

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{4-chloro-2-[(2-hydroxyethyl)iminomethyl]phenolato}nickel(II) monohydrate

Chen-Yi Wang,* Jin-Yun Ye, Xiang Wu and Zhi-Ping Han

Department of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China

Correspondence e-mail: chenyi_wang@163.com

Received 30 July 2011; accepted 5 August 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.076; data-to-parameter ratio = 16.3.

The title mononuclear nickel(II) complex, $[Ni(C_9H_9Cl-NO_2)_2]\cdot H_2O$, was obtained by the reaction of 5-chlorosalicylaldehyde, 2-aminoethanol and nickel nitrate in methanol. The Ni atom is six-coordinated by two phenolate O, two imine N and two hydroxy O atoms from two crystallographically different Schiff base ligands, forming an octahedral geometry. In the crystal, molecules are linked through intermolecular $O-H\cdots O$ and $O-H\cdots Cl$ hydrogen bonds.

Related literature

For our investigations of urease inhibitors, see: Wang (2009); Wang & Ye (2011). For similar nickel(II) complexes, see: Arici *et al.* (2005); Liu *et al.* (2006); Li & Wang (2007); Ali *et al.* (2006).

Experimental

Crystal data $[Ni(C_9H_9CINO_2)_2] \cdot H_2O$ $M_r = 473.97$ Orthorhombic, $P2_12_12_1$ a = 9.846 (1) Å b = 12.646 (2) Å c = 16.006 (2) Å

V = 1992.9 (4) Å³ Z = 4Mo K α radiation $\mu = 1.27 \text{ mm}^{-1}$ T = 298 K $0.30 \times 0.27 \times 0.27 \text{ mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.701, \ T_{\max} = 0.725$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H
$wR(F^2) = 0.076$	i
S = 1.04	1
4328 reflections	$\Delta \mu$
265 parameters	$\Delta \mu$
5 restraints	At

11691 measured reflections 4328 independent reflections 3147 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
1855 Friedel pairs
Flack parameter: 0.015 (15)

Table 1Selected bond lengths (Å).

Ni1-N2	1.996 (3)	Ni1-O1	2.015 (2)
Ni1-N1	2.000 (3)	Ni1-O2	2.131 (2)
Ni1-O3	2.011 (2)	Ni1-O4	2.160 (3)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O5-H5B\cdotsO1^{i}$	0.86(1)	2.00 (2)	2.846 (4)	167 (4)
O4−H4···O5 ⁱⁱ	0.85(1)	1.97 (2)	2.798 (4)	165 (4)
O2−H2···O3 ⁱⁱⁱ	0.85(1)	1.87 (2)	2.699 (3)	165 (4)
$O5-H5A\cdots Cl2$	0.84 (1)	2.73 (2)	3.542 (4)	163 (4)
Commentary and any (i)		- 1. (;;)	1 - (:::) - 1	

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y - 1, z; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Natural Science Foundation of Zhejiang Province (No. Y407318) and the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010 C32060).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2456).

References

- Ali, H. M., Puvaneswary, S. & Ng, S. W. (2006). *Acta Cryst.* E62, m2741–m2742. Artcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). *Acta Cryst.* E61, m919–m921.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Li, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749-m750.
- Liu, X.-H., Cai, J.-H., Jiang, Y.-M., Huang, Y.-H. & Yin, X.-J. (2006). Acta Cryst. E62, m2119-m2121.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.
- Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235-241.

supporting information

Acta Cryst. (2011). E67, m1229 [doi:10.1107/S1600536811031680]

Bis{4-chloro-2-[(2-hydroxyethyl)iminomethyl]phenolato}nickel(II) monohydrate

Chen-Yi Wang, Jin-Yun Ye, Xiang Wu and Zhi-Ping Han

S1. Comment

As part of our investigations into novel urease inhibitors (Wang & Ye, 2011; Wang, 2009), we have synthesized the title compound, a new mononuclear nickel(II) complex, Fig. 1. The compound contains a mononuclear nickel(II) complex molecule and a water molecule of crystallization. The Ni atom in the complex is six-coordinated by two phenolate O, two imine N, and two hydroxy O atoms from two Schiff base ligands, forming an octahedral geometry. The *trans* angles at the Ni atom are in the range 172.5 (1)–174.1 (1)°; the other angles are close to 90°, ranging from 80.1 (1) to 94.9 (1)°, indicating a slightly distorted octahedral coordination. The Ni–O and Ni–N bond lengths (Table 1) are typical and are comparable with those observed in other similar nickel(II) complexes (Arıcı *et al.*, 2005; Liu *et al.*, 2006; Li & Wang, 2007; Ali *et al.*, 2006).

In the crystal structure of the compound, molecules are linked through intermolecular O—H···O and O—H···Cl hydrogen bonds (Table 2), to form a three-dimensional network (Fig. 2).

S2. Experimental

5-Chlorosalicylaldehyde (1.0 mmol, 0.157 g), 2-aminoethanol (1.0 mmol, 0.061 g), and nickel nitrate hexahydrate (0.5 mmol, 0.146 g) were dissolved in MeOH (30 ml). The mixture was stirred at room temperature for 10 min to give a clear green solution. After keeping the solution in air for a week, green block-shaped crystals were formed at the bottom of the vessel.

S3. Refinement

The water and hydroxy H atoms were located from a difference Fourier map and refined isotropically, with O—H and H…H distances restrained to 0.85 (1) and 1.37 (2) Å, respectively. Their isotropic displacement parameters were fixed at 0.08 Å²). The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with U_{iso} (H) set at 1.2 U_{eq} (C and O).

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The molecular packing of the title compound, viewed along the *a* axis. Intermolecular hydrogen bonds are shown as dashed lines.

Bis{4-chloro-2-[(2-hydroxyethyl)iminomethyl]phenolato}nickel(II) monohydrate

Crystal data	
$[Ni(C_9H_9ClNO_2)_2]$ ·H ₂ O	$D_{\rm x} = 1.580 { m Mg m}^{-3}$
$M_r = 473.97$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Orthorhombic, $P2_12_12_1$	Cell parameters from 2792 reflections
a = 9.846 (1) Å	$\theta = 2.4 - 24.5^{\circ}$
b = 12.646 (2) Å	$\mu = 1.27 \; { m mm^{-1}}$
c = 16.006 (2) Å	T = 298 K
V = 1992.9 (4) Å ³	Block, green
Z = 4	$0.30 \times 0.27 \times 0.27$ mm
F(000) = 976	

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.701, T_{\max} = 0.725$ Refinement	11691 measured reflections 4328 independent reflections 3147 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 16$ $l = -20 \rightarrow 14$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of independent
$wR(F^2) = 0.076$	and constrained refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0206P)^2 + 0.1322P]$
4328 reflections	where $P = (F_o^2 + 2F_c^2)/3$
265 parameters	$(\Delta/\sigma)_{max} < 0.001$
5 restraints	$\Delta\rho_{max} = 0.35$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.39$ e Å ⁻³
direct methods	Absolute structure: Flack (1983), 1855 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.015 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	0.53364 (4)	0.24034 (3)	0.09823 (3)	0.03031 (12)
C11	-0.07950 (10)	-0.02347 (9)	0.24602 (7)	0.0569 (3)
Cl2	0.4617 (2)	0.80769 (9)	0.02875 (10)	0.1053 (6)
N1	0.4422 (3)	0.1170 (2)	0.04386 (17)	0.0293 (7)
N2	0.6463 (3)	0.3534 (2)	0.15079 (19)	0.0331 (7)
01	0.3912 (2)	0.2511 (2)	0.18821 (14)	0.0396 (6)
O2	0.6727 (2)	0.21542 (19)	-0.00183 (15)	0.0351 (6)
H2	0.7545 (17)	0.195 (3)	0.000 (3)	0.080*
03	0.4326 (2)	0.34479 (18)	0.02676 (15)	0.0353 (6)
O4	0.6595 (3)	0.1451 (2)	0.17926 (17)	0.0427 (7)
H4	0.634 (4)	0.0850 (18)	0.198 (3)	0.080*
05	0.5861 (4)	0.9351 (2)	0.2104 (2)	0.0666 (9)
H5A	0.575 (5)	0.905 (3)	0.1640 (12)	0.080*
H5B	0.601 (4)	0.886 (2)	0.2461 (17)	0.080*
C1	0.2544 (3)	0.1029 (3)	0.1421 (2)	0.0285 (8)

C2	0.2870 (3)	0.1881 (3)	0.1969 (2)	0.0312 (9)
C3	0.1979 (3)	0.2045 (3)	0.2648 (2)	0.0369 (9)
H3	0.2154	0.2602	0.3012	0.044*
C4	0.0863 (4)	0.1416 (3)	0.2794 (2)	0.0385 (9)
H4A	0.0302	0.1547	0.3250	0.046*
C5	0.0581 (3)	0.0591 (3)	0.2259 (2)	0.0377 (10)
C6	0.1391 (3)	0.0405 (3)	0.1584 (2)	0.0353 (9)
H6	0.1177	-0.0147	0.1223	0.042*
C7	0.3306 (3)	0.0749 (3)	0.0684 (2)	0.0317 (9)
H7	0.2953	0.0210	0.0354	0.038*
C8	0.5114 (3)	0.0774 (3)	-0.0304 (2)	0.0376 (9)
H8A	0.4449	0.0547	-0.0714	0.045*
H8B	0.5671	0.0170	-0.0157	0.045*
C9	0.6000 (4)	0.1642 (3)	-0.0674 (2)	0.0409 (10)
H9A	0.6634	0.1339	-0.1071	0.049*
H9B	0.5438	0.2152	-0.0966	0.049*
C10	0.5384 (4)	0.5021 (3)	0.0821 (2)	0.0361 (9)
C11	0.4462 (3)	0.4476 (3)	0.0297 (2)	0.0322 (9)
C12	0.3640 (4)	0.5102 (3)	-0.0228 (2)	0.0398 (10)
H12	0.3043	0.4765	-0.0592	0.048*
C13	0.3680 (4)	0.6183 (3)	-0.0226 (3)	0.0486 (11)
H13	0.3114	0.6569	-0.0578	0.058*
C14	0.4562 (6)	0.6693 (3)	0.0297 (3)	0.0550 (12)
C15	0.5406 (4)	0.6136 (3)	0.0800 (2)	0.0512 (11)
H15	0.6014	0.6498	0.1141	0.061*
C16	0.6327 (4)	0.4522 (3)	0.1399 (2)	0.0395 (10)
H16	0.6877	0.4966	0.1715	0.047*
C17	0.7482 (4)	0.3129 (3)	0.2095 (3)	0.0476 (12)
H17A	0.7642	0.3645	0.2532	0.057*
H17B	0.8331	0.3006	0.1804	0.057*
C18	0.6985 (4)	0.2117 (3)	0.2472 (3)	0.0497 (11)
H18A	0.7699	0.1785	0.2797	0.060*
H18B	0.6215	0.2250	0.2835	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02362 (18)	0.0263 (2)	0.0410 (3)	-0.0021 (2)	-0.0013 (2)	-0.0026 (2)
Cl1	0.0378 (6)	0.0680 (7)	0.0648 (8)	-0.0153 (5)	0.0081 (6)	0.0168 (6)
Cl2	0.1734 (16)	0.0291 (6)	0.1135 (12)	-0.0054 (9)	-0.0607 (13)	0.0109 (6)
N1	0.0269 (17)	0.0244 (15)	0.0367 (18)	0.0013 (13)	0.0017 (14)	-0.0003 (14)
N2	0.0255 (16)	0.0317 (18)	0.042 (2)	-0.0035 (14)	-0.0052 (14)	0.0019 (15)
O1	0.0363 (12)	0.0363 (14)	0.0463 (15)	-0.0070 (13)	0.0054 (11)	-0.0114 (15)
O2	0.0233 (11)	0.0422 (16)	0.0398 (15)	-0.0034 (11)	0.0018 (12)	-0.0067 (12)
O3	0.0255 (14)	0.0290 (13)	0.0513 (17)	-0.0018 (11)	-0.0073 (12)	-0.0043 (12)
O4	0.0506 (18)	0.0326 (15)	0.0449 (18)	-0.0009 (14)	-0.0107 (15)	0.0006 (14)
O5	0.079 (2)	0.0501 (19)	0.071 (2)	-0.0112 (18)	-0.004 (2)	0.0169 (16)
C1	0.0223 (17)	0.028 (2)	0.035 (2)	-0.0022 (15)	-0.0032 (16)	0.0050 (16)

supporting information

C2	0.0274 (19)	0.030 (2)	0.036 (2)	-0.0001 (16)	-0.0022 (17)	0.0039 (17)
C3	0.0323 (19)	0.038 (2)	0.041 (3)	0.0041 (16)	-0.0019 (18)	-0.0024 (18)
C4	0.0312 (19)	0.049 (2)	0.035 (2)	0.0061 (19)	0.0062 (17)	0.008 (2)
C5	0.024 (2)	0.042 (2)	0.047 (3)	-0.0032 (17)	-0.0015 (18)	0.0138 (19)
C6	0.0302 (19)	0.038 (2)	0.037 (2)	-0.0020 (17)	-0.0038 (18)	0.0033 (19)
C7	0.0293 (19)	0.0265 (19)	0.039 (2)	-0.0040 (16)	-0.0037 (17)	0.0002 (16)
C8	0.033 (2)	0.041 (2)	0.039 (2)	-0.0057 (17)	0.0062 (17)	-0.0090 (17)
C9	0.036 (2)	0.047 (2)	0.039 (2)	-0.0118 (18)	0.0011 (18)	-0.0060 (19)
C10	0.0386 (19)	0.0278 (18)	0.042 (2)	-0.0028 (18)	-0.003 (2)	0.0008 (16)
C11	0.026 (2)	0.032 (2)	0.039 (2)	-0.0033 (16)	0.0021 (17)	-0.0031 (17)
C12	0.036 (2)	0.037 (2)	0.046 (3)	-0.0033 (18)	-0.0059 (18)	0.003 (2)
C13	0.057 (3)	0.040 (2)	0.049 (3)	0.005 (2)	-0.010 (2)	0.010 (2)
C14	0.086 (3)	0.026 (2)	0.053 (3)	-0.003 (2)	-0.006 (3)	0.0055 (19)
C15	0.068 (3)	0.033 (2)	0.053 (3)	-0.009 (2)	-0.016 (3)	-0.0025 (19)
C16	0.034 (2)	0.031 (2)	0.054 (3)	-0.0088 (17)	-0.0082 (18)	-0.0051 (19)
C17	0.039 (2)	0.043 (2)	0.060 (3)	-0.006 (2)	-0.021 (2)	-0.005 (2)
C18	0.052 (2)	0.043 (3)	0.055 (3)	0.0039 (19)	-0.019 (2)	0.002 (2)

Geometric parameters (Å, °)

Ni1—N2	1.996 (3)	C4—C5	1.377 (5)	
Ni1—N1	2.000 (3)	C4—H4A	0.9300	
Ni1—O3	2.011 (2)	C5—C6	1.363 (5)	
Nil—O1	2.015 (2)	С6—Н6	0.9300	
Ni1-02	2.131 (2)	С7—Н7	0.9300	
Ni1-04	2.160 (3)	C8—C9	1.522 (5)	
Cl1—C5	1.741 (3)	C8—H8A	0.9700	
Cl2—C14	1.751 (4)	C8—H8B	0.9700	
N1—C7	1.283 (4)	С9—Н9А	0.9700	
N1—C8	1.458 (4)	С9—Н9В	0.9700	
N2-C16	1.269 (4)	C10—C15	1.410 (5)	
N2-C17	1.467 (4)	C10-C11	1.415 (5)	
O1—C2	1.307 (4)	C10-C16	1.454 (5)	
O2—C9	1.425 (4)	C11—C12	1.410 (5)	
O2—H2	0.847 (10)	C12—C13	1.368 (5)	
O3—C11	1.308 (4)	C12—H12	0.9300	
O4—C18	1.428 (4)	C13—C14	1.367 (5)	
O4—H4	0.852 (10)	C13—H13	0.9300	
O5—H5B	0.860 (10)	C14—C15	1.355 (5)	
O5—H5A	0.844 (10)	C15—H15	0.9300	
C1—C6	1.407 (4)	C16—H16	0.9300	
C1—C2	1.426 (5)	C17—C18	1.497 (5)	
C1—C7	1.442 (5)	C17—H17A	0.9700	
C2—C3	1.412 (5)	C17—H17B	0.9700	
C3—C4	1.377 (5)	C18—H18A	0.9700	
С3—Н3	0.9300	C18—H18B	0.9700	
N2—Ni1—N1	172.89 (12)	N1—C7—C1	126.4 (3)	

N2—Ni1—O3	92.54 (11)	N1—C7—H7	116.8
N1—Ni1—O3	92.40 (10)	С1—С7—Н7	116.8
N2—Ni1—O1	92.13 (11)	N1-C8-C9	109.7 (3)
N1—Ni1—O1	92.89 (10)	N1—C8—H8A	109.7
O3—Ni1—O1	91.03 (10)	C9—C8—H8A	109.7
N2—Ni1—O2	93.76 (11)	N1—C8—H8B	109.7
N1—Ni1—O2	81.20 (10)	C9—C8—H8B	109.7
O3—Ni1—O2	89.28 (10)	H8A—C8—H8B	108.2
O1—Ni1—O2	174.08 (10)	O2—C9—C8	109.2 (3)
N2—Ni1—O4	80.06 (11)	O2—C9—H9A	109.8
N1—Ni1—O4	94.87 (11)	С8—С9—Н9А	109.8
O3—Ni1—O4	172.50 (10)	O2—C9—H9B	109.8
O1—Ni1—O4	90.43 (10)	С8—С9—Н9В	109.8
O2—Ni1—O4	90.02 (10)	H9A—C9—H9B	108.3
C7—N1—C8	120.4 (3)	C15—C10—C11	118.9 (3)
C7—N1—Ni1	125.2 (3)	C15—C10—C16	116.0 (3)
C8—N1—Ni1	114.3 (2)	C11—C10—C16	125.1 (3)
C16—N2—C17	120.3 (3)	O3—C11—C12	118.5 (3)
C16—N2—Ni1	126.0 (3)	O3—C11—C10	124.8 (3)
C17—N2—Ni1	113.6 (2)	C12—C11—C10	116.7 (3)
C2—O1—Ni1	125.6 (2)	C13—C12—C11	122.9 (4)
C9—O2—Ni1	107.31 (19)	C13—C12—H12	118.6
С9—О2—Н2	111 (3)	C11—C12—H12	118.6
Ni1—O2—H2	129 (3)	C14—C13—C12	119.4 (4)
C11—O3—Ni1	125.6 (2)	C14—C13—H13	120.3
C18—O4—Ni1	106.4 (2)	C12—C13—H13	120.3
C18—O4—H4	110 (3)	C15—C14—C13	120.6 (4)
Nil—O4—H4	123 (3)	C15—C14—Cl2	120.4 (4)
H5B—O5—H5A	106 (2)	C13—C14—Cl2	119.0 (4)
C6—C1—C2	119.4 (3)	C14—C15—C10	121.6 (4)
C6—C1—C7	115.7 (3)	C14—C15—H15	119.2
C2—C1—C7	124.9 (3)	C10—C15—H15	119.2
O1—C2—C3	118.7 (3)	N2-C16-C10	125.6 (3)
O1—C2—C1	124.9 (3)	N2—C16—H16	117.2
C3—C2—C1	116.4 (3)	C10—C16—H16	117.2
C4—C3—C2	122.8 (3)	N2—C17—C18	109.5 (3)
C4—C3—H3	118.6	N2—C17—H17A	109.8
С2—С3—Н3	118.6	C18—C17—H17A	109.8
C3—C4—C5	119.5 (4)	N2—C17—H17B	109.8
C3—C4—H4A	120.2	C18—C17—H17B	109.8
C5—C4—H4A	120.2	H17A—C17—H17B	108.2
C6—C5—C4	120.4 (3)	O4—C18—C17	106.6 (3)
C6—C5—Cl1	119.9 (3)	O4—C18—H18A	110.4
C4—C5—C11	119.8 (3)	C17—C18—H18A	110.4
C5—C6—C1	121.5 (3)	O4—C18—H18B	110.4
С5—С6—Н6	119.3	C17—C18—H18B	110.4
C1—C6—H6	119.3	H18A—C18—H18B	108.6

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
O5—H5 <i>B</i> ···O1 ⁱ	0.86(1)	2.00 (2)	2.846 (4)	167 (4)	
O4—H4···O5 ⁱⁱ	0.85 (1)	1.97 (2)	2.798 (4)	165 (4)	
O2—H2···O3 ⁱⁱⁱ	0.85 (1)	1.87 (2)	2.699 (3)	165 (4)	
O5—H5 <i>A</i> …Cl2	0.84 (1)	2.73 (2)	3.542 (4)	163 (4)	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) *x*, *y*-1, *z*; (iii) *x*+1/2, -*y*+1/2, -*z*.