

V = 3111.6 (6) Å³

Mo $K\alpha$ radiation

 $0.17 \times 0.15 \times 0.15 \text{ mm}$

7556 measured reflections

2744 independent reflections

2455 reflections with $I > 2\sigma(I)$

 $\mu = 0.76 \text{ mm}^{-3}$

T = 296 K

 $R_{\rm int} = 0.026$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[aquabis(N⁶-benzyladenine- κN^3)copper(II)]- μ -benzene-1,4dicarboxylato- $\kappa^2 O^1: O^4$]

Wen-Bo Li

Department of Chemistry, Dezhou University, Dezhou, Shandong 253023, People's Republic of China Correspondence e-mail: dzwbli@163.com

Received 16 July 2011; accepted 8 August 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.069; data-to-parameter ratio = 12.6.

In the title compound, $[Cu(C_8H_4O_4)(C_{12}H_{11}N_5)_2(H_2O)]_n$, the Cu^{II} ion is five-coordinated by two carboxylate O atoms from two symmetry-related benzene-1,4-dicarboxylate ligands, two N atoms from two symmetry-related N^6 -benzyladenine ligands and one water O atom in a square-pyramidal environment. The Cu^{II} and water O atoms lie on a twofold rotation axis, and the benzene-1,4-dicarboxylate ligand lies on an inversion center. The water O atom occupies the apical position and the basal plane is occupied by two O atoms and two N atoms. Each benzene-1,4-dicarboxylate anion acts as a bis-monodentate ligand that binds two Cu^{II} cations, forming an infinite chain extending parallel to [001]. The N^6 -benzyladenine ligands are attached on both sides of the chain. Neighboring chains are further interconnected into the resulting three-dimensional supramolecular architecture via O-H···O, N-H···O and $N-H \cdots N$ hydrogen bonds.

Related literature

For examples of the use of biomolecules in metal-organic frameworks, see: An et al. (2009); Lee et al. (2008); Xie et al. (2007).

Experimental

Crystal data

 $[Cu(C_8H_4O_4)(C_{12}H_{11}N_5)_2(H_2O)]$ $M_{-} = 696.18$ Monoclinic, C2/ca = 28.171 (2) Å b = 5.554 (1) Åc = 22.102 (1) Å $\beta = 115.868 \ (1)^{\circ}$

Data collection

```
Bruker APEXII CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2001)
```

 $T_{\min} = 0.884, T_{\max} = 0.897$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	218 parameters
$wR(F^2) = 0.069$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
2744 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D1W-H1W\cdots O2^{i}$ $N6-H6\cdots O2^{ii}$ $N8-H8\cdots N7^{iii}$	0.86 0.85 0.86	1.80 2.07 2.20	2.6388 (17) 2.855 (2) 3.018 (3)	164 154 160
			1	4

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, y + 1, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported financially by the Research Project of Dezhou University (grant No. 07012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2102).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- An, J. H., Geib, S. J. & Rosi, N. L. (2009). J. Am. Chem. Soc. 131, 8376-8377.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Lee, H. Y., Kampf, J. W., Park, K. S. & Marsh, E. N. G. (2008). Cryst. Growth Des. 8, 296–303.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xie, Y., Yu, Z. P., Huang, X. Y., Wang, Z. Y., Niu, L. W., Teng, M. & Li, J. (2007). Chem. Eur. J. 13, 9399–9405.

supporting information

Acta Cryst. (2011). E67, m1249-m1250 [doi:10.1107/S1600536811032168]

catena-Poly[[aquabis(N^6 -benzyladenine- κN^3)copper(II)]- μ -benzene-1,4-dicarboxylato- $\kappa^2 O^1: O^4$]

Wen-Bo Li

S1. Comment

Recently, biomolecules such as 2-amino-3-(4-aminophenyl)-propionic acid (Xie *et al.*, 2007), glycine and alanine(Lee *et al.*, 2008) and adenine (An *et al.*, 2009) were used to construct metal-organic frameworks (MOFs) due potential biomedical usefulness. During the synthesis of bio-MOFs using a biomolecule and Cu^{II} ion, the title compound (I) was obtained, and here its crystal structure is reported.

The asymmetric unit of (I) is composed of one Cu^{II} cation, one N^6 -benzyladenine molecule, half of benzene-1,4-dicarboxylate anion and one water molecule. As shown in Figure 1, the Cu^{II} ion is five-coordinated by two carboxylate O atoms from two different benzene-1,4-dicarboxylate ligands, two N atoms from two different N^6 -benzyladenine ligands and one water O atom in a square-pyramidal coordination environment. The Cu^{II} and water O atoms lie on a twofold rotation axis, and the benzene-1,4-dicarboxylate moiety lies on inversion center. The water O atom occupies the apical position and the basal plane is occupied by two O atoms and two N atoms. Each benzene-1,4- dicarboxylate anion acts as a bis-monodentate ligand that binds two Cu^{II} cations, forming an infinite chain extending parallel to [001] (Fig. 2). The N^6 -benzyladenine ligands are attached on both sides of the chain. The neighbouring chains are connected into two dimensional layers *via* O—H···O and N—H···O hydrogen bonds, and the adjacent layers are further packed *via* N—H···N hydrogen bonds into the three dimensional supramolecular architecture (Table 1, Fig. 3).

S2. Experimental

A mixture of benzene-1,4-dicarboxylate acid (0.017 g, 0.1 mmol), N^6 -benzyladenine (0.023 g, 0.1 mmol), and Cu(NO₃)₂,3H₂O (0.024 g, 0.1 mmol) in H₂O (10.0 ml) was placed in a 16 ml Teflon-lined stainless steel vessel and heated to 120 °C for 72 h, then cooled to room temperature at a rate of -5 °C/h. Afer filtration, dark blue block crystals are obtained.

S3. Refinement

All H atoms bonded to C and N atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms $[U_{iso}(H) = 1.2U_{eq}(C)]$. The H atoms attached to O atoms of the water were located from a difference Fourier map with the O—H distances being fixed at 0.85 Å and allowed to ride on their parent O atoms in the final cycles of refinement, with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

Anisotropic displacement ellipsoid plot of (I) at the 50% probability level. H atoms are represented by circles of arbitrary size. Symmetry code: (i)-x + 1, -y, -z + 1; (ii)-x + 1, y, -z + 1/2.

Figure 2

The one-dimensional chain structure of (I). Non-associative H atoms are omitted.

Figure 3

The packing diagram of (I) showing hydrogen bonding interactions (light blue dashed lines).

catena-Poly[[aquabis(N^6 -benzyladenine- κN^3)copper(II)]- μ -benzene-1,4-dicarboxylato- $\kappa^2 O^1$: O^4]

Crystal data

 $[Cu(C_8H_4O_4)(C_{12}H_{11}N_5)_2(H_2O)]$ $M_r = 696.18$ Monoclinic, C2/c a = 28.171 (2) Å b = 5.554 (1) Å c = 22.102 (1) Å $\beta = 115.868$ (1)° V = 3111.6 (6) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.884$, $T_{\max} = 0.897$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.069$ S = 1.032744 reflections 218 parameters 0 restraints F(000) = 1436 $D_x = 1.486 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3162 reflections $\theta = 3.0-27.3^{\circ}$ $\mu = 0.76 \text{ mm}^{-1}$ T = 296 KBlock, blue $0.17 \times 0.15 \times 0.15 \text{ mm}$

7556 measured reflections 2744 independent reflections 2455 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -30 \rightarrow 33$ $k = -6 \rightarrow 6$ $l = -25 \rightarrow 26$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0245P)^{2} + 4.4543P] \qquad \Delta \rho_{\max} = 0.29 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{\min} = -0.31 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{\max} = 0.012$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equ	ivalent isotropic displacement parameters (Ų,)
--	---	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.21656 (11)	-0.0279 (5)	0.16879 (14)	0.0529 (7)
H1	0.2405	0.0865	0.1682	0.063*
C2	0.19178 (13)	0.0055 (6)	0.21029 (16)	0.0680 (9)
H2	0.1992	0.1421	0.2372	0.082*
C3	0.15662 (13)	-0.1605 (7)	0.21196 (17)	0.0706 (9)
Н3	0.1402	-0.1381	0.2400	0.085*
C4	0.14592 (12)	-0.3596 (7)	0.17203 (17)	0.0688 (9)
H4	0.1221	-0.4737	0.1731	0.083*
C5	0.17008 (10)	-0.3938 (5)	0.12996 (14)	0.0533 (7)
Н5	0.1620	-0.5292	0.1025	0.064*
C6	0.20617 (8)	-0.2284 (4)	0.12849 (11)	0.0375 (5)
C7	0.23445 (9)	-0.2828 (4)	0.08544 (12)	0.0398 (6)
H7A	0.2598	-0.4101	0.1070	0.048*
H7B	0.2088	-0.3439	0.0424	0.048*
C8	0.31312 (8)	-0.0374 (4)	0.10970 (10)	0.0305 (5)
C9	0.34020 (8)	0.1452 (4)	0.09326 (10)	0.0302 (5)
C10	0.36693 (9)	0.4238 (5)	0.05042 (11)	0.0424 (6)
H10	0.3680	0.5461	0.0223	0.051*
C11	0.39354 (8)	0.1695 (4)	0.13382 (9)	0.0264 (5)
C12	0.39179 (8)	-0.1299 (4)	0.20000 (10)	0.0301 (5)
H12	0.4091	-0.2269	0.2376	0.036*
C13	0.49770 (7)	-0.0984 (4)	0.37039 (9)	0.0243 (4)
C14	0.49924 (8)	-0.0458 (4)	0.43782 (9)	0.0249 (4)
C15	0.48078 (9)	0.1719 (4)	0.44969 (10)	0.0321 (5)
H15	0.4679	0.2879	0.4160	0.039*
C16	0.48156 (9)	0.2161 (4)	0.51161 (10)	0.0331 (5)
H16	0.4690	0.3622	0.5194	0.040*
Cu1	0.5000	0.07414 (6)	0.2500	0.01886 (11)
N5	0.42174 (6)	0.0364 (3)	0.18941 (8)	0.0254 (4)
N6	0.41010 (7)	0.3488 (3)	0.10540 (8)	0.0344 (4)
H6	0.4407	0.4096	0.1204	0.041*
N7	0.32360 (7)	0.3089 (4)	0.04042 (9)	0.0402 (5)

N8	0.26185 (7)	-0.0814 (4)	0.07311 (9)	0.0393 (5)	
H8	0.2441	0.0147	0.0405	0.047*	
N9	0.34090 (7)	-0.1755 (3)	0.16430 (9)	0.0326 (4)	
01	0.48680 (5)	0.0769 (3)	0.32972 (6)	0.0249 (3)	
O2	0.50664 (7)	-0.3073 (3)	0.35810(7)	0.0418 (4)	
O1W	0.5000	0.4643 (4)	0.2500	0.0417 (6)	
H1W	0.4975	0.5551	0.2799	0.050*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0511 (16)	0.0493 (17)	0.0595 (17)	-0.0067 (13)	0.0253 (14)	-0.0023 (14)
C2	0.079 (2)	0.067 (2)	0.0635 (19)	0.0095 (18)	0.0359 (17)	-0.0076 (16)
C3	0.071 (2)	0.089 (3)	0.069 (2)	0.0161 (19)	0.0456 (18)	0.0113 (19)
C4	0.0547 (18)	0.085 (2)	0.080(2)	-0.0095 (17)	0.0410 (17)	0.0169 (19)
C5	0.0473 (15)	0.0555 (18)	0.0581 (17)	-0.0127 (13)	0.0238 (13)	0.0005 (14)
C6	0.0275 (11)	0.0427 (14)	0.0368 (12)	-0.0031 (10)	0.0090 (10)	0.0071 (11)
C7	0.0284 (11)	0.0450 (15)	0.0417 (13)	-0.0087 (11)	0.0113 (10)	-0.0022 (11)
C8	0.0247 (10)	0.0400 (13)	0.0259 (11)	-0.0013 (10)	0.0102 (9)	0.0007 (10)
C9	0.0254 (11)	0.0389 (13)	0.0231 (10)	-0.0004 (9)	0.0077 (9)	0.0044 (9)
C10	0.0345 (12)	0.0519 (15)	0.0331 (12)	-0.0023 (12)	0.0077 (10)	0.0198 (12)
C11	0.0234 (10)	0.0356 (12)	0.0189 (10)	-0.0008 (9)	0.0081 (8)	0.0010 (9)
C12	0.0277 (11)	0.0390 (13)	0.0227 (10)	0.0022 (9)	0.0100 (9)	0.0069 (9)
C13	0.0257 (10)	0.0324 (12)	0.0162 (9)	0.0004 (9)	0.0105 (8)	-0.0013 (9)
C14	0.0355 (11)	0.0261 (11)	0.0168 (9)	0.0004 (9)	0.0148 (8)	-0.0002 (8)
C15	0.0530 (14)	0.0271 (11)	0.0196 (10)	0.0082 (10)	0.0190 (10)	0.0065 (9)
C16	0.0564 (14)	0.0246 (11)	0.0254 (11)	0.0086 (10)	0.0244 (10)	0.0015 (9)
Cu1	0.02049 (18)	0.02546 (19)	0.01114 (16)	0.000	0.00736 (13)	0.000
N5	0.0219 (8)	0.0360 (10)	0.0180 (8)	-0.0006 (8)	0.0085 (7)	0.0026 (7)
N6	0.0238 (9)	0.0454 (12)	0.0270 (9)	-0.0074 (8)	0.0047 (8)	0.0096 (8)
N7	0.0292 (10)	0.0512 (13)	0.0321 (10)	-0.0013 (9)	0.0058 (8)	0.0160 (9)
N8	0.0237 (9)	0.0524 (13)	0.0346 (10)	-0.0063 (9)	0.0060 (8)	0.0112 (10)
N9	0.0255 (9)	0.0416 (11)	0.0288 (10)	-0.0026 (8)	0.0100 (8)	0.0075 (8)
01	0.0310 (7)	0.0314 (8)	0.0161 (6)	0.0058 (6)	0.0138 (6)	0.0044 (6)
O2	0.0755 (12)	0.0309 (9)	0.0264 (8)	0.0113 (8)	0.0291 (8)	-0.0011 (7)
O1W	0.0846 (18)	0.0243 (12)	0.0234 (11)	0.000	0.0305 (12)	0.000

Geometric parameters (Å, °)

C1—C6	1.375 (4)	C11—N5	1.355 (2)	
C1—C2	1.386 (4)	C11—N6	1.364 (3)	
С1—Н1	0.9300	C12—N9	1.325 (3)	
C2—C3	1.366 (4)	C12—N5	1.339 (3)	
С2—Н2	0.9300	C12—H12	0.9300	
C3—C4	1.364 (5)	C13—O2	1.242 (2)	
С3—Н3	0.9300	C13—O1	1.269 (2)	
C4—C5	1.384 (4)	C13—C14	1.501 (2)	
C4—H4	0.9300	C14—C16 ⁱ	1.382 (3)	

C5—C6	1.381 (3)	C14—C15	1.386 (3)
С5—Н5	0.9300	C15—C16	1.381 (3)
C6—C7	1.514 (3)	С15—Н15	0.9300
C7—N8	1.451 (3)	C16—C14 ⁱ	1.382 (3)
С7—Н7А	0.9700	С16—Н16	0.9300
C7—H7B	0 9700		1 9531 (12)
C8—N8	1 334 (3)	Cu1—01	1.9531 (12)
C8—N9	1 354 (3)	$Cu1 - N5^{ii}$	2 0301 (16)
	1 409 (3)	Cu1—N5	2.0301(10) 2.0301(15)
C9-C11	1.109(3) 1.380(3)	Cu1—O1W	2.0501(15) 2.167(2)
C9—N7	1 390 (3)	N6—H6	0.8474
C10 N7	1 308 (3)	N8—H8	0.8600
C10 N6	1.356 (3)	O1W H1W	0.8503
C10 H10	0.0300		0.8393
0.10-1110	0.9300		
C_{1}	120.7 (3)	NO C12 H12	115 5
$C_0 = C_1 = C_2$	120.7 (3)	N5 C12 U12	115.5
$C_0 - C_1 - H_1$	119.0	$N_3 = C_{12} = H_{12}$	113.3
$C_2 = C_1 = H_1$	119.0	02 - C13 - C14	124.83(17)
$C_3 = C_2 = C_1$	120.3 (3)	02C13C14	116.50 (18)
$C_3 = C_2 = H_2$	119.7	01 - 013 - 014	110.39 (18)
C1 = C2 = H2	119.7		119.42 (17)
$C_2 = C_3 = C_4$	119.2 (3)	C16 - C14 - C13	120.10 (18)
C2—C3—H3	120.4	C15—C14—C13	120.47 (18)
C4—C3—H3	120.4	C16—C15—C14	119.85 (19)
C3—C4—C5	120.8 (3)	С16—С15—Н15	120.1
C3—C4—H4	119.6	C14—C15—H15	120.1
C5—C4—H4	119.6	C15—C16—C14 ⁱ	120.73 (19)
C6—C5—C4	120.5 (3)	C15—C16—H16	119.6
С6—С5—Н5	119.8	C14 ⁱ —C16—H16	119.6
C4—C5—H5	119.8	$O1^{ii}$ —Cu1—O1	179.10 (9)
C1—C6—C5	118.3 (2)	O1 ⁱⁱ —Cu1—N5 ⁱⁱ	90.94 (6)
C1—C6—C7	123.2 (2)	O1—Cu1—N5 ⁱⁱ	89.15 (6)
C5—C6—C7	118.5 (2)	O1 ⁱⁱ —Cu1—N5	89.15 (6)
N8—C7—C6	115.7 (2)	O1—Cu1—N5	90.94 (6)
N8—C7—H7A	108.4	N5 ⁱⁱ —Cu1—N5	168.16 (10)
С6—С7—Н7А	108.4	O1 ⁱⁱ —Cu1—O1W	89.55 (4)
N8—C7—H7B	108.4	O1—Cu1—O1W	89.55 (4)
С6—С7—Н7В	108.4	N5 ⁱⁱ —Cu1—O1W	95.92 (5)
H7A—C7—H7B	107.4	N5—Cu1—O1W	95.92 (5)
N8—C8—N9	119.24 (19)	C12—N5—C11	111.72 (16)
N8—C8—C9	122.70 (19)	C12—N5—Cu1	122.80 (13)
N9—C8—C9	118.05 (18)	C11—N5—Cu1	125.48 (13)
C11—C9—N7	110.70 (18)	C10—N6—C11	106.49 (17)
C11—C9—C8	117.49 (19)	C10—N6—H6	126.1
N7—C9—C8	131.77 (19)	C11—N6—H6	127.2
N7—C10—N6	114.0 (2)	C10—N7—C9	103.31 (17)
N7—C10—H10	123.0	C8—N8—C7	123.45 (19)
N6—C10—H10	123.0	C8—N8—H8	118.3

N5—C11—N6	129.28 (18)	C7—N8—H8	118.3
N5-C11-C9	125.26 (19)	C12—N9—C8	118.51 (18)
N6-C11-C9	105.46 (17)	C13—O1—Cu1	123.41 (12)
N9—C12—N5	128.93 (19)	Cu1—O1W—H1W	126.0
C6—C1—C2—C3	0.1 (5)	N6-C11-N5-Cu1	1.5 (3)
C1—C2—C3—C4	-0.3 (5)	C9-C11-N5-Cu1	-179.13 (16)
C2—C3—C4—C5	-0.3 (5)	O1 ⁱⁱ —Cu1—N5—C12	131.20 (16)
C3—C4—C5—C6	1.1 (5)	O1—Cu1—N5—C12	-49.70 (16)
C2-C1-C6-C5	0.7 (4)	N5 ⁱⁱ —Cu1—N5—C12	40.65 (16)
C2-C1-C6-C7	-176.0 (3)	O1W—Cu1—N5—C12	-139.35 (16)
C4—C5—C6—C1	-1.2 (4)	O1 ⁱⁱ —Cu1—N5—C11	-47.81 (16)
C4—C5—C6—C7	175.6 (2)	O1—Cu1—N5—C11	131.29 (16)
C1—C6—C7—N8	-17.5 (3)	N5 ⁱⁱ —Cu1—N5—C11	-138.35 (16)
C5—C6—C7—N8	165.8 (2)	O1W—Cu1—N5—C11	41.65 (16)
N8—C8—C9—C11	-178.2 (2)	N7-C10-N6-C11	0.0 (3)
N9—C8—C9—C11	0.5 (3)	N5-C11-N6-C10	179.7 (2)
N8—C8—C9—N7	-0.9 (4)	C9-C11-N6-C10	0.3 (2)
N9—C8—C9—N7	177.8 (2)	N6—C10—N7—C9	-0.2 (3)
N7—C9—C11—N5	-179.9 (2)	C11—C9—N7—C10	0.4 (3)
C8—C9—C11—N5	-2.1 (3)	C8—C9—N7—C10	-177.0 (2)
N7—C9—C11—N6	-0.4 (2)	N9—C8—N8—C7	-4.9 (3)
C8—C9—C11—N6	177.40 (19)	C9—C8—N8—C7	173.9 (2)
O2-C13-C14-C16 ⁱ	10.3 (3)	C6—C7—N8—C8	95.4 (3)
O1-C13-C14-C16 ⁱ	-170.24 (19)	N5-C12-N9-C8	-1.4 (3)
O2—C13—C14—C15	-168.8 (2)	N8—C8—N9—C12	179.8 (2)
O1—C13—C14—C15	10.7 (3)	C9—C8—N9—C12	1.0 (3)
C16 ⁱ —C14—C15—C16	-0.2 (4)	O2-C13-O1-Cu1	-16.8 (3)
C13—C14—C15—C16	178.84 (19)	C14—C13—O1—Cu1	163.75 (12)
C14-C15-C16-C14 ⁱ	0.2 (4)	O1 ⁱⁱ —Cu1—O1—C13	-157.61 (15)
N9-C12-N5-C11	0.0 (3)	N5 ⁱⁱ —Cu1—O1—C13	-61.68 (15)
N9—C12—N5—Cu1	-179.12 (17)	N5—Cu1—O1—C13	106.48 (15)
N6-C11-N5-C12	-177.6 (2)	O1W—Cu1—O1—C13	-157.61 (14)
C9-C11-N5-C12	1.8 (3)		

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, *y*, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
01 <i>W</i> —H1 <i>W</i> ····O2 ⁱⁱⁱ	0.86	1.80	2.6388 (17)	164
N6—H6···O2 ^{iv}	0.85	2.07	2.855 (2)	154
N8—H8…N7 ^v	0.86	2.20	3.018 (3)	160

Symmetry codes: (iii) x, y+1, z; (iv) -x+1, y+1, -z+1/2; (v) -x+1/2, -y+1/2, -z.