

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaqua{1-[(1*H*-1,2,3-benzotriazol-1yl)methyl]-1*H*-1,2,4-triazole}sulfatocadmium dihydrate

Yu-xian Li,^a* Da-wei Li^b and Dong Zhao^c

^aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, ^bZhengZhou Trade and Industry Schools, Zhengzhou 450000, People's Republic of China, and ^cDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China Correspondence e-mail: 13623712409@139.com

Received 6 July 2011; accepted 10 August 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.025; wR factor = 0.057; data-to-parameter ratio = 13.3.

In the title complex, $[Cd(SO_4)(C_9H_8N_6)(H_2O)_4]\cdot 2H_2O$, the Cd^{II} ion is six-coordinated by one N atom from a 1-[(1H-1,2,3-benzotriazol-1-yl)methyl]-1H-1,2,4-triazole ligand and by five O atoms from four water molecules and one monodentate sulfate anion in a distorted octahedral geometry. The sulfate tetrahedron is rotationally disordered over two positions in a 0.651 (12):0.349 (12) ratio. In the crystal, adjacent molecules are linked through $O-H\cdots O$ and $O-H\cdots N$ hydrogen bonds into a three-dimensional network.

Related literature

For background to complexes based on triazolyl or benzotriazolyl ligands, see: Meng *et al.* (2009); Yang *et al.* (2011).

Experimental

 Crystal data

 $[Cd(SO_4)(C_9H_8N_6)(H_2O)_4]\cdot 2H_2O$ $\gamma =$
 $M_r = 516.77$ V =

 Triclinic, $P\overline{1}$ Z =

 a = 7.7154 (15) Å
 Mo

 b = 8.0667 (16) Å
 $\mu =$

 c = 16.369 (3) Å
 T =

 $\alpha = 100.12$ (3)°
 0.1

 $\beta = 91.64$ (3)°
 0

 $\gamma = 112.38 (3)^{\circ}$ $V = 922.3 (3) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.36 \text{ mm}^{-1}$ T = 293 K $0.19 \times 0.17 \times 0.14 \text{ mm}$

Data collection

Rigaku Saturn CCD diffractometer Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{min} = 0.782, T_{max} = 0.832$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ 2

 $wR(F^2) = 0.057$ F

 S = 1.05 2

 3608 reflections
 2

3608 independent reflections 3361 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.020$

8812 measured reflections

272 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.56\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.32\ e\ \text{\AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

		II A	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$O8 - H8W \cdots O9$	0.85	1.89	2.732 (3)	170
$O6-H4W \cdot \cdot \cdot O2'$	0.85	2.39	2.905 (19)	119
$O5-H1W \cdot \cdot \cdot O4^{i}$	0.85	1.91	2.719 (4)	157
$O5-H1W \cdot \cdot \cdot O4'^{i}$	0.85	1.84	2.672 (7)	166
$O5-H2W \cdot \cdot \cdot O1^{ii}$	0.85	1.97	2.817 (3)	172
O8−H7W···O3 ⁱⁱ	0.85	2.00	2.795 (4)	156
O8−H7W···O3′ ⁱⁱ	0.85	2.38	3.127 (15)	147
$O6-H3W \cdot \cdot \cdot O10^{iii}$	0.85	1.83	2.680 (3)	178
$O6-H4W \cdot \cdot \cdot N2^{iv}$	0.85	2.27	3.025 (3)	148
$O7 - H5W \cdot \cdot \cdot O3^{v}$	0.85	1.93	2.730 (4)	157
$O9-H9W \cdot \cdot \cdot O4^{v}$	0.85	2.00	2.795 (6)	155
$O7 - H5W \cdot \cdot \cdot O3'^{v}$	0.85	1.91	2.720 (8)	159
O9−H9W···O3′ ^v	0.85	2.06	2.844 (14)	155
$O7 - H6W \cdots O9^{vi}$	0.85	1.97	2.791 (3)	161
O9−H10W···O1 ^{vii}	0.85	2.06	2.906 (3)	175
O9−H10W···O4′ ^{vii}	0.85	2.48	3.030 (11)	123
O10−H11W···N6 ^{viii}	0.85	2.01	2.861 (3)	177
$O10-H12W \cdots O2^{ix}$	0.85	2.02	2.809 (8)	155
$O10-H12W \cdots O4'^{ix}$	0.85	2.19	2.944 (14)	148
$O10-H12W \cdot \cdot \cdot O2'^{ix}$	0.85	2.51	3.280 (16)	151

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y + 2, -z + 1; (iii) x - 1, y + 1, z; (iv) x, y + 1, z; (v) x - 1, y - 1, z; (vi) -x - 1, -y + 1, -z + 1; (vii) -x, -y + 1, -z + 1; (viii) -x + 1, -y + 1, -z + 2; (ix) x, y - 1, z.

Data collection: *CrystalClear* (Rigaku/MSC, 2006); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2337).

References

- Jacobson, R. (1998). *REQAB*. Private communication to the Rigaku Corporation, Tokyo, Japan.
- Meng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). *Inorg. Chim.* Acta, **362**, 1519–1527.
- Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, H., Zhang, J. & Zhao, D. (2011). Acta Cryst. E67, m602.

supporting information

Acta Cryst. (2011). E67, m1251 [doi:10.1107/S1600536811032442]

Tetraaqua{1-[(1*H*-1,2,3-benzotriazol-1-yl)methyl]-1*H*-1,2,4-triazole}sulfatocadmium dihydrate

Yu-xian Li, Da-wei Li and Dong Zhao

S1. Comment

Numerous supramolecular complexes based on triazolyl or benzotriazolyl ligands which have abundant N-donor sites have been synthesized. These show a variety of discrete or infinite frameworks of one-, two-, and three-dimensional motifs (Meng *et al.*, 2009; Yang *et al.*, 2011). In order to further explore frameworks with new structures, we used 1H-1,2,3-benzotriazol-1-yl)methyl]-1H-1,2,4-triazole to react with CdSO₄ at room temperature and obtained the title complex [Cd(SO₄) (C₉H₈N₆) (H₂O)₄] (H₂O)₂, which is reported here. As shown in Fig. 1, the Cd^{II} ion is located in a distorted octahedral coordination environment and is coordinated to five oxygen atoms from four water molecules and one monodentate sulfate anion and one nitrogen atom from the 1H-1,2,3-benzotriazol-1-yl)methyl]-1H-1,2,4-triazole ligand. Atoms O1, O6, O7, O8 and Cd1 are nearly co-planar (the mean deviation from the plane is 0.0473 Å), O5 and N1 atoms are located in the apical positions. The SO₄ tetrahedron is rotationally disordered about its S—O axis passing though O1 and S1 atoms. Intramolecular O—H…O hydrogen bonds stabilize the molecular configuration and O—H…O, O—H…N hydrogen bonds between adjacent molecules consolidate the crystal packing (Fig. 2).

S2. Experimental

The ligand 1H-1,2,3-benzotriazol-1-yl)methyl]-1H-1,2,4-triazole (0.1 mmol) in methanol (4 ml) was added dropwise to an aqueous solution (3 ml) of cadmium sulfate (0.1 mmol). The resulting solution was allowed to stand at room temperature. After three weeks colourless crystals of good quality were obtained from the filtrate and dried in air.

S3. Refinement

The disordered sulfate anion has been modelled by splitting it into two parts (O2, O3, O4 and O2', O3', O4'), the site occupation factors of which refined in a ratio of 0.651 (12):0.349 (12). H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 Å (aromatic), 0.97 Å (CH₂) and O-H = 0.85 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C-H)$ or 1.5 $U_{eq}(O-H)$.

Figure 1

View of the title complex. Displacement ellipsoids are displayed at the 30% probability level. Only one orientation of the disordered $\mathrm{SO}_4^{2\text{-}}$ tetrahedron is shown.

Figure 2

View of hydrogen bonds in the title complex. Hydrogen bonds are indicated by dashed lines.

Tetraaqua{1-[(1H-1,2,3-benzotriazol-1-yl)methyl]-1H- 1,2,4-triazole}sulfatocadmium dihydrate

Crystal data	
$[Cd(SO_4)(C_9H_8N_6)(H_2O)_4] \cdot 2H_2O$	Hall symbol: -P 1
$M_r = 516.77$	a = 7.7154 (15) Å
Triclinic, $P\overline{1}$	b = 8.0667 (16) Å

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.5 - 27.9^{\circ}$

 $\mu = 1.36 \text{ mm}^{-1}$

Prism, colourless

 $0.19 \times 0.17 \times 0.14 \text{ mm}$

T = 293 K

Cell parameters from 3156 reflections

c = 16.369 (3) Å $\alpha = 100.12 (3)^{\circ}$ $\beta = 91.64 (3)^{\circ}$ $\gamma = 112.38 (3)^{\circ}$ $V = 922.3 (3) \text{ Å}^{3}$ Z = 2 F(000) = 520 $D_{x} = 1.861 \text{ Mg m}^{-3}$

Data collection

Duiu conection	
Rigaku Saturn CCD	8812 measured reflections
diffractometer	3608 independent reflections
Radiation source: fine-focus sealed tube	3361 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
Detector resolution: 28.6 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.5^\circ$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -9 \rightarrow 9$
(REQAB; Jacobson, 1998)	$l = -19 \rightarrow 20$
$T_{\min} = 0.782, T_{\max} = 0.832$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from
$wR(F^2) = 0.057$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
3608 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0278P)^2 + 0.3915P]$
272 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.56 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	-0.08817 (2)	0.82498 (2)	0.629897 (11)	0.02758 (7)	
N1	0.0196 (3)	0.6456 (3)	0.69209 (13)	0.0317 (5)	
N2	0.0601 (3)	0.4169 (3)	0.73914 (14)	0.0350 (5)	
N3	0.2076 (3)	0.5783 (3)	0.76785 (12)	0.0291 (4)	
N4	0.3177 (3)	0.5906 (3)	0.90746 (13)	0.0326 (5)	
N5	0.3149 (4)	0.7462 (3)	0.95407 (15)	0.0458 (6)	
N6	0.2707 (4)	0.7145 (4)	1.02726 (15)	0.0490 (6)	
01	0.2166 (2)	0.9862 (2)	0.60171 (11)	0.0379 (4)	

O2	0.3964 (14)	1.1563 (16)	0.7348 (7)	0.0486 (17)	0.651 (12)
O3	0.3456 (6)	1.3130 (5)	0.6316 (4)	0.0443 (13)	0.651 (12)
O4	0.5488 (4)	1.1527 (6)	0.6098 (3)	0.0417 (15)	0.651 (12)
O2′	0.345 (2)	1.183 (3)	0.7336 (12)	0.049 (3)	0.349 (12)
O3′	0.438 (2)	1.2932 (10)	0.6056 (5)	0.071 (4)	0.349 (12)
O4′	0.5348 (11)	1.0724 (17)	0.6482 (7)	0.078 (4)	0.349 (12)
05	-0.1905 (3)	1.0094 (3)	0.56985 (11)	0.0386 (4)	
H1W	-0.2870	1.0265	0.5864	0.058*	
H2W	-0.1868	1.0155	0.5186	0.058*	
O6	-0.0542(3)	1.0205 (3)	0.75212 (11)	0.0434 (5)	
H3W	-0.1547	1.0216	0.7718	0.065*	
H4W	0.0211	1.1271	0.7482	0.065*	
07	-0.4009(2)	0.6650 (3)	0.64632 (13)	0.0440 (5)	
H5W	-0.4523	0.5516	0.6469	0.066*	
H6W	-0.4706	0.7003	0.6187	0.066*	
08	-0.1160 (3)	0.6613 (3)	0.49667 (11)	0.0438 (5)	
H7W	-0.1616	0.7013	0.4604	0.066*	
H8W	-0.1814	0.5479	0.4928	0.066*	
09	-0.3463 (3)	0.2982 (3)	0.46744 (13)	0.0448 (5)	
H9W	-0.4038	0.2670	0.5090	0.067*	
H10W	-0.3156	0.2099	0.4472	0.067*	
O10	0.6339 (3)	0.0317 (3)	0.81643 (12)	0.0507 (5)	
H11W	0.6575	0.1056	0.8631	0.076*	
H12W	0.5847	0.0689	0.7802	0.076*	
C1	-0.0485 (4)	0.4643 (3)	0.69349 (16)	0.0334 (6)	
H1A	-0.1625	0.3808	0.6645	0.040*	
C2	0.1805 (4)	0.7115 (3)	0.73996 (16)	0.0351 (6)	
H2A	0.2630	0.8340	0.7523	0.042*	
C3	0.3661 (3)	0.5908 (4)	0.82319 (15)	0.0337 (6)	
H3A	0.4006	0.4879	0.8038	0.040*	
H3B	0.4740	0.7023	0.8218	0.040*	
C4	0.2737 (3)	0.4545 (4)	0.95223 (15)	0.0310 (5)	
C5	0.2629 (4)	0.2757 (4)	0.93464 (18)	0.0397 (6)	
H5A	0.2844	0.2226	0.8828	0.048*	
C6	0.2185 (4)	0.1827 (4)	0.9985 (2)	0.0536 (8)	
H6A	0.2099	0.0626	0.9898	0.064*	
C7	0.1853 (4)	0.2624 (5)	1.0768 (2)	0.0590 (9)	
H7A	0.1538	0.1932	1.1180	0.071*	
C8	0.1983 (4)	0.4385 (6)	1.09375 (19)	0.0569 (9)	
H8A	0.1778	0.4914	1.1458	0.068*	
C9	0.2439 (4)	0.5364 (4)	1.02929 (16)	0.0398 (6)	
S1	0.38047 (8)	1.14858 (8)	0.64711 (4)	0.02752 (13)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cd1	0.02582 (10)	0.02909 (11)	0.02891 (11)	0.01048 (8)	0.00083 (7)	0.00959 (7)
N1	0.0320 (11)	0.0299 (11)	0.0327 (12)	0.0096 (9)	-0.0026 (9)	0.0116 (9)

supporting information

N2	0.0355 (12)	0.0249 (11)	0.0421 (13)	0.0093 (9)	-0.0025 (10)	0.0070 (9)
N3	0.0284 (11)	0.0295 (11)	0.0292 (11)	0.0104 (9)	-0.0007 (9)	0.0081 (9)
N4	0.0379 (12)	0.0340 (12)	0.0274 (11)	0.0173 (10)	-0.0031 (9)	0.0037 (9)
N5	0.0579 (15)	0.0407 (14)	0.0426 (14)	0.0280 (12)	-0.0038 (12)	-0.0004 (11)
N6	0.0556 (15)	0.0610 (17)	0.0357 (14)	0.0349 (13)	-0.0019 (11)	-0.0035 (12)
01	0.0281 (9)	0.0364 (10)	0.0360 (10)	0.0002 (8)	0.0014 (8)	0.0029 (8)
O2	0.052 (4)	0.061 (4)	0.030 (2)	0.019 (3)	-0.002 (3)	0.011 (2)
O3	0.050(2)	0.0294 (17)	0.054 (3)	0.0158 (16)	-0.0026 (18)	0.0101 (17)
O4	0.0226 (15)	0.046 (2)	0.051 (3)	0.0101 (14)	0.0063 (14)	0.0032 (17)
O2′	0.051 (9)	0.055 (7)	0.027 (4)	0.014 (5)	0.002 (5)	-0.005 (4)
O3′	0.119 (10)	0.027 (4)	0.045 (4)	0.003 (5)	0.019 (5)	0.011 (3)
O4′	0.057 (5)	0.118 (8)	0.097 (7)	0.067 (5)	0.031 (5)	0.044 (7)
05	0.0441 (11)	0.0479 (12)	0.0365 (10)	0.0281 (9)	0.0057 (8)	0.0174 (9)
O6	0.0446 (11)	0.0376 (11)	0.0372 (11)	0.0065 (9)	0.0068 (9)	0.0023 (8)
O7	0.0288 (10)	0.0359 (11)	0.0651 (13)	0.0060 (8)	0.0016 (9)	0.0205 (10)
08	0.0536 (12)	0.0360 (11)	0.0327 (10)	0.0095 (9)	-0.0013 (9)	0.0029 (8)
09	0.0456 (11)	0.0347 (10)	0.0569 (13)	0.0171 (9)	0.0098 (10)	0.0124 (9)
O10	0.0591 (13)	0.0506 (13)	0.0394 (11)	0.0218 (11)	0.0020 (10)	0.0013 (10)
C1	0.0322 (13)	0.0281 (13)	0.0366 (14)	0.0092 (11)	-0.0034 (11)	0.0058 (11)
C2	0.0347 (14)	0.0276 (13)	0.0388 (15)	0.0058 (11)	-0.0059 (11)	0.0123 (11)
C3	0.0294 (13)	0.0456 (16)	0.0292 (13)	0.0164 (12)	-0.0010 (11)	0.0119 (12)
C4	0.0257 (12)	0.0395 (15)	0.0285 (13)	0.0136 (11)	-0.0036 (10)	0.0078 (11)
C5	0.0399 (15)	0.0398 (15)	0.0390 (15)	0.0169 (13)	-0.0044 (12)	0.0056 (12)
C6	0.0485 (18)	0.0426 (18)	0.067 (2)	0.0112 (15)	-0.0058 (16)	0.0220 (16)
C7	0.0457 (18)	0.081 (3)	0.053 (2)	0.0164 (18)	0.0062 (15)	0.0389 (19)
C8	0.0487 (18)	0.099 (3)	0.0331 (16)	0.0346 (19)	0.0138 (14)	0.0239 (17)
C9	0.0332 (14)	0.0583 (19)	0.0291 (14)	0.0214 (14)	0.0001 (11)	0.0048 (13)
S 1	0.0238 (3)	0.0256 (3)	0.0280 (3)	0.0054 (2)	0.0010 (2)	0.0029 (2)

Geometric parameters (Å, °)

Cd1-06	2.259 (2)	O5—H2W	0.8498	
Cd1—O5	2.2733 (18)	O6—H3W	0.8501	
Cd1—N1	2.282 (2)	O6—H4W	0.8500	
Cd1—O8	2.300 (2)	O7—H5W	0.8500	
Cd1—O7	2.3123 (19)	O7—H6W	0.8499	
Cd1—O1	2.3190 (19)	08—H7W	0.8500	
N1—C2	1.317 (3)	O8—H8W	0.8500	
N1—C1	1.358 (3)	O9—H9W	0.8464	
N2—C1	1.309 (3)	O9—H10W	0.8508	
N2—N3	1.356 (3)	O10—H11W	0.8499	
N3—C2	1.322 (3)	O10—H12W	0.8500	
N3—C3	1.462 (3)	C1—H1A	0.9300	
N4—N5	1.357 (3)	C2—H2A	0.9300	
N4—C4	1.368 (3)	С3—НЗА	0.9700	
N4—C3	1.440 (3)	C3—H3B	0.9700	
N5—N6	1.297 (3)	C4—C9	1.385 (4)	
N6—C9	1.378 (4)	C4—C5	1.390 (4)	

O1—S1	1.4865 (19)	C5—C6	1.369 (4)
O2—S1	1.425 (11)	С5—Н5А	0.9300
Q3—S1	1.510 (3)	C6—C7	1.405 (5)
Q4—S1	1.442 (3)	C6—H6A	0.9300
02′—\$1	1.45 (2)	C7—C8	1.362 (5)
03'-\$1	1 386 (7)	C7—H7A	0.9300
04′—S1	1 535 (8)	C8—C9	1 401 (4)
O5—H1W	0.8500	C8—H8A	0.9300
	0.0200		0.9500
06—Cd1—05	86.64 (7)	N3—C2—H2A	125.0
06-Cd1-N1	92 34 (8)	N4-C3-N3	110.7(2)
05-Cd1-N1	178 69 (7)	N4—C3—H3A	109.5
06-Cd1-08	171.79(7)	N3—C3—H3A	109.5
05-Cd1-08	86.05 (7)	N4-C3-H3B	109.5
N1 - Cd1 - O8	94 91 (8)	N3_C3_H3B	109.5
06 Cd1 07	90.40(8)	$H_{3A} = C_3 = H_{3B}$	109.5
05 Cd1 07	90.40 (8) 86.24 (7)	NA CA CQ	103.1
$N_1 Cd_1 O7$	00.24(7)	N4 - C4 - C5	103.3(2)
$\Omega_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	94.39(7)	$C_{1} = C_{1} = C_{2}$	133.3(2)
06 - Cd1 = 07	92.03(0)	$C_{9} - C_{4} - C_{5}$	123.0(3)
00 - C d1 - 01	92.85 (8)	C_{0}	113.7 (3)
N1 Cd1 O1	90.09 (7)	C_{0} C_{5} U_{5} A	122.2
NI = CdI = OI	89.14 (7) 82.45 (8)	C4 - C3 - H3A	122.2
	83.43 (8)	C_{5}	122.2 (3)
0/-Cal-0l	1/4.9/ (/)	C_{2} C_{6} H_{6} C_{7} C_{6} H_{6}	118.9
C2—NI—CI	103.1 (2)	$C = C = H \delta A$	118.9
C2—NI—Cdl	122.73 (17)	C8 - C7 - C6	121.7 (3)
CI—NI—Cdl	134.18 (17)	C8—C7—H7A	119.2
C1 - N2 - N3	102.4 (2)	C6—C7—H7A	119.2
C2—N3—N2	110.2 (2)	C7—C8—C9	117.1 (3)
C2—N3—C3	128.2 (2)	С7—С8—Н8А	121.5
N2—N3—C3	121.6 (2)	С9—С8—Н8А	121.5
N5—N4—C4	111.0 (2)	N6—C9—C4	108.7 (2)
N5—N4—C3	118.8 (2)	N6—C9—C8	130.9 (3)
C4—N4—C3	130.2 (2)	C4—C9—C8	120.4 (3)
N6—N5—N4	107.9 (2)	O3′—S1—O2	128.0 (6)
N5—N6—C9	109.0 (2)	O3′—S1—O4	72.3 (6)
S1—O1—Cd1	135.01 (11)	O2—S1—O4	112.9 (3)
Cd1—O5—H1W	118.7	O3'—S1—O2'	118.7 (9)
Cd1—O5—H2W	124.1	O2—S1—O2′	20.7 (6)
H1W—O5—H2W	108.5	O4—S1—O2′	131.2 (6)
Cd1—O6—H3W	116.9	O3′—S1—O1	113.4 (4)
Cd1—O6—H4W	109.1	O2—S1—O1	112.7 (5)
H3W—O6—H4W	111.7	O4—S1—O1	109.03 (15)
Cd1—O7—H5W	126.0	O2′—S1—O1	108.1 (8)
Cd1—O7—H6W	109.7	O3′—S1—O3	35.5 (6)
H5W—O7—H6W	112.3	O2—S1—O3	108.7 (4)
Cd1—O8—H7W	112.7	O4—S1—O3	107.5 (2)
Cd1—O8—H8W	111.9	O2′—S1—O3	91.6 (7)

H7W—O8—H8W	109.5	O1—S1—O3	105.62 (16)
H9W—O9—H10W	105.1	O3'—S1—O4'	108.7 (6)
H11W—O10—H12W	109.9	O2—S1—O4′	83.7 (4)
N2—C1—N1	114.3 (2)	O4—S1—O4′	37.4 (4)
N2—C1—H1A	122.9	O2'—S1—O4'	104.4 (6)
N1—C1—H1A	122.9	O1—S1—O4′	101.8 (4)
N1—C2—N3	110.0 (2)	O3—S1—O4′	142.0 (5)
N1—C2—H2A	125.0		
O6-Cd1-N1-C2	-52.6 (2)	N5—N4—C3—N3	-76.9 (3)
O5-Cd1-N1-C2	-14 (3)	C4—N4—C3—N3	104.2 (3)
O8—Cd1—N1—C2	123.5 (2)	C2—N3—C3—N4	99.9 (3)
O7—Cd1—N1—C2	-143.2 (2)	N2—N3—C3—N4	-78.5 (3)
O1-Cd1-N1-C2	40.2 (2)	N5—N4—C4—C9	-0.1 (3)
O6-Cd1-N1-C1	126.7 (2)	C3—N4—C4—C9	178.9 (2)
O5—Cd1—N1—C1	166 (3)	N5—N4—C4—C5	-177.7 (3)
O8—Cd1—N1—C1	-57.2 (2)	C3—N4—C4—C5	1.2 (5)
O7—Cd1—N1—C1	36.1 (2)	N4—C4—C5—C6	178.0 (3)
O1-Cd1-N1-C1	-140.6 (2)	C9—C4—C5—C6	0.7 (4)
C1—N2—N3—C2	0.9 (3)	C4—C5—C6—C7	0.2 (4)
C1—N2—N3—C3	179.5 (2)	C5—C6—C7—C8	-0.9 (5)
C4—N4—N5—N6	0.0 (3)	C6—C7—C8—C9	0.8 (5)
C3—N4—N5—N6	-179.1 (2)	N5—N6—C9—C4	-0.1 (3)
N4—N5—N6—C9	0.0 (3)	N5—N6—C9—C8	178.7 (3)
O6—Cd1—O1—S1	3.69 (17)	N4—C4—C9—N6	0.1 (3)
O5—Cd1—O1—S1	90.33 (17)	C5—C4—C9—N6	178.1 (2)
N1—Cd1—O1—S1	-88.62 (17)	N4—C4—C9—C8	-178.8 (2)
O8—Cd1—O1—S1	176.35 (17)	C5—C4—C9—C8	-0.8 (4)
O7—Cd1—O1—S1	133.4 (7)	C7—C8—C9—N6	-178.6 (3)
N3—N2—C1—N1	-0.7 (3)	C7—C8—C9—C4	0.1 (4)
C2—N1—C1—N2	0.3 (3)	Cd1—O1—S1—O3'	-118.8 (8)
Cd1—N1—C1—N2	-179.11 (17)	Cd1—O1—S1—O2	36.6 (4)
C1—N1—C2—N3	0.3 (3)	Cd1—O1—S1—O4	162.8 (3)
Cd1—N1—C2—N3	179.79 (15)	Cd1—O1—S1—O2'	15.0 (7)
N2—N3—C2—N1	-0.8 (3)	Cd1—O1—S1—O3	-82.0 (3)
C3—N3—C2—N1	-179.3 (2)	Cd1—O1—S1—O4'	124.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
O8—H8 <i>W</i> ····O9	0.85	1.89	2.732 (3)	170
O6—H4 <i>W</i> ···O2′	0.85	2.39	2.905 (19)	119
O5—H1 <i>W</i> ····O4 ⁱ	0.85	1.91	2.719 (4)	157
O5—H1 <i>W</i> ····O4′ ⁱ	0.85	1.84	2.672 (7)	166
O5—H2 <i>W</i> ····O1 ⁱⁱ	0.85	1.97	2.817 (3)	172
O5—H2 <i>W</i> ····S1 ⁱⁱ	0.85	2.89	3.616 (2)	145
O8—H7 <i>W</i> ····O3 ⁱⁱ	0.85	2.00	2.795 (4)	156
O8—H7 <i>W</i> ···O3′ ⁱⁱ	0.85	2.38	3.127 (15)	147

supporting information

O6—H3 <i>W</i> ···O10 ⁱⁱⁱ	0.85	1.83	2.680 (3)	178
O6—H4W····N2 ^{iv}	0.85	2.27	3.025 (3)	148
O7—H5 <i>W</i> ···O3 ^v	0.85	1.93	2.730 (4)	157
O7—H5 <i>W</i> ····S1 ^v	0.85	3.01	3.856 (2)	178
O9—H9 <i>W</i> ···O4 ^v	0.85	2.00	2.795 (6)	155
O9—H9 <i>W</i> ····S1 ^v	0.85	2.92	3.770 (2)	177
O7—H5 <i>W</i> ···O3′ ^v	0.85	1.91	2.720 (8)	159
O9—H9 <i>W</i> ···O3′ ^v	0.85	2.06	2.844 (14)	155
O7—H6 <i>W</i> ····O9 ^{vi}	0.85	1.97	2.791 (3)	161
O9—H10 <i>W</i> …O1 ^{vii}	0.85	2.06	2.906 (3)	175
O9— $H10W$ ···S1 ^{vii}	0.85	2.88	3.667 (2)	155
O9—H10 <i>W</i> ···O4′ ^{vii}	0.85	2.48	3.030 (11)	123
O10—H11W····N6 ^{viii}	0.85	2.01	2.861 (3)	177
O10—H12 <i>W</i> ···O2 ^{ix}	0.85	2.02	2.809 (8)	155
O10—H12 <i>W</i> ···S1 ^{ix}	0.85	2.95	3.796 (2)	173
O10—H12 <i>W</i> ····O4′ ^{ix}	0.85	2.19	2.944 (14)	148
O10—H12 <i>W</i> ···O2′ ^{ix}	0.85	2.51	3.280 (16)	151

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) –*x*, –*y*+2, –*z*+1; (iii) *x*-1, *y*+1, *z*; (iv) *x*, *y*+1, *z*; (v) *x*-1, *y*-1, *z*; (vi) –*x*-1, –*y*+1, –*z*+1; (vii) –*x*, –*y*+1, –*z*+1; (viii) –*x*+1, –*z*+1; (viii) –*x*+1; (viii) –*x*+1, –*z*+1; (viii) –*x*+1; (viii) –*x*+1;