# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Poly[di-µ-glycinato-copper(II)]: a twodimensional coordination polymer

#### Fabienne Gschwind\* and Martin Jansen

Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany

Correspondence e-mail: f.gschwind@fkf.mpg.de

Received 30 May 2011; accepted 4 August 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.075; data-to-parameter ratio = 16.2.

The title coordination polymer,  $[Cu(C_2H_4NO_2)_2]_n$ , is twodimensional and consists of a distorted octahedral copper coordination polyhedron with two bidentate glycine ligands chelating the metal through the O and N atoms in a *trans*square-planar configuration. The two axial coordination sites are occupied by carbonyl O atoms of neighbouring glycine molecules. The Cu–O distances for the axial O atoms [2.648 (2) and 2.837 (2) Å] are considerably longer than both the Cu–O [1.9475 (17) and 1.9483 (18) Å] and Cu–N [1.988 (2) and 1.948 (2) Å] distances in the equatorial plane, which indicates a strong Jahn–Teller effect. In the crystal, the two-dimensional networks are arranged parallel to (001) and are linked *via* N–H···O hydrogen bonds, forming a threedimensional arrangement.

#### **Related literature**

For the first work on cadmium glycinato complexes, see: Low *et al.* (1959). For similar mixed-metal glycinato complexes with copper(II), see: Papavinasam (1991); Davies *et al.* (2003); Low *et al.* (1959); Bi *et al.* (2006); Zhang *et al.* (2005). For further studies on cadmium–glycinato complexes, see: Barrie *et al.* (1993). For the properties and structure of a three-dimensional copper–glycinate polymer, see: Chen *et al.* (2009). For the synthesis of  $[NaCu_6(gly)_3(ClO_4)_3(H_2O)]_n(ClO_4)_{2n}$ , see: Aromi *et al.* (2008).



#### Experimental

Crystal data [Cu(C<sub>2</sub>H<sub>4</sub>NO<sub>2</sub>)<sub>2</sub>]  $M_r = 211.66$ Monoclinic,  $P2_1/n$  a = 9.4265 (19) Å b = 5.1159 (10) Å c = 13.912 (3) Å  $\beta = 107.36$  (3)°

#### Data collection

Stoe IPDS 2 diffractometer Absorption correction: integration (X-SHAPE and X-RED; Stoe & Cie, 2009)  $T_{min} = 0.549, T_{max} = 0.692$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$   $wR(F^2) = 0.075$  S = 1.031876 reflections 116 parameters

# 9012 measured reflections 1876 independent reflections

V = 640.4 (2) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.21 \times 0.15 \times 0.09 \text{ mm}$ 

 $\mu = 3.37 \text{ mm}^{-1}$ 

T = 298 K

Z = 4

1876 independent reflections 1561 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.048$ 

H atoms treated by a mixture of independent and constrained refinement 
$$\begin{split} &\Delta\rho_{max}=0.42\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.58\ e\ \mathring{A}^{-3} \end{split}$$

#### Table 1

Hydrogen-bond geometry (Å, °).

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                      |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| N2-H1 $A$ ···O3 <sup>i</sup> 0.94 (5) 2.12 (5) 3.029 (3) 162 (4<br>N2-H1 $B$ ···O2 <sup>ii</sup> 0.80 (4) 2.49 (4) 3.223 (3) 154 (4<br>N1-H3 $A$ ···O1 <sup>iii</sup> 0.90 (4) 2.17 (4) 2.994 (3) 157 (3) | $\cdots A$ |
| N2-H1 $B$ ···O2" 0.80 (4) 2.49 (4) 3.223 (3) 154 (4<br>N1-H3 $4$ ···O1"" 0.90 (4) 2.17 (4) 2.994 (3) 152 (3                                                                                               | •)         |
|                                                                                                                                                                                                           | -)<br>5)   |
| $N1-H3A\cdots O1^{iv}$ 0.90 (4) 2.44 (4) 3.003 (3) 121 (3)                                                                                                                                                | 5)         |
| $N1 - H3B \cdots O4^{v}$ 0.86 (4) 2.41 (4) 3.152 (3) 145 (3)                                                                                                                                              | )          |

Symmetry codes: (i) x, y - 1, z; (ii)  $x + \frac{1}{2}, -y - \frac{1}{2}, z + \frac{1}{2}$ ; (iii) x, y + 1, z; (iv)  $-x - \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (v)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ .

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

FG thanks the Swiss National Science Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2280).

#### References

- Aromi, G., Novoa, J. J., Ribas-Arino, J., Igarashi, S. & Yukawa, Y. (2008). *Inorg. Chim. Acta*, **361**, 3919–3925.
- Barrie, P. J., Gyani, A., Motevalli, M. & O'Brien, P. (1993). *Inorg. Chem.* 32, 3862–3867.
- Bi, W., Mercier, N., Louvain, N. & Latroche, M. (2006). Eur. J. Inorg. Chem. 21, 4225–4228.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chen, P. J., Jiang, C., Yan, W. H., Liang, F. P. & Batten, S. R. (2009). Inorg.
- *Chem.* **48**, 4674–4684.
- Davies, O. H., Park, J. H. & Gillard, R. D. (2003). Inorg. Chim. Acta, 356, 69-84.
- Low, B. W., Hirshfeld, F. L. & Richard, F. M. (1959). J. Am. Chem. Soc. 36, 4412-4416.
- Papavinasam, E. (1991). Z. Kristallogr. 197, 217-222.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2009). X-AREA, X-RED and X-SHAPE. Stoe & Cie GmBh, Damstadt, Germany,
- Zhang, J. J., Hu, S. M., Xiang, S. C., Wang, L. S. & Wu, X. T. (2005). J. Mol. Struct. 748, 129–136.

# supporting information

Acta Cryst. (2011). E67, m1218-m1219 [doi:10.1107/S1600536811031503]

# Poly[di-µ-glycinato-copper(II)]: a two-dimensional coordination polymer

### Fabienne Gschwind and Martin Jansen

#### S1. Comment

Different metal glycine complexes and polymeric structures have been known since the 1960's. The first work on a cadmium glycinato complexe was done by (Low *et al.*, 1959), and further studies were reported by (Barrie *et al.*, 1993). Mixed metal glycinato complexes with copper(II) were investigated by (Papavinasam, 1991; Davies *et al.*, 2003; Low *et al.*, 1959).

The complexation of simple copper salts to amino acids is a well investigated reaction and various complexes and clusters have been reported (Low *et al.*, 1959; Davies *et al.*, 2003; Aromi *et al.*, 2008; Bi *et al.*, 2006; Zhang *et al.*, 2005). A three-dimensional copper-glycinate coordination polymer has been reported on by (Chen *et al.*, 2009).

While redissolving the copper cluster  $[NaCu_6(gly)_3(ClO_4)_3(H_2O)]_n$  (ClO<sub>4</sub>)<sub>2n</sub> (Aromi *et al.*, 2008) in DMSO, blue crystals of the title compound were obtained and were characterized by X-ray diffraction.

The title compound is a two-dimensional coordination polymer (Fig. 1). It consists of a distorted octahedral copper coordination polyhedron with two bidentate glycine ligands chelating the metal through the oxygen and nitrogen atoms (O1, O3, N1, N2) in a *trans* square planar configuration. The two axial coordination sites are occupied by carbonyl oxygen atoms of the neighbouring glycine molecules (O2 and O4). The Cu—O distances are 2.648 (2) Å (Cu1—O2<sup>i</sup>) and 2.837 (2) Å (Cu1—O4<sup>ii</sup>) for the axial oxygen atoms [symmetry codes: (i) -*x*-1/2, *y*+1/2, -*z*+1/2; (ii) -*x*+1/2, *y*-1/2, -*z*+1/2]. In the equatorial plane the Cu-O distances are 1.9474 (15) and 1.9483 (16) Å for Cu1—O1 and Cu1—O3, respectively, while the Cu—N distances are 1.9883 (19) and 1.948 (2) Å for Cu1-N1 and Cu1—N2, respectively. These bond length differences indicate a strong Jahn-Teller effect.

In the crystal the two dimensional networks are linked via N-H…O hydrogen bonds to form a three-dimensional arrangement (Table 1 and Fig. 2).

#### **S2. Experimental**

The title compound was prepared by dissolving 20 mg of  $[NaCu_6(gly)_3(ClO_4)_3(H_2O)]_n$  (ClO<sub>4</sub>)<sub>2n</sub> (Aromi *et al.*, 2008) in 5 ml DMSO. Crystals could be grown out of the blue solution by slow diffusion of THF.

#### **S3. Refinement**

The NH-atoms were located in difference electron-density maps and were freely refined. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.97 Å, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .



#### Figure 1

Part of the polymeric structure of the title compound, showing the numbering scheme and the displacement ellipsoids drawn at the 50% probability level [H atoms have been omitted for clarity; symmetry codes: (i) -x-1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2].



#### Figure 2

A view along the x-axis of the three-dimensional hydrogen bonded network of the title compound built up from the twodimensional nets. The N-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H-atoms not involved in these reactions have been omitted for clarity).

#### Poly[di-µ-glycinato-copper(II)]

#### Crystal data

[Cu(C<sub>2</sub>H<sub>4</sub>NO<sub>2</sub>)<sub>2</sub>]  $M_r = 211.66$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 9.4265 (19) Å b = 5.1159 (10) Å c = 13.912 (3) Å  $\beta = 107.36$  (3)° V = 640.4 (2) Å<sup>3</sup> Z = 4

#### Data collection

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.032$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.075$                               | neighbouring sites                                         |
| <i>S</i> = 1.03                                 | H atoms treated by a mixture of independent                |
| 1876 reflections                                | and constrained refinement                                 |
| 116 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0447P)^2]$                    |
| 0 restraints                                    | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                     |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| direct methods                                  | $\Delta  ho_{ m max} = 0.42$ e Å <sup>-3</sup>             |
|                                                 | $\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$ |

F(000) = 428

 $\theta = 2.3 - 30.5^{\circ}$ 

 $\mu = 3.37 \text{ mm}^{-1}$ T = 298 K

Block, blue

 $R_{\rm int} = 0.048$ 

 $h = -13 \rightarrow 13$   $k = -7 \rightarrow 6$  $l = -19 \rightarrow 17$ 

 $D_{\rm x} = 2.195 {\rm Mg} {\rm m}^{-3}$ 

 $0.21 \times 0.15 \times 0.09 \text{ mm}$ 

9012 measured reflections 1876 independent reflections 1561 reflections with  $I > 2\sigma(I)$ 

 $\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 5867 reflections

#### Special details

**Geometry**. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| Fractional atomic coordinates and ison | ptropic or equivalent | isotropic displacement | parameters (Ų) |
|----------------------------------------|-----------------------|------------------------|----------------|
|----------------------------------------|-----------------------|------------------------|----------------|

| 7            | TT */TT                                                     |
|--------------|-------------------------------------------------------------|
| 2            | $U_{\rm iso} - U_{\rm eq}$                                  |
| 0.26465 (2)  | 0.0301 (1)                                                  |
| 0.21922 (12) | 0.0270 (4)                                                  |
| 0.10081 (14) | 0.0408 (6)                                                  |
| 0.30307 (13) | 0.0317 (4)                                                  |
|              | 0.26465 (2)<br>0.21922 (12)<br>0.10081 (14)<br>0.30307 (13) |

| 04  | 0.41730 (18) | 0.2283 (4)  | 0.38098 (15) | 0.0392 (5)  |  |
|-----|--------------|-------------|--------------|-------------|--|
| N1  | -0.1151 (2)  | 0.2642 (4)  | 0.15535 (16) | 0.0283 (5)  |  |
| N2  | 0.1137 (2)   | -0.2140 (4) | 0.37098 (17) | 0.0302 (6)  |  |
| C1  | -0.2742 (2)  | -0.1247 (4) | 0.13882 (17) | 0.0260 (6)  |  |
| C2  | -0.2384 (3)  | 0.1181 (4)  | 0.08778 (17) | 0.0304 (6)  |  |
| C3  | 0.2916 (2)   | 0.1351 (4)  | 0.36051 (16) | 0.0253 (5)  |  |
| C4  | 0.2694 (2)   | -0.1268 (4) | 0.40529 (17) | 0.0282 (6)  |  |
| H1A | 0.112 (5)    | -0.378 (10) | 0.340 (3)    | 0.076 (13)* |  |
| H1B | 0.082 (4)    | -0.233 (7)  | 0.418 (3)    | 0.045 (9)*  |  |
| H2A | -0.21240     | 0.06770     | 0.02790      | 0.0360*     |  |
| H2B | -0.32560     | 0.22930     | 0.06700      | 0.0360*     |  |
| H3A | -0.153 (4)   | 0.393 (7)   | 0.184 (2)    | 0.045 (9)*  |  |
| H3B | -0.061 (4)   | 0.342 (8)   | 0.124 (3)    | 0.061 (11)* |  |
| H4A | 0.33140      | -0.25670    | 0.38670      | 0.0340*     |  |
| H4B | 0.30110      | -0.11300    | 0.47810      | 0.0340*     |  |
|     |              |             |              |             |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| Cu1 | 0.0249(1)   | 0.0214(1)   | 0.0380 (2)  | -0.0026(1)  | -0.0001 (1) | 0.0078 (1)  |
| 01  | 0.0262 (7)  | 0.0191 (7)  | 0.0334 (8)  | -0.0016 (5) | 0.0052 (6)  | 0.0030 (6)  |
| O2  | 0.0375 (9)  | 0.0391 (10) | 0.0389 (10) | -0.0142 (7) | 0.0010 (7)  | 0.0043 (7)  |
| O3  | 0.0277 (7)  | 0.0216 (7)  | 0.0408 (9)  | -0.0028 (6) | 0.0028 (6)  | 0.0046 (6)  |
| O4  | 0.0275 (8)  | 0.0350 (9)  | 0.0510(11)  | -0.0060 (7) | 0.0057 (7)  | 0.0016 (8)  |
| N1  | 0.0274 (9)  | 0.0214 (8)  | 0.0340 (10) | -0.0019 (7) | 0.0062 (7)  | 0.0055 (7)  |
| N2  | 0.0291 (9)  | 0.0253 (9)  | 0.0331 (11) | -0.0023 (7) | 0.0046 (8)  | 0.0068 (8)  |
| C1  | 0.0282 (10) | 0.0234 (9)  | 0.0262 (10) | -0.0011 (7) | 0.0080 (8)  | -0.0020 (8) |
| C2  | 0.0351 (11) | 0.0263 (10) | 0.0264 (11) | -0.0053 (8) | 0.0041 (8)  | 0.0017 (8)  |
| C3  | 0.0267 (9)  | 0.0238 (9)  | 0.0246 (10) | -0.0018 (7) | 0.0066 (8)  | -0.0025 (7) |
| C4  | 0.0279 (10) | 0.0272 (10) | 0.0272 (11) | 0.0017 (8)  | 0.0049 (8)  | 0.0043 (8)  |

## Geometric parameters (Å, °)

| Cu1—O1               | 1.9475 (17) | N2—C4      | 1.471 (3) |
|----------------------|-------------|------------|-----------|
| Cu1—O3               | 1.9483 (18) | N1—H3B     | 0.86 (4)  |
| Cu1—N1               | 1.988 (2)   | N1—H3A     | 0.90 (4)  |
| Cu1—N2               | 1.984 (2)   | N2—H1A     | 0.94 (5)  |
| Cu1—O2 <sup>i</sup>  | 2.648 (2)   | N2—H1B     | 0.80 (4)  |
| Cu1—O4 <sup>ii</sup> | 2.837 (2)   | C1—C2      | 1.518 (3) |
| O1—C1                | 1.279 (3)   | C3—C4      | 1.518 (3) |
| O2—C1                | 1.234 (3)   | C2—H2A     | 0.9700    |
| O3—C3                | 1.284 (3)   | C2—H2B     | 0.9700    |
| O4—C3                | 1.229 (3)   | C4—H4A     | 0.9700    |
| N1—C2                | 1.463 (3)   | C4—H4B     | 0.9700    |
| O1—Cu1—O3            | 176.59 (8)  | H3A—N1—H3B | 105 (4)   |
| O1—Cu1—N1            | 84.73 (8)   | C4—N2—H1A  | 107 (3)   |
| O1—Cu1—N2            | 95.55 (8)   | Cu1—N2—H1A | 106 (3)   |
|                      |             |            |           |

| O1—Cu1—O2 <sup>i</sup>                                                                                                                                                                                                         | 92.26 (7)                                                                              | Cu1—N2—H1B                                                                                                 | 115 (3)                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| O1—Cu1—O4 <sup>ii</sup>                                                                                                                                                                                                        | 80.68 (7)                                                                              | C4—N2—H1B                                                                                                  | 111 (3)                                                       |
| O3—Cu1—N1                                                                                                                                                                                                                      | 94.41 (8)                                                                              | H1A—N2—H1B                                                                                                 | 108 (4)                                                       |
| O3—Cu1—N2                                                                                                                                                                                                                      | 85.22 (8)                                                                              | O2—C1—C2                                                                                                   | 119.5 (2)                                                     |
| O2 <sup>i</sup> —Cu1—O3                                                                                                                                                                                                        | 91.07 (7)                                                                              | O1—C1—O2                                                                                                   | 123.9 (2)                                                     |
| O3—Cu1—O4 <sup>ii</sup>                                                                                                                                                                                                        | 96.01 (7)                                                                              | O1—C1—C2                                                                                                   | 116.60 (19)                                                   |
| N1—Cu1—N2                                                                                                                                                                                                                      | 178.27 (9)                                                                             | N1-C2-C1                                                                                                   | 111.24 (19)                                                   |
| O2 <sup>i</sup> —Cu1—N1                                                                                                                                                                                                        | 92.22 (8)                                                                              | O3—C3—O4                                                                                                   | 124.2 (2)                                                     |
| O4 <sup>ii</sup> —Cu1—N1                                                                                                                                                                                                       | 89.04 (8)                                                                              | O3—C3—C4                                                                                                   | 116.60 (18)                                                   |
| O2 <sup>i</sup> —Cu1—N2                                                                                                                                                                                                        | 89.48 (8)                                                                              | O4—C3—C4                                                                                                   | 119.3 (2)                                                     |
| O4 <sup>ii</sup> —Cu1—N2                                                                                                                                                                                                       | 89.32 (8)                                                                              | N2—C4—C3                                                                                                   | 112.39 (18)                                                   |
| O2 <sup>i</sup> —Cu1—O4 <sup>ii</sup>                                                                                                                                                                                          | 172.69 (7)                                                                             | N1—C2—H2A                                                                                                  | 109.00                                                        |
| Cu1—O1—C1                                                                                                                                                                                                                      | 115.30 (14)                                                                            | N1—C2—H2B                                                                                                  | 109.00                                                        |
| Cu1 <sup>iii</sup> —O2—C1                                                                                                                                                                                                      | 113.23 (15)                                                                            | C1—C2—H2A                                                                                                  | 109.00                                                        |
| Cu1—O3—C3                                                                                                                                                                                                                      | 114.93 (14)                                                                            | C1—C2—H2B                                                                                                  | 109.00                                                        |
| Cu1 <sup>iv</sup> —O4—C3                                                                                                                                                                                                       | 120.10 (16)                                                                            | H2A—C2—H2B                                                                                                 | 108.00                                                        |
| Cu1—N1—C2                                                                                                                                                                                                                      | 108.68 (14)                                                                            | N2—C4—H4A                                                                                                  | 109.00                                                        |
| Cu1—N2—C4                                                                                                                                                                                                                      | 109.16 (15)                                                                            | N2—C4—H4B                                                                                                  | 109.00                                                        |
| C2—N1—H3A                                                                                                                                                                                                                      | 108 (2)                                                                                | C3—C4—H4A                                                                                                  | 109.00                                                        |
| Cu1—N1—H3A                                                                                                                                                                                                                     | 107.6 (18)                                                                             | C3—C4—H4B                                                                                                  | 109.00                                                        |
| Cu1—N1—H3B                                                                                                                                                                                                                     | 114 (3)                                                                                | H4A—C4—H4B                                                                                                 | 108.00                                                        |
| C2—N1—H3B                                                                                                                                                                                                                      | 113 (3)                                                                                |                                                                                                            |                                                               |
|                                                                                                                                                                                                                                |                                                                                        |                                                                                                            |                                                               |
| N1—Cu1—O1—C1                                                                                                                                                                                                                   | 6.99 (16)                                                                              | N2—Cu1—O2 <sup>i</sup> —C1 <sup>i</sup>                                                                    | -157.43 (17)                                                  |
| N2—Cu1—O1—C1                                                                                                                                                                                                                   | -171.29 (16)                                                                           | $O1$ — $Cu1$ — $O4^{ii}$ — $C3^{ii}$                                                                       | -133.24 (18)                                                  |
| O2 <sup>i</sup> —Cu1—O1—C1                                                                                                                                                                                                     | 99.01 (15)                                                                             | $O3$ — $Cu1$ — $O4^{ii}$ — $C3^{ii}$                                                                       | 47.61 (18)                                                    |
| O4 <sup>ii</sup> —Cu1—O1—C1                                                                                                                                                                                                    | -82.90 (15)                                                                            | N1—Cu1—O4 <sup>ii</sup> —C3 <sup>ii</sup>                                                                  | 141.95 (18)                                                   |
| N1—Cu1—O3—C3                                                                                                                                                                                                                   | -166.00 (16)                                                                           | $N2$ — $Cu1$ — $O4^{ii}$ — $C3^{ii}$                                                                       | -37.51 (18)                                                   |
| N2—Cu1—O3—C3                                                                                                                                                                                                                   | 12.30 (16)                                                                             | Cu1—O1—C1—O2                                                                                               | -178.31 (18)                                                  |
| O2 <sup>i</sup> —Cu1—O3—C3                                                                                                                                                                                                     | 101.69 (16)                                                                            | Cu1—O1—C1—C2                                                                                               | 3.1 (2)                                                       |
| O4 <sup>ii</sup> —Cu1—O3—C3                                                                                                                                                                                                    | -76.51 (16)                                                                            | Cu1 <sup>iii</sup> —O2—C1—O1                                                                               | 32.3 (3)                                                      |
| O1—Cu1—N1—C2                                                                                                                                                                                                                   | -14.98 (16)                                                                            | $Cu1^{iii}$ —O2—C1—C2                                                                                      | -149.11 (17)                                                  |
| O3—Cu1—N1—C2                                                                                                                                                                                                                   | 161.71 (16)                                                                            | Cu1—O3—C3—O4                                                                                               | 169.39 (19)                                                   |
| O2 <sup>i</sup> —Cu1—N1—C2                                                                                                                                                                                                     | -107.04 (16)                                                                           | Cu1—O3—C3—C4                                                                                               | -11.0 (2)                                                     |
| O4 <sup>ii</sup> —Cu1—N1—C2                                                                                                                                                                                                    | 65.75 (16)                                                                             | Cu1 <sup>iv</sup> —O4—C3—O3                                                                                | -34.4 (3)                                                     |
| O1—Cu1—N2—C4                                                                                                                                                                                                                   |                                                                                        |                                                                                                            | 146.00 (16)                                                   |
|                                                                                                                                                                                                                                | 166.43 (15)                                                                            | $Cu1^{iv}$ —O4—C3—C4                                                                                       | 146.03 (16)                                                   |
| O3—Cu1—N2—C4                                                                                                                                                                                                                   | 166.43 (15)<br>-10.23 (15)                                                             | $Cu1^{\text{IV}} - O4 - C3 - C4$ $Cu1 - N1 - C2 - C1$                                                      | 146.03 (16)<br>19.8 (2)                                       |
| $O_{3}$ —Cu1—N2—C4<br>$O_{2^{i}}$ —Cu1—N2—C4                                                                                                                                                                                   | 166.43 (15)<br>-10.23 (15)<br>-101.35 (15)                                             | $Cu1^{v}-O4-C3-C4$<br>Cu1-N1-C2-C1<br>Cu1-N2-C4-C3                                                         | 146.03 (16)<br>19.8 (2)<br>7.4 (2)                            |
| O3—Cu1—N2—C4<br>O2 <sup>i</sup> —Cu1—N2—C4<br>O4 <sup>ii</sup> —Cu1—N2—C4                                                                                                                                                      | 166.43 (15)<br>-10.23 (15)<br>-101.35 (15)<br>85.86 (15)                               | $Cu1^{v}-O4-C3-C4$ $Cu1-N1-C2-C1$ $Cu1-N2-C4-C3$ $O1-C1-C2-N1$                                             | 146.03 (16)<br>19.8 (2)<br>7.4 (2)<br>-15.8 (3)               |
| $\begin{array}{c} O_{3} \ -Cu_{1} \ -N_{2} \ -C4 \\ O_{2^{i}} \ -Cu_{1} \ -N_{2} \ -C4 \\ O_{4^{ii}} \ -Cu_{1} \ -N_{2} \ -C4 \\ O_{1} \ -Cu_{1} \ -O_{2^{i}} \ -C_{1^{i}} \end{array}$                                        | 166.43 (15)<br>-10.23 (15)<br>-101.35 (15)<br>85.86 (15)<br>-61.90 (17)                | $Cu1^{V} - O4 - C3 - C4$ $Cu1 - N1 - C2 - C1$ $Cu1 - N2 - C4 - C3$ $O1 - C1 - C2 - N1$ $O2 - C1 - C2 - N1$ | 146.03 (16)<br>19.8 (2)<br>7.4 (2)<br>-15.8 (3)<br>165.5 (2)  |
| $\begin{array}{c} O_{3} \ -Cu_{1} \ -N_{2} \ -C4 \\ O_{2^{i}} \ -Cu_{1} \ -N_{2} \ -C4 \\ O_{4^{ii}} \ -Cu_{1} \ -N_{2} \ -C4 \\ O_{1} \ -Cu_{1} \ -O_{2^{i}} \ -C1^{i} \\ O_{3} \ -Cu_{1} \ -O_{2^{i}} \ -C1^{i} \end{array}$ | 166.43 (15)<br>-10.23 (15)<br>-101.35 (15)<br>85.86 (15)<br>-61.90 (17)<br>117.36 (17) | $Cu1^{v}-04-C3-C4$ $Cu1-N1-C2-C1$ $Cu1-N2-C4-C3$ $O1-C1-C2-N1$ $O2-C1-C2-N1$ $O3-C3-C4-N2$                 | 146.03 (16)  19.8 (2)  7.4 (2)  -15.8 (3)  165.5 (2)  2.1 (3) |

Symmetry codes: (i) -x-1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2; (iii) -x-1/2, y-1/2, -z+1/2; (iv) -x+1/2, y+1/2, -z+1/2.

### Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | H···A    | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|-----------------------------------|-------------|----------|--------------|-------------------------|
| N2—H1 <i>A</i> ···O3 <sup>v</sup> | 0.94 (5)    | 2.12 (5) | 3.029 (3)    | 162 (4)                 |

# supporting information

| N2—H1 <i>B</i> ····O2 <sup>vi</sup> | 0.80 (4) | 2.49 (4) | 3.223 (3) | 154 (4) |
|-------------------------------------|----------|----------|-----------|---------|
| N1—H3A····O1 <sup>vii</sup>         | 0.90 (4) | 2.17 (4) | 2.994 (3) | 152 (3) |
| N1—H3A···O1 <sup>i</sup>            | 0.90 (4) | 2.44 (4) | 3.003 (3) | 121 (3) |
| N1—H3B····O4 <sup>iv</sup>          | 0.86 (4) | 2.41 (4) | 3.152 (3) | 145 (3) |

Symmetry codes: (i) -x-1/2, y+1/2, -z+1/2; (iv) -x+1/2, y+1/2, -z+1/2; (v) x, y-1, z; (vi) x+1/2, -y-1/2, z+1/2; (vii) x, y+1, z.