

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Dibromidobis(1-ethyl-3-methylimidazol-2-ylidene)palladium(II)

Solveig R. Madsen, Nina Lock, Jacob Overgaard and Bo B. Iversen*

Department of Chemistry & Center for Materials Crystallography, Aarhus University, Aarhus, Denmark

Correspondence e-mail: bo@chem.au.dk

Received 22 July 2011; accepted 28 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.011 Å; R factor = 0.044; wR factor = 0.167; data-to-parameter ratio = 29.3.

The title compound, *trans*-[PdBr₂($C_6H_{10}N_2$)₂], was synthesized ionothermally in the ionic liquid solvent 1-ethyl-3-methylimidazolium bromide. In the crystal, the Pd^{II} atoms are square-planarly coordinated to two Br atoms and two neutral ($C_6H_{10}N_2$) ligands. The Pd^{II} atom is located on an inversion centre.

Related literature

The title complex shares many features with a number of known structures, which also contain a Pd^{II} atom squareplanarly coordinated to two bromide ligands in *trans*-conformation as well as two equivalent organic ligands (Hahn *et al.*, 2004; Huynh & Wu, 2009). A few of these structures even have the same space group and in some structures the organic ligand is also an imidazolium derivative (Dash *et al.*, 2010). The title compound was obtained in a attempt to simplify the synthesis of the *cis*-complex which was described previously (Madsen *et al.*, 2011). For information on the ionothermal synthesis method, see: Welton (1999); Babai & Mudring (2006); Morris (2009).

Experimental

Crystal data [PdBr₂(C₆H₁₀N₂)₂]

 $M_r = 486.54$

Mo $K\alpha$ radiation

 $0.15 \times 0.15 \times 0.1 \ \mathrm{mm}$

 $\mu = 5.76 \text{ mm}^-$

T = 296 K

Z = 2

Monoclinic, $P2_1/n$ a = 8.3093 (2) Å b = 8.6868 (2) Å c = 12.0788 (3) Å $\beta = 101.741$ (1)° V = 853.62 (4) Å³

Data collection

Bruker X8 APEXII diffractometer	27485 measured reflections
Absorption correction: multi-scan	2582 independent reflections
(SADABS; Sheldrick, 2008a)	1894 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.585, \ T_{\max} = 0.711$	$R_{\rm int} = 0.022$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.044 & 88 \text{ parameters} \\ wR(F^2) = 0.167 & H\text{-atom parameters constrained} \\ S = 1.63 & \Delta\rho_{\max} = 1.84 \text{ e } \text{\AA}^{-3} \\ 2582 \text{ reflections} & \Delta\rho_{\min} = -1.02 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Selected geometric parameters (Å, °).

C1-Pd1	2.023 (4)	Br1-Pd1	2.4364 (5)
C1-Pd1-C1 ⁱ C1-Pd1-Br1	180 89.14 (12)	$C1^i - Pd1 - Br1$ Br1 - Pd1 - Br1 ⁱ	90.86 (12) 180
Summerstand and (i) and	2		

Symmetry code: (i) -x + 2, -y + 2, -z + 2.

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2011); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008b); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Center for Materials Crystallography (CMC) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZK2019).

References

Babai, A. & Mudring, A. (2006). Inorg. Chem. 45, 4874-4876.

- Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dash, C., Shaikh, M. M., Butcher, R. J. & Ghosh, P. (2010). Dalton Trans. 39, 2515–2524.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hahn, F. E., Heidrich, B., Lugger, T. & Pape, T. (2004). Z. Naturforsch. Teil B, 59, 1519.
- Huynh, H. V. & Wu, J. (2009). J. Organomet. Chem. 694, 323-331.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Mol. Struct. 609, 97–108.

Madsen, S. R., Lock, N., Overgaard, J. & Iversen, B. B. (2011). In preparation.

Morris, R. E. (2009). *Chem. Commun.* pp. 2990–2998.

Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.
- Welton, T. (1999). Chem. Rev. 99, 2071–2083.

supporting information

Acta Cryst. (2011). E67, m1205 [doi:10.1107/S1600536811030480]

trans-Dibromidobis(1-ethyl-3-methylimidazol-2-ylidene)palladium(II)

Solveig R. Madsen, Nina Lock, Jacob Overgaard and Bo B. Iversen

S1. Experimental

The title compound was obtained when palladium(II) acetate and 1-ethyl-3- methylimidazolium bromide were mixed and heated in an autoclave at 100°C for 8 days.

S2. Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figure 1

The molecular structure of *trans*-[PdBr₂($C_6H_{10}N_2$)₂], with atom labels and 50% probability displacement ellipsoids for non-H atoms.

trans-Dibromidobis(1-ethyl-3-methylimidazol-2-ylidene)palladium(II)

<i>c</i> = 12.0788 (3) Å
$\beta = 101.741 \ (1)^{\circ}$
$V = 853.62 (4) Å^3$
Z = 2
F(000) = 472
$D_{\rm x} = 1.893 {\rm Mg} {\rm m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 9872 reflections $\theta = 5.5-54.7^{\circ}$ $\mu = 5.76 \text{ mm}^{-1}$	T = 296 K Square, colourless $0.15 \times 0.15 \times 0.1 \text{ mm}$
Data collection	
Bruker X8 APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 12.00 pixels mm ⁻¹ Narrow slices collected using φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2008a) $T_{\min} = 0.585$, $T_{\max} = 0.711$	27485 measured reflections 2582 independent reflections 1894 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 30.5^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -15 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F^2) = 0.167	Hydrogen site location: inferred from neighbouring sites
<i>S</i> = 1.63	H-atom parameters constrained
2582 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0705P)^2]$
88 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.008$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.84 \text{ e } \text{A}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.02 \text{ e A}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N2	0.8710 (5)	0.9917 (3)	0.7471 (3)	0.0598 (9)	
C1	0.9896 (5)	0.9475 (5)	0.8355 (3)	0.0570 (8)	
C3	0.9059 (7)	0.9436 (6)	0.6478 (4)	0.0735 (11)	
H3	0.8411	0.9594	0.5763	0.088*	
C5	1.2461 (7)	0.7839 (10)	0.8505 (6)	0.118 (2)	
H5A	1.2269	0.747	0.9225	0.142*	
H5B	1.2675	0.6958	0.8062	0.142*	
C2	1.0451 (6)	0.8718 (7)	0.6700 (4)	0.0852 (14)	
H2	1.1002	0.8294	0.6176	0.102*	
C6	1.3777 (13)	0.8815 (14)	0.8675 (10)	0.197 (5)	
H6A	1.473	0.8289	0.9084	0.295*	
H6B	1.3548	0.9691	0.9104	0.295*	

H6C	1.3977	0.9152	0.7959	0.295*
C4	0.7242 (7)	1.0768 (7)	0.7604 (5)	0.0953 (17)
H4A	0.6572	1.0973	0.6873	0.143*
H4B	0.7563	1.1723	0.7986	0.143*
H4C	0.6629	1.0166	0.8041	0.143*
Br1	1.09068 (7)	1.25854 (6)	0.96387 (4)	0.0893 (2)
N1	1.0978 (4)	0.8699 (5)	0.7886 (3)	0.0772 (10)
Pd1	1	1	1	0.0555 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N2	0.075 (2)	0.060 (2)	0.0438 (19)	0.0033 (13)	0.0110 (16)	0.0020 (13)
C1	0.064 (2)	0.063 (2)	0.047 (2)	-0.0089 (17)	0.0168 (16)	-0.0047 (18)
C3	0.104 (4)	0.073 (3)	0.044 (2)	-0.009 (3)	0.016 (2)	-0.002 (2)
C5	0.080 (3)	0.189 (7)	0.088 (4)	0.017 (4)	0.023 (3)	-0.011 (4)
C2	0.100 (4)	0.104 (4)	0.059 (3)	-0.001 (3)	0.033 (3)	-0.006 (3)
C6	0.136 (7)	0.207 (12)	0.231 (13)	-0.009 (9)	0.000 (7)	0.036 (9)
C4	0.104 (4)	0.114 (4)	0.064 (3)	0.052 (4)	0.010 (3)	0.006 (3)
Br1	0.1261 (5)	0.0831 (4)	0.0624 (4)	-0.0312 (3)	0.0278 (3)	-0.0070 (2)
N1	0.0732 (19)	0.108 (3)	0.0529 (19)	0.008 (2)	0.0181 (16)	-0.0060 (19)
Pd1	0.0597 (3)	0.0696 (4)	0.0386 (3)	-0.00208 (16)	0.01357 (18)	-0.00364 (15)

Geometric parameters (Å, °)

N2—C1	1.353 (6)	C2—N1	1.410 (6)	
N2—C3	1.356 (6)	С2—Н2	0.93	
N2—C4	1.463 (6)	С6—Н6А	0.96	
C1—N1	1.338 (5)	С6—Н6В	0.96	
C1—Pd1	2.023 (4)	C6—H6C	0.96	
C3—C2	1.293 (7)	C4—H4A	0.96	
С3—Н3	0.93	C4—H4B	0.96	
C5—C6	1.366 (12)	C4—H4C	0.96	
C5—N1	1.503 (7)	Br1—Pd1	2.4364 (5)	
С5—Н5А	0.97	Pd1—C1 ⁱ	2.023 (4)	
С5—Н5В	0.97	$Pd1$ — $Br1^i$	2.4364 (5)	
C1—N2—C3	111.0 (4)	H6A—C6—H6B	109.5	
C1—N2—C4	123.1 (4)	С5—С6—Н6С	109.5	
C3—N2—C4	125.9 (4)	H6A—C6—H6C	109.5	
N1-C1-N2	104.7 (3)	H6B—C6—H6C	109.5	
N1—C1—Pd1	129.1 (3)	N2—C4—H4A	109.5	
N2—C1—Pd1	126.2 (3)	N2—C4—H4B	109.5	
C2—C3—N2	107.9 (4)	H4A—C4—H4B	109.5	
С2—С3—Н3	126	N2—C4—H4C	109.5	
N2—C3—H3	126	H4A—C4—H4C	109.5	
C6—C5—N1	108.5 (8)	H4B—C4—H4C	109.5	
С6—С5—Н5А	110	C1—N1—C2	109.1 (4)	

N1—C5—H5A	110	C1—N1—C5	126.4 (4)
С6—С5—Н5В	110	C2—N1—C5	124.3 (4)
N1—C5—H5B	110	$C1$ — $Pd1$ — $C1^i$	180.000 (2)
H5A—C5—H5B	108.4	C1—Pd1—Br1	89.14 (12)
C3—C2—N1	107.2 (4)	C1 ⁱ —Pd1—Br1	90.86 (12)
С3—С2—Н2	126.4	C1—Pd1—Br1 ⁱ	90.86 (12)
N1—C2—H2	126.4	$C1^{i}$ —Pd1—Br1 ⁱ	89.14 (12)
С5—С6—Н6А	109.5	Br1—Pd1—Br1 ⁱ	180
С5—С6—Н6В	109.5		
C3—N2—C1—N1	-0.5 (5)	Pd1—C1—N1—C5	8.6 (7)
C4—N2—C1—N1	178.1 (4)	C3—C2—N1—C1	-2.4 (6)
C3—N2—C1—Pd1	176.8 (3)	C3—C2—N1—C5	173.7 (5)
C4—N2—C1—Pd1	-4.7 (6)	C6-C5-N1-C1	-91.6 (8)
C1—N2—C3—C2	-1.1 (6)	C6-C5-N1-C2	93.0 (8)
C4—N2—C3—C2	-179.6 (5)	N1—C1—Pd1—Br1	100.3 (4)
N2-C3-C2-N1	2.1 (6)	N2—C1—Pd1—Br1	-76.2 (4)
N2-C1-N1-C2	1.7 (5)	N1—C1—Pd1—Br1 ⁱ	-79.7 (4)
Pd1—C1—N1—C2	-175.4 (3)	N2—C1—Pd1—Br1 ⁱ	103.8 (4)
N2-C1-N1-C5	-174.3 (5)		

Symmetry code: (i) -x+2, -y+2, -z+2.