H atoms of the methyl groups (C—H 0.98 Å) were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density [HFIX 137 in the *SHELX* program suite (Sheldrick, 2008)], with U(H) set to  $1.5U_{eq}(C)$ .



Figure 1

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).







Figure 3

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

4-((*E*)-{2-[*N*-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*- pyrazol-4-

yl)carboximidoyl]benzylidene}amino)-1,5-dimethyl-2-phenyl- 2,3-dihydro-1*H*-pyrazol-3-one

Crystal data

| $C_{30}H_{28}N_6O_2$            | F(000) = 532                                   |
|---------------------------------|------------------------------------------------|
| $M_r = 504.58$                  | $D_{\rm x} = 1.321 {\rm ~Mg~m^{-3}}$           |
| Monoclinic, $P2_1$              | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2yb              | Cell parameters from 5101 reflections          |
| a = 12.6048 (2) Å               | $\theta = 2.6 - 28.2^{\circ}$                  |
| b = 7.3389 (2) Å                | $\mu = 0.09 \text{ mm}^{-1}$                   |
| c = 14.3877 (3) Å               | T = 200  K                                     |
| $\beta = 107.622 \ (1)^{\circ}$ | Rod, yellow                                    |
| $V = 1268.48 (5) \text{ Å}^3$   | $0.33 \times 0.15 \times 0.08 \text{ mm}$      |
| Z = 2                           |                                                |

Data collection

| Bruker APEXII CCD<br>diffractometer             | 2806 reflections with $I > 2\sigma(I)$<br>$R_{\text{int}} = 0.032$        |
|-------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube        | $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$ |
| Graphite monochromator                          | $h = -16 \rightarrow 16$                                                  |
| $\varphi$ and $\omega$ scans                    | $k = -9 \rightarrow 9$                                                    |
| 12317 measured reflections                      | $l = -19 \rightarrow 18$                                                  |
| 3399 independent reflections                    |                                                                           |
| Refinement                                      |                                                                           |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier                          |
| Least-squares matrix: full                      | map                                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.036$                 | Hydrogen site location: inferred from                                     |
| $wR(F^2) = 0.079$                               | neighbouring sites                                                        |
| S = 1.01                                        | H-atom parameters constrained                                             |
| 3399 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0471P)^2]$                                   |
| 347 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                                            |
| 1 restraint                                     | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| 0 constraints                                   | $\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$                 |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$                  |
| direct methods                                  |                                                                           |
|                                                 |                                                                           |

# Special details

**Refinement**. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (2450 pairs) have been merged and the item was removed from the CIF.

|     | x            | у           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|-------------|--------------|-----------------------------|--|
| 01  | 0.22361 (12) | -0.1543 (2) | 0.36994 (11) | 0.0389 (3)                  |  |
| O2  | 0.08533 (11) | 0.2814 (2)  | 0.22952 (10) | 0.0368 (3)                  |  |
| N1  | 0.43019 (13) | -0.2449 (2) | 0.30112 (11) | 0.0319 (4)                  |  |
| N2  | 0.24983 (12) | 0.3960 (2)  | 0.11404 (11) | 0.0307 (4)                  |  |
| N3  | 0.26332 (13) | -0.4405 (2) | 0.44041 (11) | 0.0313 (4)                  |  |
| N4  | 0.34923 (13) | -0.5696 (2) | 0.45284 (12) | 0.0329 (4)                  |  |
| N5  | 0.01135 (12) | 0.5670(2)   | 0.17718 (11) | 0.0290 (3)                  |  |
| N6  | 0.02704 (13) | 0.7000(2)   | 0.11152 (11) | 0.0307 (4)                  |  |
| C1  | 0.38269 (15) | -0.1028 (3) | 0.25442 (13) | 0.0300 (4)                  |  |
| H1  | 0.3122       | -0.0659     | 0.2590       | 0.036*                      |  |
| C2  | 0.28998 (15) | 0.2528 (3)  | 0.16189 (13) | 0.0287 (4)                  |  |
| H2  | 0.2550       | 0.2004      | 0.2054       | 0.034*                      |  |
| C11 | 0.43573 (14) | 0.0033 (3)  | 0.19412 (12) | 0.0271 (4)                  |  |
| C12 | 0.39117 (14) | 0.1687 (3)  | 0.14939 (12) | 0.0268 (4)                  |  |
| C13 | 0.44707 (14) | 0.2614 (3)  | 0.09350 (13) | 0.0320 (4)                  |  |
| H13 | 0.4179       | 0.3738      | 0.0638       | 0.038*                      |  |
| C14 | 0.54326 (16) | 0.1942 (3)  | 0.08029 (14) | 0.0362 (5)                  |  |
| H14 | 0.5793       | 0.2586      | 0.0411       | 0.043*                      |  |
| C15 | 0.58734 (15) | 0.0316 (3)  | 0.12471 (14) | 0.0353 (5)                  |  |
| H15 | 0.6542       | -0.0152     | 0.1165       | 0.042*                      |  |
| C16 | 0.53411 (15) | -0.0616 (3) | 0.18057 (13) | 0.0331 (5)                  |  |
| H16 | 0.5650       | -0.1728     | 0.2106       | 0.040*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C21  | 0.19608 (15)  | -0.4426 (3) | 0.50392 (12) | 0.0291 (4) |
|------|---------------|-------------|--------------|------------|
| C22  | 0.23326 (16)  | -0.5253 (3) | 0.59461 (13) | 0.0366 (5) |
| H22  | 0.3059        | -0.5760     | 0.6168       | 0.044*     |
| C23  | 0.16325 (18)  | -0.5334 (3) | 0.65265 (14) | 0.0410 (5) |
| H23  | 0.1877        | -0.5922     | 0.7143       | 0.049*     |
| C24  | 0.05832 (18)  | -0.4567 (3) | 0.62151 (15) | 0.0404 (5) |
| H24  | 0.0104        | -0.4637     | 0.6612       | 0.048*     |
| C25  | 0.02366 (17)  | -0.3697 (3) | 0.53213 (14) | 0.0387 (5) |
| H25  | -0.0478       | -0.3143     | 0.5112       | 0.046*     |
| C26  | 0.09157 (15)  | -0.3625 (3) | 0.47301 (14) | 0.0331 (4) |
| H26  | 0.0670        | -0.3030     | 0.4115       | 0.040*     |
| C31  | -0.09471 (14) | 0.5517 (3)  | 0.19288 (12) | 0.0266 (4) |
| C32  | -0.19051 (15) | 0.6147 (3)  | 0.12384 (13) | 0.0308 (4) |
| H32  | -0.1866       | 0.6711      | 0.0655       | 0.037*     |
| C33  | -0.29113 (15) | 0.5939 (3)  | 0.14162 (15) | 0.0371 (5) |
| H33  | -0.3572       | 0.6365      | 0.0950       | 0.044*     |
| C34  | -0.29758 (16) | 0.5124 (3)  | 0.22569 (16) | 0.0398 (5) |
| H34  | -0.3677       | 0.4997      | 0.2369       | 0.048*     |
| C35  | -0.20286 (16) | 0.4491 (3)  | 0.29363 (15) | 0.0389 (5) |
| H35  | -0.2074       | 0.3923      | 0.3516       | 0.047*     |
| C36  | -0.10063 (15) | 0.4686 (3)  | 0.27696 (13) | 0.0315 (4) |
| H36  | -0.0349       | 0.4248      | 0.3235       | 0.038*     |
| C41  | 0.27970 (16)  | -0.2948 (3) | 0.38473 (13) | 0.0308 (4) |
| C42  | 0.37715 (15)  | -0.3447 (3) | 0.35641 (13) | 0.0300 (4) |
| C43  | 0.41402 (15)  | -0.5094 (3) | 0.39719 (13) | 0.0312 (4) |
| C44  | 0.51017 (17)  | -0.6187 (3) | 0.38933 (15) | 0.0396 (5) |
| H44A | 0.4831        | -0.7214     | 0.3449       | 0.059*     |
| H44B | 0.5521        | -0.6650     | 0.4539       | 0.059*     |
| H44C | 0.5587        | -0.5419     | 0.3640       | 0.059*     |
| C45  | 0.31200 (19)  | -0.7619(3)  | 0.44471 (16) | 0.0425 (5) |
| H45A | 0.2540        | -0.7801     | 0.3823       | 0.064*     |
| H45B | 0.2821        | -0.7909     | 0.4984       | 0.064*     |
| H45C | 0.3753        | -0.8419     | 0.4480       | 0.064*     |
| C51  | 0.08748 (14)  | 0.4251 (3)  | 0.18620 (13) | 0.0275 (4) |
| C52  | 0.15879 (14)  | 0.4847 (3)  | 0.12943 (12) | 0.0271 (4) |
| C53  | 0.12091 (14)  | 0.6489 (3)  | 0.08866 (13) | 0.0293 (4) |
| C54  | 0.16732 (17)  | 0.7650 (3)  | 0.02611 (16) | 0.0416 (5) |
| H54A | 0.1097        | 0.7886      | -0.0358      | 0.062*     |
| H54B | 0.2302        | 0.7024      | 0.0135       | 0.062*     |
| H54C | 0.1927        | 0.8808      | 0.0593       | 0.062*     |
| C55  | 0.01693 (18)  | 0.8901 (3)  | 0.14159 (16) | 0.0388 (5) |
| H55A | 0.0748        | 0.9148      | 0.2033       | 0.058*     |
| H55B | -0.0566       | 0.9082      | 0.1502       | 0.058*     |
| H55C | 0.0259        | 0.9734      | 0.0913       | 0.058*     |
|      |               |             |              |            |

# supporting information

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.0467 (8)  | 0.0251 (8)  | 0.0483 (8)  | 0.0089 (6)   | 0.0195 (7)  | 0.0109 (7)   |
| O2  | 0.0414 (7)  | 0.0240 (7)  | 0.0490 (8)  | 0.0088 (6)   | 0.0198 (6)  | 0.0133 (7)   |
| N1  | 0.0374 (8)  | 0.0270 (9)  | 0.0305 (8)  | 0.0042 (7)   | 0.0091 (7)  | 0.0037 (7)   |
| N2  | 0.0318 (8)  | 0.0291 (9)  | 0.0310 (8)  | 0.0045 (7)   | 0.0092 (6)  | 0.0042 (7)   |
| N3  | 0.0403 (8)  | 0.0223 (8)  | 0.0312 (8)  | 0.0030 (7)   | 0.0107 (7)  | 0.0050 (7)   |
| N4  | 0.0438 (9)  | 0.0217 (9)  | 0.0321 (8)  | 0.0054 (7)   | 0.0100 (7)  | 0.0052 (7)   |
| N5  | 0.0335 (8)  | 0.0206 (8)  | 0.0336 (8)  | 0.0058 (7)   | 0.0114 (6)  | 0.0068 (7)   |
| N6  | 0.0366 (8)  | 0.0204 (8)  | 0.0344 (8)  | 0.0042 (7)   | 0.0099 (7)  | 0.0059 (7)   |
| C1  | 0.0315 (9)  | 0.0276 (11) | 0.0315 (9)  | 0.0026 (8)   | 0.0105 (8)  | 0.0007 (9)   |
| C2  | 0.0312 (9)  | 0.0277 (10) | 0.0281 (9)  | 0.0025 (8)   | 0.0104 (7)  | 0.0032 (8)   |
| C11 | 0.0296 (8)  | 0.0264 (10) | 0.0245 (8)  | 0.0011 (8)   | 0.0070 (7)  | -0.0017 (8)  |
| C12 | 0.0282 (8)  | 0.0273 (10) | 0.0239 (8)  | 0.0002 (8)   | 0.0066 (7)  | -0.0012 (8)  |
| C13 | 0.0335 (9)  | 0.0291 (10) | 0.0332 (10) | -0.0002 (8)  | 0.0098 (8)  | 0.0048 (9)   |
| C14 | 0.0336 (10) | 0.0413 (12) | 0.0359 (10) | -0.0052 (9)  | 0.0139 (8)  | 0.0003 (10)  |
| C15 | 0.0284 (9)  | 0.0426 (13) | 0.0364 (10) | 0.0035 (9)   | 0.0122 (8)  | -0.0048 (10) |
| C16 | 0.0323 (9)  | 0.0329 (12) | 0.0336 (10) | 0.0062 (9)   | 0.0091 (8)  | -0.0001 (9)  |
| C21 | 0.0390 (9)  | 0.0216 (9)  | 0.0264 (9)  | -0.0042 (8)  | 0.0096 (7)  | -0.0013 (8)  |
| C22 | 0.0444 (10) | 0.0319 (11) | 0.0301 (9)  | -0.0030 (10) | 0.0063 (8)  | 0.0033 (9)   |
| C23 | 0.0595 (12) | 0.0352 (12) | 0.0276 (9)  | -0.0059 (11) | 0.0123 (9)  | 0.0027 (9)   |
| C24 | 0.0546 (12) | 0.0329 (12) | 0.0384 (11) | -0.0105 (10) | 0.0214 (9)  | -0.0036 (10) |
| C25 | 0.0432 (11) | 0.0308 (11) | 0.0433 (11) | -0.0034 (10) | 0.0150 (9)  | -0.0026 (10) |
| C26 | 0.0415 (10) | 0.0262 (10) | 0.0297 (9)  | -0.0016 (9)  | 0.0078 (8)  | 0.0022 (8)   |
| C31 | 0.0299 (8)  | 0.0205 (9)  | 0.0293 (9)  | 0.0045 (8)   | 0.0087 (7)  | -0.0040 (8)  |
| C32 | 0.0386 (10) | 0.0265 (10) | 0.0260 (9)  | 0.0090 (9)   | 0.0081 (8)  | -0.0019 (8)  |
| C33 | 0.0336 (9)  | 0.0340 (12) | 0.0395 (10) | 0.0091 (9)   | 0.0049 (8)  | -0.0032 (9)  |
| C34 | 0.0349 (10) | 0.0364 (12) | 0.0521 (12) | 0.0032 (9)   | 0.0191 (9)  | -0.0012 (10) |
| C35 | 0.0481 (11) | 0.0319 (11) | 0.0404 (11) | 0.0060 (10)  | 0.0189 (9)  | 0.0049 (10)  |
| C36 | 0.0360 (9)  | 0.0258 (10) | 0.0310 (9)  | 0.0048 (8)   | 0.0076 (8)  | 0.0023 (8)   |
| C41 | 0.0381 (10) | 0.0243 (10) | 0.0278 (9)  | -0.0006 (8)  | 0.0063 (8)  | 0.0004 (8)   |
| C42 | 0.0351 (9)  | 0.0259 (10) | 0.0265 (9)  | 0.0018 (8)   | 0.0059 (8)  | 0.0015 (8)   |
| C43 | 0.0385 (10) | 0.0273 (10) | 0.0247 (8)  | 0.0030 (9)   | 0.0049 (8)  | -0.0009 (8)  |
| C44 | 0.0460 (11) | 0.0332 (12) | 0.0383 (11) | 0.0103 (10)  | 0.0105 (9)  | 0.0043 (9)   |
| C45 | 0.0575 (13) | 0.0220 (11) | 0.0477 (12) | 0.0051 (10)  | 0.0155 (10) | 0.0060 (10)  |
| C51 | 0.0307 (9)  | 0.0218 (10) | 0.0282 (9)  | 0.0032 (8)   | 0.0061 (7)  | 0.0010 (8)   |
| C52 | 0.0297 (8)  | 0.0235 (9)  | 0.0263 (8)  | 0.0027 (8)   | 0.0059 (7)  | 0.0018 (8)   |
| C53 | 0.0312 (9)  | 0.0264 (10) | 0.0288 (9)  | 0.0011 (8)   | 0.0071 (7)  | 0.0021 (9)   |
| C54 | 0.0453 (11) | 0.0335 (12) | 0.0472 (12) | 0.0035 (10)  | 0.0158 (10) | 0.0145 (11)  |
| C55 | 0.0514 (12) | 0.0197 (10) | 0.0451 (12) | 0.0061 (9)   | 0.0142 (10) | 0.0041 (9)   |

Geometric parameters (Å, °)

| 01—C41 | 1.232 (2) | С23—Н23 | 0.9500    |
|--------|-----------|---------|-----------|
| O2—C51 | 1.229 (2) | C24—C25 | 1.383 (3) |
| N1—C1  | 1.286 (3) | C24—H24 | 0.9500    |
| N1—C42 | 1.392 (2) | C25—C26 | 1.378 (3) |

# supporting information

| N2—C2          | 1.274 (2)   | C25—H25                        | 0.9500      |
|----------------|-------------|--------------------------------|-------------|
| N2—C52         | 1.394 (2)   | C26—H26                        | 0.9500      |
| N3—C41         | 1.389 (2)   | C31—C36                        | 1.377 (3)   |
| N3—N4          | 1.409 (2)   | C31—C32                        | 1.390 (2)   |
| N3—C21         | 1.422 (2)   | C32—C33                        | 1.376 (3)   |
| N4—C43         | 1.378 (2)   | C32—H32                        | 0.9500      |
| N4—C45         | 1.481 (3)   | C33—C34                        | 1.374 (3)   |
| N5-C51         | 1.395 (2)   | С33—Н33                        | 0.9500      |
| N5—N6          | 1.413 (2)   | C34—C35                        | 1.375 (3)   |
| N5-C31         | 1.426 (2)   | C34—H34                        | 0.9500      |
| N6—C53         | 1.373 (2)   | C35—C36                        | 1.388 (3)   |
| N6—C55         | 1.478 (3)   | C35—H35                        | 0.9500      |
| C1-C11         | 1.469 (3)   | C36—H36                        | 0.9500      |
| C1—H1          | 0.9500      | C41—C42                        | 1.453 (3)   |
| C2—C12         | 1.476 (3)   | C42—C43                        | 1.362 (3)   |
| C2—H2          | 0.9500      | C43—C44                        | 1.486 (3)   |
| C11—C16        | 1.396 (2)   | C44—H44A                       | 0.9800      |
| C11—C12        | 1.408 (3)   | C44—H44B                       | 0.9800      |
| C12—C13        | 1.396 (3)   | C44—H44C                       | 0.9800      |
| C13—C14        | 1.374 (3)   | C45—H45A                       | 0.9800      |
| C13—H13        | 0.9500      | C45—H45B                       | 0.9800      |
| C14—C15        | 1.388 (3)   | C45—H45C                       | 0.9800      |
| C14—H14        | 0.9500      | C51—C52                        | 1.453 (3)   |
| C15—C16        | 1.375 (3)   | C52—C53                        | 1.362 (3)   |
| C15—H15        | 0.9500      | C53—C54                        | 1.482 (3)   |
| C16—H16        | 0.9500      | C54—H54A                       | 0.9800      |
| C21—C22        | 1.386 (3)   | C54—H54B                       | 0.9800      |
| C21—C26        | 1.387 (3)   | C54—H54C                       | 0.9800      |
| C22—C23        | 1.388 (3)   | С55—Н55А                       | 0.9800      |
| C22—H22        | 0.9500      | C55—H55B                       | 0.9800      |
| C23—C24        | 1.381 (3)   | C55—H55C                       | 0.9800      |
|                |             |                                |             |
| C1—N1—C42      | 119.80 (16) | C32—C31—N5                     | 120.91 (16) |
| C2—N2—C52      | 120.71 (16) | C33—C32—C31                    | 118.70 (17) |
| C41—N3—N4      | 110.38 (14) | C33—C32—H32                    | 120.7       |
| C41—N3—C21     | 126.90 (16) | C31—C32—H32                    | 120.7       |
| N4—N3—C21      | 119.75 (15) | C34—C33—C32                    | 121.04 (18) |
| C43—N4—N3      | 106.19 (15) | C34—C33—H33                    | 119.5       |
| C43—N4—C45     | 119.27 (17) | C32—C33—H33                    | 119.5       |
| N3—N4—C45      | 114.69 (16) | $C_{33}$ — $C_{34}$ — $C_{35}$ | 120.20 (18) |
| C51 - N5 - N6  | 110 25 (14) | C33—C34—H34                    | 119.9       |
| C51 - N5 - C31 | 125.29 (16) | C35—C34—H34                    | 119.9       |
| N6—N5—C31      | 119 20 (14) | C34-C35-C36                    | 119.62 (19) |
| C53—N6—N5      | 106.08 (14) | C34—C35—H35                    | 120.2       |
| C53—N6—C55     | 119,00 (17) | C36—C35—H35                    | 120.2       |
| N5—N6—C55      | 114,48 (15) | $C_{31}$ $-C_{36}$ $-C_{35}$   | 119.86 (17) |
| N1-C1-C11      | 121.03 (17) | C31—C36—H36                    | 120.1       |
| N1-C1-H1       | 119.5       | C35—C36—H36                    | 120.1       |
|                |             |                                |             |

| C11—C1—H1                  | 119.5                    | O1—C41—N3                           | 124.51 (18)               |
|----------------------------|--------------------------|-------------------------------------|---------------------------|
| N2—C2—C12                  | 119.71 (17)              | O1—C41—C42                          | 130.71 (19)               |
| N2—C2—H2                   | 120.1                    | N3—C41—C42                          | 104.68 (16)               |
| С12—С2—Н2                  | 120.1                    | C43—C42—N1                          | 123.54 (18)               |
| C16—C11—C12                | 118.59 (17)              | C43—C42—C41                         | 108.06 (17)               |
| C16—C11—C1                 | 118.93 (17)              | N1—C42—C41                          | 128.35 (17)               |
| C12—C11—C1                 | 122.48 (16)              | C42—C43—N4                          | 110.47 (17)               |
| C13—C12—C11                | 118.83 (17)              | C42—C43—C44                         | 128.76 (19)               |
| C13—C12—C2                 | 118.15 (17)              | N4—C43—C44                          | 120.76 (18)               |
| C11—C12—C2                 | 122.98 (17)              | C43—C44—H44A                        | 109.5                     |
| C14—C13—C12                | 121.67 (19)              | C43—C44—H44B                        | 109.5                     |
| С14—С13—Н13                | 119.2                    | H44A—C44—H44B                       | 109.5                     |
| С12—С13—Н13                | 119.2                    | C43—C44—H44C                        | 109.5                     |
| C13 - C14 - C15            | 119.46 (19)              | H44A—C44—H44C                       | 109.5                     |
| C13—C14—H14                | 120.3                    | H44B—C44—H44C                       | 109.5                     |
| C15—C14—H14                | 120.3                    | N4—C45—H45A                         | 109.5                     |
| C16-C15-C14                | 119.93 (18)              | N4—C45—H45B                         | 109.5                     |
| C16—C15—H15                | 120.0                    | H45A - C45 - H45B                   | 109.5                     |
| C14-C15-H15                | 120.0                    | N4-C45-H45C                         | 109.5                     |
| $C_{15}$ $C_{16}$ $C_{11}$ | 121.53 (19)              | H45A - C45 - H45C                   | 109.5                     |
| $C_{15} - C_{16} - H_{16}$ | 119.2                    | H45B-C45-H45C                       | 109.5                     |
| $C_{11} - C_{16} - H_{16}$ | 119.2                    | 02-C51-N5                           | 124 56 (17)               |
| $C^{22}$ $C^{21}$ $C^{26}$ | 120 34 (18)              | 02 - C51 - C52                      | 124.50(17)<br>130.96(17)  |
| $C_{22} = C_{21} = C_{20}$ | 120.34(10)<br>120.80(17) | N5-C51-C52                          | 104.37(16)                |
| $C_{22} = C_{21} = N_3$    | 118 84 (16)              | $C_{53}$ $C_{52}$ $N_{2}$           | 104.37(10)<br>122.88(17)  |
| $C_{20} = C_{21} = R_{3}$  | 110.34(10)<br>110.34(10) | $C_{53} - C_{52} - C_{51}$          | 122.00(17)<br>108 21 (16) |
| $C_{21} = C_{22} = C_{23}$ | 120.3                    | $N_{2}$ $C_{52}$ $C_{51}$           | 128 89 (17)               |
| $C_{23}$ $C_{22}$ $H_{22}$ | 120.3                    | $C_{52} = C_{53} = N_6$             | 120.09(17)<br>110.71(17)  |
| $C_{23} = C_{23} = C_{23}$ | 120.5                    | $C_{52} = C_{53} = 1.0$             | 128.22(18)                |
| $C_{24} = C_{23} = C_{22}$ | 110 7                    | N6-C53-C54                          | 120.22(10)<br>121.06(17)  |
| $C_{24} = C_{23} = H_{23}$ | 110.7                    | $C_{53}$ $C_{54}$ $H_{54A}$         | 121.00 (17)               |
| $C_{22} = C_{23} = M_{23}$ | 119.7                    | $C_{33}$ $C_{54}$ $H_{54}$ $H_{54}$ | 109.5                     |
| $C_{23} = C_{24} = C_{23}$ | 119.40 (19)              | H54A C54 H54B                       | 109.5                     |
| $C_{25} = C_{24} = H_{24}$ | 120.3                    | $C_{53} C_{54} H_{54} C_{53}$       | 109.5                     |
| $C_{25} = C_{24} = 1124$   | 120.3<br>120.7(2)        | $H_{54A} = C_{54} = H_{54C}$        | 109.5                     |
| $C_{20} = C_{23} = C_{24}$ | 120.7 (2)                | H54R C54 H54C                       | 109.5                     |
| $C_{20} = C_{23} = H_{23}$ | 119.0                    | N6 C55 H55A                         | 109.5                     |
| $C_{24} = C_{23} = M_{23}$ | 119.0                    | N6 C55 H55P                         | 109.5                     |
| $C_{25} = C_{20} = C_{21}$ | 119.32 (18)              | N0-C55-H55D                         | 109.5                     |
| $C_{23} = C_{20} = H_{20}$ | 120.2                    | N6 C55 H55C                         | 109.5                     |
| $C_{21} = C_{20} = 1120$   | 120.2                    | N0-C55-H55C                         | 109.5                     |
| $C_{30} = C_{31} = C_{32}$ | 120.30(17)<br>118.48(15) | H55P C55 H55C                       | 109.5                     |
| C30-C31-N3                 | 110.40 (13)              | n35B-C35-n55C                       | 109.5                     |
| C41—N3—N4—C43              | -5.0 (2)                 | C31—C32—C33—C34                     | 0.0 (3)                   |
| C21—N3—N4—C43              | -166.77 (16)             | C32—C33—C34—C35                     | -0.4 (3)                  |
| C41—N3—N4—C45              | -138.91 (17)             | C33—C34—C35—C36                     | 0.3 (3)                   |
| C21—N3—N4—C45              | 59.3 (2)                 | C32—C31—C36—C35                     | -0.6 (3)                  |
| C51—N5—N6—C53              | -6.49 (19)               | N5-C31-C36-C35                      | -178.99 (19)              |

| C31—N5—N6—C53   | -162.23 (16) | C34—C35—C36—C31 | 0.2 (3)      |
|-----------------|--------------|-----------------|--------------|
| C51—N5—N6—C55   | -139.77 (17) | N4—N3—C41—O1    | -172.85 (17) |
| C31—N5—N6—C55   | 64.5 (2)     | C21—N3—C41—O1   | -12.7 (3)    |
| C42—N1—C1—C11   | -178.92 (16) | N4—N3—C41—C42   | 3.94 (19)    |
| C52—N2—C2—C12   | -175.70 (16) | C21—N3—C41—C42  | 164.11 (16)  |
| N1-C1-C11-C16   | 6.0 (3)      | C1—N1—C42—C43   | 170.82 (18)  |
| N1-C1-C11-C12   | -173.96 (17) | C1—N1—C42—C41   | -12.0 (3)    |
| C16—C11—C12—C13 | -0.1 (2)     | O1—C41—C42—C43  | 175.1 (2)    |
| C1-C11-C12-C13  | 179.78 (17)  | N3—C41—C42—C43  | -1.43 (19)   |
| C16—C11—C12—C2  | -177.71 (17) | O1—C41—C42—N1   | -2.4 (3)     |
| C1-C11-C12-C2   | 2.2 (3)      | N3-C41-C42-N1   | -178.94 (17) |
| N2-C2-C12-C13   | 7.2 (3)      | N1-C42-C43-N4   | 176.02 (17)  |
| N2-C2-C12-C11   | -175.19 (17) | C41—C42—C43—N4  | -1.6 (2)     |
| C11—C12—C13—C14 | 0.8 (3)      | N1-C42-C43-C44  | -2.9 (3)     |
| C2-C12-C13-C14  | 178.47 (16)  | C41—C42—C43—C44 | 179.46 (18)  |
| C12—C13—C14—C15 | -1.0 (3)     | N3—N4—C43—C42   | 4.0 (2)      |
| C13—C14—C15—C16 | 0.6 (3)      | C45—N4—C43—C42  | 135.41 (18)  |
| C14-C15-C16-C11 | 0.0 (3)      | N3—N4—C43—C44   | -176.99 (16) |
| C12—C11—C16—C15 | -0.2 (3)     | C45—N4—C43—C44  | -45.6 (3)    |
| C1-C11-C16-C15  | 179.84 (17)  | N6—N5—C51—O2    | -171.39 (17) |
| C41—N3—C21—C22  | -137.5 (2)   | C31—N5—C51—O2   | -17.5 (3)    |
| N4—N3—C21—C22   | 21.0 (3)     | N6—N5—C51—C52   | 5.15 (19)    |
| C41—N3—C21—C26  | 43.5 (3)     | C31—N5—C51—C52  | 159.09 (16)  |
| N4—N3—C21—C26   | -158.03 (17) | C2—N2—C52—C53   | 172.22 (17)  |
| C26—C21—C22—C23 | 2.5 (3)      | C2—N2—C52—C51   | -9.2 (3)     |
| N3—C21—C22—C23  | -176.58 (19) | O2—C51—C52—C53  | 174.31 (19)  |
| C21—C22—C23—C24 | -1.3 (3)     | N5-C51-C52-C53  | -1.92 (19)   |
| C22—C23—C24—C25 | -0.7 (3)     | O2—C51—C52—N2   | -4.4 (3)     |
| C23—C24—C25—C26 | 1.5 (3)      | N5-C51-C52-N2   | 179.37 (17)  |
| C24—C25—C26—C21 | -0.4 (3)     | N2-C52-C53-N6   | 176.71 (16)  |
| C22—C21—C26—C25 | -1.6 (3)     | C51—C52—C53—N6  | -2.1 (2)     |
| N3—C21—C26—C25  | 177.43 (18)  | N2-C52-C53-C54  | -2.3 (3)     |
| C51—N5—C31—C36  | 49.2 (3)     | C51—C52—C53—C54 | 178.90 (19)  |
| N6—N5—C31—C36   | -159.00 (17) | N5—N6—C53—C52   | 5.20 (19)    |
| C51—N5—C31—C32  | -129.2 (2)   | C55—N6—C53—C52  | 135.95 (18)  |
| N6—N5—C31—C32   | 22.7 (3)     | N5—N6—C53—C54   | -175.71 (17) |
| C36—C31—C32—C33 | 0.5 (3)      | C55—N6—C53—C54  | -45.0 (3)    |
| N5-C31-C32-C33  | 178.85 (19)  |                 |              |

# Hydrogen-bond geometry (Å, °)

| D—H···A                             | <i>D</i> —Н | H···A | D····A    | D—H···A |
|-------------------------------------|-------------|-------|-----------|---------|
| C45—H45 <i>A</i> ···O2 <sup>i</sup> | 0.98        | 2.59  | 3.535 (2) | 161     |
| C55—H55A…O1 <sup>ii</sup>           | 0.98        | 2.61  | 3.536 (3) | 158     |

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*, *y*+1, *z*.