Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[di- μ-glycinato-copper(II)]: a twodimensional coordination polymer

Fabienne Gschwind* and Martin Jansen

Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart,

Germany

Correspondence e-mail: f.gschwind@fkf.mpg.de

Received 30 May 2011; accepted 4 August 2011

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.032 ; w R$ factor $=0.075$; data-to-parameter ratio $=16.2$.

The title coordination polymer, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right]_{n}$, is twodimensional and consists of a distorted octahedral copper coordination polyhedron with two bidentate glycine ligands chelating the metal through the O and N atoms in a trans-square-planar configuration. The two axial coordination sites are occupied by carbonyl O atoms of neighbouring glycine molecules. The $\mathrm{Cu}-\mathrm{O}$ distances for the axial O atoms [2.648 (2) and 2.837 (2) A] are considerably longer than both the $\mathrm{Cu}-\mathrm{O} \quad[1.9475(17)$ and $1.9483(18) \AA]$ and $\mathrm{Cu}-\mathrm{N}$ [1.988 (2) and 1.948 (2) A․ distances in the equatorial plane, which indicates a strong Jahn-Teller effect. In the crystal, the two-dimensional networks are arranged parallel to (001) and are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a threedimensional arrangement.

Related literature

For the first work on cadmium glycinato complexes, see: Low et al. (1959). For similar mixed-metal glycinato complexes with copper(II), see: Papavinasam (1991); Davies et al. (2003); Low et al. (1959); Bi et al. (2006); Zhang et al. (2005). For further studies on cadmium-glycinato complexes, see: Barrie et al. (1993). For the properties and structure of a three-dimensional copper-glycinate polymer, see: Chen et al. (2009). For the synthesis of $\left[\mathrm{NaCu}_{6}(\text { gly })_{3}\left(\mathrm{ClO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}\left(\mathrm{ClO}_{4}\right)_{2 n}$, see: Aromi et al. (2008).

Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right]$
$V=640.4(2) \AA^{3}$
$M_{r}=211.66$
Monoclinic, $P 2_{1} / n$
$Z=4$
$a=9.4265$ (19) A
Mo $K \alpha$ radiation
$b=5.1159$ (10) \AA
$\mu=3.37 \mathrm{~mm}^{-1}$
$c=13.912$ (3) \AA
$T=298 \mathrm{~K}$
$\beta=107.36(3)^{\circ}$
$0.21 \times 0.15 \times 0.09 \mathrm{~mm}$

Data collection

Stoe IPDS 2 diffractometer	9012 measured reflections
Absorption correction: integration	1876 independent reflections
$(X-S H A P E$ and $X-R E D ;$	1561 reflections with $I>2 \sigma(I)$
Stoe \& Cie, 2009)	$R_{\text {int }}=0.048$
$T_{\min }=0.549, T_{\max }=0.692$	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.075 \quad$ independent and constrained
$S=1.03$
independent and constrained
1876 reflections
116 parameters
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.58 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.94(5)$	$2.12(5)$	$3.029(3)$	$162(4)$
$\mathrm{N} 2-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.80(4)$	$2.49(4)$	$3.223(3)$	$154(4)$
$\mathrm{N} 1-\mathrm{H} 3 A \cdots 1^{\mathrm{iii}}$	$0.90(4)$	$2.17(4)$	$2.994(3)$	$152(3)$
$\mathrm{N} 1-\mathrm{H} 3 A \cdots 1^{\mathrm{iv}}$	$0.90(4)$	$2.44(4)$	$3.003(3)$	$121(3)$
$\mathrm{N} 1-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{v}}$	$0.86(4)$	$2.41(4)$	$3.152(3)$	$145(3)$

Symmetry codes: (i) $x, y-1, z$; (ii) $x+\frac{1}{2},-y-\frac{1}{2}, z+\frac{1}{2}$; (iii) $x, y+1, z$; (iv) $-x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (v) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection: X-AREA (Stoe \& Cie, 2009); cell refinement: X $A R E A$; data reduction: $X-R E D$ (Stoe \& Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

FG thanks the Swiss National Science Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2280).

metal-organic compounds

References

Aromi, G., Novoa, J. J., Ribas-Arino, J., Igarashi, S. \& Yukawa, Y. (2008). Inorg. Chim. Acta, 361, 3919-3925.
Barrie, P. J., Gyani, A., Motevalli, M. \& O’Brien, P. (1993). Inorg. Chem. 32, 3862-3867.
Bi, W., Mercier, N., Louvain, N. \& Latroche, M. (2006). Eur. J. Inorg. Chem. 21, 4225-4228.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chen, P. J., Jiang, C., Yan, W. H., Liang, F. P. \& Batten, S. R. (2009). Inorg. Chem. 48, 4674-4684.

Davies, O. H., Park, J. H. \& Gillard, R. D. (2003). Inorg. Chim. Acta, 356, 6984
Low, B. W., Hirshfeld, F. L. \& Richard, F. M. (1959). J. Am. Chem. Soc. 36, 4412-4416.
Papavinasam, E. (1991). Z. Kristallogr. 197, 217-222.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2009). X-AREA, X-RED and X-SHAPE. Stoe \& Cie GmBh, Damstadt, Germany,
Zhang, J. J., Hu, S. M., Xiang, S. C., Wang, L. S. \& Wu, X. T. (2005). J. Mol. Struct. 748, 129-136.

supporting information

Acta Cryst. (2011). E67, m1218-m1219 [doi:10.1107/S1600536811031503]

Poly[di- μ-glycinato-copper(II)]: a two-dimensional coordination polymer

Fabienne Gschwind and Martin Jansen

S1. Comment

Different metal glycine complexes and polymeric structures have been known since the 1960's. The first work on a cadmium glycinato complexe was done by (Low et al., 1959), and further studies were reported by (Barrie et al., 1993). Mixed metal glycinato complexes with copper(II) were investigated by (Papavinasam, 1991; Davies et al., 2003; Low et al., 1959).

The complexation of simple copper salts to amino acids is a well investigated reaction and various complexes and clusters have been reported (Low et al., 1959; Davies et al., 2003; Aromi et al., 2008; Bi et al., 2006; Zhang et al., 2005). A three-dimensional copper-glycinate coordination polymer has been reported on by (Chen et al., 2009).
While redissolving the copper cluster $\left[\mathrm{NaCu}_{6}\left(\mathrm{gly}_{3}\right)_{\left.\left(\mathrm{ClO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}\left(\mathrm{ClO}_{4}\right)_{2 \mathrm{n}} \text { (Aromi et al., 2008) in DMSO, blue crystals }}\right.$ of the title compound were obtained and were characterized by X-ray diffraction.
The title compound is a two-dimensional coordination polymer (Fig. 1). It consists of a distorted octahedral copper coordination polyhedron with two bidentate glycine ligands chelating the metal through the oxygen and nitrogen atoms ($\mathrm{O} 1, \mathrm{O} 3, \mathrm{~N} 1, \mathrm{~N} 2$) in a trans square planar configuration. The two axial coordination sites are occupied by carbonyl oxygen atoms of the neighbouring glycine molecules (O 2 and O 4). The $\mathrm{Cu}-\mathrm{O}$ distances are 2.648 (2) $\AA\left(\mathrm{Cu}-\mathrm{O}^{\mathrm{i}}\right.$) and $2.837(2) \AA\left(\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {iii }}\right)$ for the axial oxygen atoms [symmetry codes: (i) $-x-1 / 2, y+1 / 2,-z+1 / 2$; (ii) $-x+1 / 2, y-1 / 2,-z+1 / 2$]. In the equatorial plane the $\mathrm{Cu}-\mathrm{O}$ distances are 1.9474 (15) and 1.9483 (16) \AA for $\mathrm{Cu} 1-\mathrm{O} 1$ and $\mathrm{Cu}-\mathrm{O} 3$, respectively, while the $\mathrm{Cu}-\mathrm{N}$ distances are 1.9883 (19) and 1.948 (2) \AA for $\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{Cu} 1-\mathrm{N} 2$, respectively. These bond length differences indicate a strong Jahn-Teller effect.
In the crystal the two dimensional networks are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional arrangement (Table 1 and Fig. 2).

S2. Experimental

The title compound was prepared by dissolving 20 mg of $\left[\mathrm{NaCu}_{6}\left(\mathrm{gly}_{3}\right)_{3}\left(\mathrm{ClO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}\left(\mathrm{ClO}_{4}\right)_{2 \mathrm{n}}$ (Aromi et al., 2008) in 5 ml DMSO. Crystals could be grown out of the blue solution by slow diffusion of THF.

S3. Refinement

The NH-atoms were located in difference electron-density maps and were freely refined. The C -bound H -atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.97 \AA$, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

Part of the polymeric structure of the title compound, showing the numbering scheme and the displacement ellipsoids drawn at the 50% probability level [H atoms have been omitted for clarity; symmetry codes: (i) $-x-1 / 2, y+1 / 2,-z+1 / 2$; (ii) $-x+1 / 2, y-1 / 2,-z+1 / 2]$.

Figure 2
A view along the x -axis of the three-dimensional hydrogen bonded network of the title compound built up from the twodimenional nets. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines (see Table 1 for details; H -atoms not involved in these reactions have been omitted for clarity).

Poly[di- μ-glycinato-copper(II)]

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right]$
$M_{r}=211.66$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=9.4265$ (19) \AA
$b=5.1159(10) \AA$
$c=13.912$ (3) \AA
$\beta=107.36$ (3) ${ }^{\circ}$
$V=640.4(2) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=428 \\
& D_{\mathrm{x}}=2.195 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 5867 \text { reflections } \\
& \theta=2.3-30.5^{\circ} \\
& \mu=3.37 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Block, blue } \\
& 0.21 \times 0.15 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS 2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 6.67 pixels mm^{-1}
rotation method scans
Absorption correction: integration
(X-SHAPE and X-RED; Stoe \& Cie, 2009)
$T_{\text {min }}=0.549, T_{\text {max }}=0.692$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.075$
$S=1.03$
1876 reflections
116 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& 9012 \text { measured reflections } \\
& 1876 \text { independent reflections } \\
& 1561 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.048 \\
& \theta_{\max }=30.0^{\circ}, \theta_{\min }=2.3^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-7 \rightarrow 6 \\
& l=-19 \rightarrow 17
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0447 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.58 \mathrm{e}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cu1	$-0.00228(3)$	$0.02678(5)$	$0.26465(2)$	$0.0301(1)$
O1	$-0.17587(17)$	$-0.1989(3)$	$0.21922(12)$	$0.0270(4)$
O2	$-0.3924(2)$	$-0.2410(4)$	$0.10081(14)$	$0.0408(6)$
O3	$0.17471(18)$	$0.2461(3)$	$0.30307(13)$	$0.0317(4)$

O4	$0.41730(18)$	$0.2283(4)$	$0.38098(15)$	$0.0392(5)$
N1	$-0.1151(2)$	$0.2642(4)$	$0.15535(16)$	$0.0283(5)$
N2	$0.1137(2)$	$-0.2140(4)$	$0.37098(17)$	$0.0302(6)$
C1	$-0.2742(2)$	$-0.1247(4)$	$0.13882(17)$	$0.0260(6)$
C2	$-0.2384(3)$	$0.1181(4)$	$0.08778(17)$	$0.0304(6)$
C3	$0.2916(2)$	$0.1351(4)$	$0.36051(16)$	$0.0253(5)$
C4	$0.2694(2)$	$-0.1268(4)$	$0.40529(17)$	$0.0282(6)$
H1A	$0.112(5)$	$-0.378(10)$	$0.340(3)$	$0.076(13)^{*}$
H1B	$0.082(4)$	$-0.233(7)$	$0.418(3)$	$0.045(9)^{*}$
H2A	-0.21240	0.06770	0.02790	0.0360^{*}
H2B	-0.32560	0.22930	0.06700	0.0360^{*}
H3A	$-0.153(4)$	$0.393(7)$	$0.184(2)$	$0.045(9)^{*}$
H3B	$-0.061(4)$	$0.342(8)$	$0.124(3)$	$0.061(11)^{*}$
H4A	0.33140	-0.25670	0.38670	0.0340^{*}
H4B	0.30110	-0.11300	0.47810	0.0340^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0249(1)$	$0.0214(1)$	$0.0380(2)$	$-0.0026(1)$	$-0.0001(1)$	$0.0078(1)$
O1	$0.0262(7)$	$0.0191(7)$	$0.0334(8)$	$-0.0016(5)$	$0.0052(6)$	$0.0030(6)$
O2	$0.0375(9)$	$0.0391(10)$	$0.0389(10)$	$-0.0142(7)$	$0.0010(7)$	$0.0043(7)$
O3	$0.0277(7)$	$0.0216(7)$	$0.0408(9)$	$-0.0028(6)$	$0.0028(6)$	$0.0046(6)$
O4	$0.0275(8)$	$0.0350(9)$	$0.0510(11)$	$-0.0060(7)$	$0.0057(7)$	$0.0016(8)$
N1	$0.0274(9)$	$0.0214(8)$	$0.0340(10)$	$-0.0019(7)$	$0.0062(7)$	$0.0055(7)$
N2	$0.0291(9)$	$0.0253(9)$	$0.0331(11)$	$-0.0023(7)$	$0.0046(8)$	$0.0068(8)$
C1	$0.0282(10)$	$0.0234(9)$	$0.0262(10)$	$-0.0011(7)$	$0.0080(8)$	$-0.0020(8)$
C2	$0.0351(11)$	$0.0263(10)$	$0.0264(11)$	$-0.0053(8)$	$0.0041(8)$	$0.0017(8)$
C3	$0.0267(9)$	$0.0238(9)$	$0.0246(10)$	$-0.0018(7)$	$0.0066(8)$	$-0.0025(7)$
C4	$0.0279(10)$	$0.0272(10)$	$0.0272(11)$	$0.0017(8)$	$0.0049(8)$	$0.0043(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cu}-\mathrm{O} 1$	1.9475 (17)	N2-C4	1.471 (3)
$\mathrm{Cu} 1-\mathrm{O} 3$	1.9483 (18)	N1-H3B	0.86 (4)
$\mathrm{Cu} 1-\mathrm{N} 1$	1.988 (2)	N1-H3A	0.90 (4)
$\mathrm{Cu} 1-\mathrm{N} 2$	1.984 (2)	N2-H1A	0.94 (5)
$\mathrm{Cu} 1-\mathrm{O}^{2}{ }^{\text {i }}$	2.648 (2)	N2-H1B	0.80 (4)
$\mathrm{Cu} 1-\mathrm{O}^{4 i}$	2.837 (2)	$\mathrm{C} 1-\mathrm{C} 2$	1.518 (3)
O1-C1	1.279 (3)	C3-C4	1.518 (3)
$\mathrm{O} 2-\mathrm{C} 1$	1.234 (3)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{O} 3-\mathrm{C} 3$	1.284 (3)	C2-H2B	0.9700
O4-C3	1.229 (3)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{N} 1-\mathrm{C} 2$	1.463 (3)	C4-H4B	0.9700
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	176.59 (8)	H3A-N1-H3B	105 (4)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	84.73 (8)	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~A}$	107 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	95.55 (8)	$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~A}$	106 (3)

$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{2}$	92.26 (7)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}_{4}{ }^{\text {ii }}$	80.68 (7)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$	94.41 (8)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 2$	85.22 (8)
$\mathrm{O} 2{ }^{\text {i}}-\mathrm{Cu} 1-\mathrm{O} 3$	91.07 (7)
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O}_{4}{ }^{\text {ii }}$	96.01 (7)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	178.27 (9)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{N} 1$	92.22 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 1$	89.04 (8)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$	89.48 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 2$	89.32 (8)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {ii }}$	172.69 (7)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$	115.30 (14)
$\mathrm{Cu} 1{ }^{\text {iii- }} \mathrm{O} 2-\mathrm{C} 1$	113.23 (15)
$\mathrm{Cu}-\mathrm{O} 3-\mathrm{C} 3$	114.93 (14)
$\mathrm{Cu} \mathrm{i}^{\text {iv }}-\mathrm{O} 4-\mathrm{C} 3$	120.10 (16)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	108.68 (14)
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4$	109.16 (15)
C2-N1-H3A	108 (2)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~A}$	107.6 (18)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~B}$	114 (3)
C2-N1-H3B	113 (3)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$	6.99 (16)
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Cl}$	-171.29 (16)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 1$	99.01 (15)
$\mathrm{O} 4{ }^{\text {ii- }} \mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$	-82.90 (15)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{C} 3$	-166.00 (16)
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{C} 3$	12.30 (16)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{C} 3$	101.69 (16)
$\mathrm{O} 4{ }^{\text {ii- }} \mathrm{Cu} 1-\mathrm{O} 3-\mathrm{C} 3$	-76.51 (16)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	-14.98 (16)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	161.71 (16)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	-107.04 (16)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2$	65.75 (16)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4$	166.43 (15)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4$	-10.23 (15)
O 2 - $\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4$	-101.35 (15)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4$	85.86 (15)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}-\mathrm{Cl}^{\mathrm{i}}$	-61.90 (17)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cl}^{\mathrm{i}}$	117.36 (17)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cl}^{\text {i }}$	22.91 (17)

$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~B}$	$115(3)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~B}$	$111(3)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~B}$	$108(4)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$119.5(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$123.9(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$116.60(19)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$111.24(19)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 4$	$124.2(2)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$116.60(18)$
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 4$	$119.3(2)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$112.39(18)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.00
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.00
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.00
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.00
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.00
$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.00
$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.00
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.00
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.00
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.00

$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cl}^{\mathrm{i}}$	-157.43 (17)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {ii }}-\mathrm{C} 3^{\text {ii }}$	-133.24 (18)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{C} 3{ }^{\text {ii }}$	47.61 (18)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {ii }}-\mathrm{C} 3{ }^{\text {ii }}$	141.95 (18)
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {ii }}-\mathrm{C} 3{ }^{\text {ii }}$	-37.51 (18)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-178.31 (18)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	3.1 (2)
$\mathrm{Cu1}{ }^{\text {iii- }}$ - $22-\mathrm{C} 1-\mathrm{O} 1$	32.3 (3)
$\mathrm{Cu} 1{ }^{\text {iii- }} \mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	-149.11 (17)
$\mathrm{Cu}-\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 4$	169.39 (19)
$\mathrm{Cu}-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	-11.0 (2)
$\mathrm{Cu} 1{ }^{\text {iv }}-\mathrm{O} 4-\mathrm{C} 3-\mathrm{O} 3$	-34.4 (3)
$\mathrm{Cu} 1^{\mathrm{iv}}-\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 4$	146.03 (16)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	19.8 (2)
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	7.4 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-15.8 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	165.5 (2)
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	2.1 (3)
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	-178.3 (2)

[^0]Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 A \cdots \mathrm{O}^{\vee}$	$0.94(5)$	$2.12(5)$	$3.029(3)$	$162(4)$

supporting information

$\mathrm{N} 2 — \mathrm{H} 1 B \cdots \mathrm{O} 2^{\text {vi }}$	$0.80(4)$	$2.49(4)$	$3.223(3)$	$154(4)$
$\mathrm{N} 1 — \mathrm{H} 3 A \cdots 1^{\text {vii }}$	$0.90(4)$	$2.17(4)$	$2.994(3)$	$152(3)$
$\mathrm{N} 1 — \mathrm{H} 3 A \cdots 1^{\mathrm{i}}$	$0.90(4)$	$2.44(4)$	$3.003(3)$	$121(3)$
$\mathrm{N} 1 — \mathrm{H} 3 B \cdots 4^{\mathrm{iv}}$	$0.86(4)$	$2.41(4)$	$3.152(3)$	$145(3)$

Symmetry codes: (i) $-x-1 / 2, y+1 / 2,-z+1 / 2$; (iv) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (v) $x, y-1, z$; (vi) $x+1 / 2,-y-1 / 2, z+1 / 2$; (vii) $x, y+1, z$.

[^0]: Symmetry codes: (i) $-x-1 / 2, y+1 / 2,-z+1 / 2$; (ii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iii) $-x-1 / 2, y-1 / 2,-z+1 / 2$; (iv) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

