

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-acetamidobenzoate

Sampath Natarajan* and Rita Mathews

Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143 701, Republic of Korea Correspondence e-mail: sampath@konkuk.ac.kr, sams76@gmail.com

Received 7 August 2011; accepted 11 August 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.123; data-to-parameter ratio = 14.5.

The title compound, $C_{12}H_{14}ClN_4^+C_9H_8NO_3^-$, is a salt with a 1:1 ratio of cation and anion components interacting with each other forming an $R_2^2(8)$ ring motif. The crystal structure is stabilized by hydrogen bonds $(N-H\cdots O)$ involving two different eight-membered rings. One of them is formed between the pyrimidine ring (donor) and the carboxylate group (acceptor) from the benzoate, whereas the other ring is formed by $N-H\cdots O$ interactions, which help to form a dimer between two symmetry-related salts in the unit cell. In addition, an intramolecular $C-H\cdots N$ and intermolecular $C-H\cdots Cl$ interactions help to control the molecules in the unit-cell packing.

Related literature

For related literature on aminopyrimidine–carboxylate interactions, see: Baker & Santi (1965); Chinnakali *et al.* (1999); Desiraju (1989); Hunt *et al.* (1980); Lynch & Jones (2004); Stanley *et al.* (2005). For literature on aminopyrimidine and benzoic acid adducts, see: Thanigaimani *et al.* (2006, 2007); Balasubramani *et al.* (2005, 2006). For puckering parameters, see: Cremer & Pople, (1975); Nardelli (1995).

V = 4342.5 (13) Å³

Mo Ka radiation

 $0.4 \times 0.35 \times 0.32 \text{ mm}$

3937 independent reflections

3079 reflections with $I > 2\sigma(I)$

 $\mu = 0.21 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.019$

Z = 8

Experimental

Crystal data

N

a

h

$C_{12}H_{14}ClN_4^+ \cdot C_0H_8NO_3^-$	
$A_r = 427.89$	
Aonoclinic, $C2/c$	
= 25.226 (4) Å	
= 9.0666 (16) Å	
= 20.688 (4) Å	
$B = 113.400 (3)^{\circ}$	

Data collection

Bruker SMART APEX CCD area-detector diffractometer 14400 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 272 parameters $wR(F^2) = 0.123$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ 3937 reflections $\Delta \rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
N5-H5···O1	0.86	1.90	2.614 (2)	140
$C9 - H9B \cdot \cdot \cdot N5$	0.97	2.87	3.683 (3)	142
$N1 - H1 \cdot \cdot \cdot O1^i$	0.86	1.86	2.715 (2)	177
$N3-H3B\cdots O2^{i}$	0.86	1.96	2.802 (3)	165
$N3-H3A\cdots O2^{ii}$	0.86	2.16	2.897 (2)	143
N4-H4A···O3 ⁱⁱⁱ	0.86	2.01	2.859 (2)	168
$C10-H10B\cdots Cl1^{iv}$	0.96	2.95	3.864 (3)	160
a	1	. 1	<i>(</i>) 1	1 1 (

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x, -y + 1, -z + 1; (iv) $x, -y, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5209).

References

- Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.
- Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, 02907–02909.
- Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). *Acta Cryst.* E61, 04203–04205.
- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Desiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.
- Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210.

Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, 02976–02978.

Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, 04212.

supporting information

Acta Cryst. (2011). E67, o2357-o2358 [doi:10.1107/S1600536811032570]

2,4-Diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-acetamidobenzoate

Sampath Natarajan and Rita Mathews

S1. Comment

Aminopyrimidine-Carboxylate interactions are important since they are involved in protein-nucleic acids recognition and protein-drug binding. Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). In general, aminopyrimidines posses self complementary hydrogen-bonded motifs forming a base pair which in itself is a unique property. The adducts of carboxylic acid with 2-aminopyrimidine system form a graph-set motif $R_2^2(8)$ (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine-carboxylic acid/carboxylates systems. The crystal structures of many aminopyrimidine carboxylates (Stanley *et al.*, 2005) and co-crystal structures (Chinnakali *et al.*, 1999) have been reported. Many structures of aminopyrimidine and benzoic acid adducts have been reported. Few of them are 2-amino-4,6-dimethoxy pyrimidine: 4-aminobenzoic acid (Thanigaimani *et al.*, 2006), 2-amino-4,6-dimethoxy pyrimidine: description (Balasubramani *et al.*, 2005) and 2-amino-4,6-dimethylpyrimidine: 4-hydroxybenzoic acid (Balasubramani *et al.*, 2006). All these reported structures also have common features of heterosynthone formation. In the present study we report a salt (1:1) namely, 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium-2-(acetylamino)benzoate and its interactions are studied extensively.

The asymmetric unit of crystal contains a single molecule of each component of salt (Fig. 1) and does not have any direct interactions each other. The interactions were found between the symmetry related molecules of aminopyrimidin-1ium and benzoate salt *via* hydrogen bonds N1—H1···O1 and N3—H3B···O2 (-x + 1/2, -y + 1/2, -z + 1) (Fig. 2). Here the pyrimidine acts as a donor which donates two H atoms and carboxylate O atoms as acceptors. In addition dimeric interactions by the atoms O2 and N3 form an eight membered ring through the Hydrogen bonds N3—H3A···O2 (x - 1/2, -y + 1/2, z - 1/2) and N3—H3B···O2 (-x + 1/2, -y + 1/2, -z + 1) (Fig. 2). The dihedral angle between the rings, 4-chlorophenyl and 2,4-diaminopyrimidine is 80.6 (1)°. This value is higher than that in a biphenyl ring system. This may be due to the substitution of ethyl and amine groups at C4 and C6, respectively. An extended moiety of acetylamino group is coplanar with phenyl carboxylate and the dihedral angle between these two is 1.59 (1)° (Cremer & Pople, 1975; Nardelli, 1995).

In the crystal packing, the molecules are arranged as sheets along the a direction (Fig. 3). These sheets are organized as two layers in the unit cell and both layer molecules are connected to each other through N4—H4A···O3 hydrogen bond. In addition, a six membered ring is formed by an intra-molecular interaction (N5—H5···O1)in benzoate molecule which also controls the molecules in crystal packing. Molecular packing is stabilized by many N—H···O and a C—H···Cl (x, -y, z - 1/2) intra and intermolecular interactions (Table 1, Fig. 2).

S2. Experimental

A hot methanolic solution (20 ml) of 2,4-diamino-5-(4-chlorophenyl)-6- ethylpyrimidine and 2-(acetylamino)benzoic acid in the ratio of 1:1 was warmed for 0.5 h over a water bath. The mixture was cooled slowly and kept at room

temperature and after a few days, colourless crystals were obtained

S3. Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, 0.96 Å for methyl H atoms and for aromatic NH₂ and N—H = 0.86 Å. The U_{iso} parameters for H atoms were constraned to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Figure 1

ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 30% probability level.

Figure 2

Dimer interaction between the symmetry related salts of title compound. Dashed lines indicate the intra and intermolecular hydrogen bonds.

Figure 3

Packing diagram of the title compound viewed down the b axis. Dashed lines indicate the intra and intermolecular interactions between the molecules.

2,4-Diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-acetamidobenzoate

Crystal data

Crystal adda	
$C_{12}H_{14}CIN_4^+ \cdot C_9H_8NO_3^-$	F(000) = 1792
$M_r = 427.89$	$D_{\rm x} = 1.309 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 25.226 (4) Å	Cell parameters from 14400 reflections
b = 9.0666 (16) Å	$\theta = 1.8 - 26.2^{\circ}$
c = 20.688 (4) Å	$\mu = 0.21 \text{ mm}^{-1}$
$\beta = 113.400 \ (3)^{\circ}$	T = 293 K
$V = 4342.5 (13) \text{ Å}^3$	Block, colourless
Z = 8	$0.4 \times 0.35 \times 0.32 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-detector	3079 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.019$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 26.2^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Graphite monochromator	$h = -29 \rightarrow 30$
ωscans	$k = -11 \rightarrow 11$
14400 measured reflections	$l = -25 \rightarrow 24$

14400 measured reflections 3937 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $P[F^2 > 2\sigma(F^2)] = 0.046$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 1.04	H-atom parameters constrained
3937 reflections	$w = 1/[\sigma^2(F_o^2) + (0.059P)^2 + 2.2497P]$
272 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.09641 (3)	0.17665 (8)	0.85360 (3)	0.0916 (3)	
01	0.34974 (6)	0.30249 (17)	0.60241 (7)	0.0668 (4)	
O2	0.40391 (6)	0.20074 (17)	0.70432 (7)	0.0651 (4)	
O3	0.16543 (8)	0.5398 (3)	0.55466 (10)	0.1088 (7)	
N1	0.06713 (6)	0.24269 (18)	0.44774 (7)	0.0487 (4)	
H1	0.0925	0.2276	0.4304	0.058*	

N5	0.25286 (7)	0.4296 (2)	0.58885 (9)	0.0691 (5)
H5	0.2795	0.4091	0.5742	0.083*
N2	-0.02695 (6)	0.31925 (17)	0.42880 (8)	0.0490 (4)
C2	0.01378 (8)	0.2902 (2)	0.40505 (9)	0.0473 (4)
C4	-0.01287 (7)	0.30452 (19)	0.49808 (9)	0.0449 (4)
C5	0.04201 (8)	0.2494 (2)	0.54570 (9)	0.0450 (4)
C6	0.08133 (8)	0.2183 (2)	0.51771 (9)	0.0458 (4)
N3	0.00325 (7)	0.3063 (2)	0.33758 (8)	0.0642 (5)
НЗА	-0.0302	0 3358	0 3086	0.077*
H3R	0.0298	0.2873	0.3226	0.077*
N4	-0.05259(7)	0.34253 (19)	0.5220	0.077 (4)
НИЛ	-0.0856	0.3740	0.4034	0.0575 (4)
	-0.0453	0.3749	0.4954	0.009
П4D	-0.0433	0.3347 0.1407 (2)	0.5002	0.009°
C9	0.15951 (8)	0.1497 (2)	0.55671 (10)	0.0373(3)
H9A	0.1505	0.1627	0.6069	0.069*
H9B	0.1678	0.1987	0.5437	0.069*
C10	0.13821 (12)	-0.0142 (3)	0.54001 (14)	0.0866 (8)
H10A	0.1758	-0.0557	0.5655	0.130*
H10B	0.1277	-0.0270	0.4904	0.130*
H10C	0.1105	-0.0630	0.5536	0.130*
C11	0.05491 (8)	0.2300 (2)	0.62204 (9)	0.0461 (4)
C12	0.05200 (10)	0.0934 (2)	0.65023 (10)	0.0615 (5)
H12	0.0415	0.0115	0.6208	0.074*
C13	0.06433 (10)	0.0761 (2)	0.72089 (11)	0.0672 (6)
H13	0.0625	-0.0165	0.7392	0.081*
C14	0.07937 (9)	0.1978 (2)	0.76379 (10)	0.0583 (5)
C15	0.08186 (10)	0.3350 (2)	0.73762 (10)	0.0624 (5)
H15	0.0916	0.4169	0.7672	0.075*
C16	0.06970 (9)	0.3503 (2)	0.66685 (10)	0.0565 (5)
H16	0.0715	0.4433	0.6489	0.068*
C17	0 26374 (9)	0.3814(2)	0.65760 (11)	0.0597 (5)
C18	0.20574(11)	0.3011(2) 0.4080(3)	0.69018 (15)	0.0842(7)
H18	0.1915	0.4589	0.6659	0.101*
C10	0.1915 0.22812 (12)	0.4502(4)	0.0039 0.75731 (16)	0.0025 (8)
U19 U10	0.23812 (13)	0.3002 (4)	0.73731 (10)	0.0923 (8)
H19	0.2122	0.3790	0.7/81	0.111^{*}
C20	0.28810 (12)	0.2852 (3)	0.79432 (14)	0.0819(/)
H20	0.2964	0.2536	0.8401	0.098*
C21	0.32583 (10)	0.2572 (3)	0.76267 (11)	0.0654 (6)
H21	0.3597	0.2059	0.7878	0.078*
C22	0.31507 (8)	0.3029 (2)	0.69465 (10)	0.0516 (5)
C23	0.35930 (8)	0.2663 (2)	0.66497 (10)	0.0498 (5)
C24	0.20715 (10)	0.5028 (3)	0.54250 (13)	0.0763 (7)
C25	0.21049 (12)	0.5345 (4)	0.47279 (14)	0.0992 (9)
H25A	0.1732	0.5193	0.4355	0.149*
H25B	0.2381	0.4696	0.4664	0.149*
H25C	0.2223	0.6350	0.4720	0.149*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1155 (6)	0.1148 (6)	0.0436 (3)	0.0138 (4)	0.0307 (3)	0.0113 (3)
O1	0.0521 (8)	0.0950 (11)	0.0544 (9)	0.0212 (8)	0.0222 (7)	0.0160 (8)
02	0.0497 (8)	0.0881 (11)	0.0533 (8)	0.0187 (7)	0.0158 (6)	0.0105 (7)
O3	0.0666 (11)	0.1441 (18)	0.0979 (13)	0.0506 (12)	0.0139 (10)	0.0016 (12)
N1	0.0421 (8)	0.0635 (10)	0.0400 (8)	0.0054 (7)	0.0159 (6)	0.0034 (7)
N5	0.0487 (9)	0.0840 (13)	0.0700 (12)	0.0178 (9)	0.0187 (8)	0.0095 (10)
N2	0.0410 (8)	0.0601 (10)	0.0426 (8)	0.0025 (7)	0.0131 (7)	0.0051 (7)
C2	0.0437 (10)	0.0538 (11)	0.0400 (9)	-0.0003 (8)	0.0118 (8)	0.0027 (8)
C4	0.0432 (10)	0.0455 (10)	0.0449 (10)	-0.0014 (8)	0.0164 (8)	0.0034 (8)
C5	0.0461 (10)	0.0441 (10)	0.0428 (9)	0.0009 (8)	0.0156 (8)	0.0028 (8)
C6	0.0445 (10)	0.0488 (10)	0.0391 (9)	-0.0005 (8)	0.0112 (8)	-0.0002 (8)
N3	0.0499 (9)	0.1003 (14)	0.0388 (9)	0.0151 (9)	0.0136 (7)	0.0090 (8)
N4	0.0454 (9)	0.0785 (12)	0.0478 (9)	0.0105 (8)	0.0183 (7)	0.0101 (8)
С9	0.0496 (11)	0.0754 (14)	0.0418 (10)	0.0112 (10)	0.0128 (8)	0.0048 (9)
C10	0.0947 (18)	0.0754 (16)	0.0860 (17)	0.0288 (14)	0.0320 (14)	0.0133 (13)
C11	0.0449 (10)	0.0496 (11)	0.0420 (9)	0.0060 (8)	0.0154 (8)	0.0035 (8)
C12	0.0830 (15)	0.0490 (12)	0.0509 (11)	-0.0012 (10)	0.0248 (10)	0.0001 (9)
C13	0.0921 (16)	0.0565 (13)	0.0550 (12)	0.0053 (11)	0.0314 (11)	0.0141 (10)
C14	0.0613 (12)	0.0722 (14)	0.0407 (10)	0.0115 (10)	0.0194 (9)	0.0065 (10)
C15	0.0770 (14)	0.0601 (13)	0.0473 (11)	0.0038 (11)	0.0218 (10)	-0.0065 (9)
C16	0.0703 (13)	0.0474 (11)	0.0512 (11)	0.0036 (9)	0.0235 (10)	0.0034 (9)
C17	0.0486 (11)	0.0663 (13)	0.0625 (12)	0.0024 (9)	0.0204 (9)	-0.0077 (10)
C18	0.0624 (14)	0.1020 (19)	0.0919 (19)	0.0213 (13)	0.0344 (13)	-0.0068 (15)
C19	0.0876 (19)	0.121 (2)	0.0872 (19)	0.0119 (17)	0.0543 (16)	-0.0122 (17)
C20	0.0856 (18)	0.104 (2)	0.0663 (14)	0.0015 (15)	0.0405 (13)	-0.0067 (14)
C21	0.0640 (13)	0.0748 (14)	0.0574 (12)	0.0038 (11)	0.0243 (10)	-0.0023 (11)
C22	0.0447 (10)	0.0536 (11)	0.0539 (11)	-0.0036 (8)	0.0169 (8)	-0.0081 (9)
C23	0.0430 (10)	0.0543 (11)	0.0475 (11)	0.0014 (8)	0.0129 (8)	-0.0032 (9)
C24	0.0526 (13)	0.0783 (16)	0.0795 (16)	0.0147 (12)	0.0065 (11)	-0.0024 (12)
C25	0.0818 (17)	0.111 (2)	0.0846 (18)	0.0232 (16)	0.0111 (14)	0.0237 (16)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C14	1.7433 (19)	C10—H10C	0.9600
O1—C23	1.262 (2)	C11—C12	1.383 (3)
O2—C23	1.247 (2)	C11—C16	1.383 (3)
O3—C24	1.222 (3)	C12—C13	1.377 (3)
N1—C2	1.354 (2)	C12—H12	0.9300
N1—C6	1.364 (2)	C13—C14	1.372 (3)
N1—H1	0.8600	C13—H13	0.9300
N5-C24	1.346 (3)	C14—C15	1.368 (3)
N5—C17	1.407 (3)	C15—C16	1.379 (3)
N5—H5	0.8600	C15—H15	0.9300
N2—C2	1.329 (2)	C16—H16	0.9300
N2C4	1.339 (2)	C17—C18	1.395 (3)

C2—N3	1.321 (2)	C17—C22	1.408 (3)
C4—N4	1.328 (2)	C18—C19	1.367 (4)
C4—C5	1.433 (2)	C18—H18	0.9300
C5—C6	1.362 (3)	C19—C20	1.368 (4)
C5—C11	1.491 (2)	C19—H19	0.9300
C6—C9	1,497 (3)	C20—C21	1,376 (3)
N3—H3A	0.8600	C20—H20	0.9300
N3—H3B	0.8600	$C_{21} - C_{22}$	1 386 (3)
NA-H4A	0.8600	C21_H21	0.9300
N4—H4B	0.8600	C_{22} C_{23}	1 509 (3)
C_{9} C_{10}	1.523(3)	C22 C23	1.505(3)
С9—С10	0.0700	$C_{24} = C_{25}$	0.0600
C9—119A	0.9700	C25_H25R	0.9000
С9—Н9В	0.9700	C25—H25B	0.9600
C10—HI0A	0.9600	C25—H25C	0.9600
C10—H10B	0.9600		
C2—N1—C6	121 21 (16)	C14—C13—C12	118 9 (2)
C2—N1—H1	119.4	C14—C13—H13	120.6
C6-N1-H1	119.1	C12—C13—H13	120.6
C_{24} N5 C_{17}	129.9(2)	C12 - C13 - III3	120.0
C_24 N5 H5	125.5 (2)	C15 $C14$ $C11$	121.32(10) 110.43(17)
C17 N5 H5	115.1	C13 C14 C11	119.43(17) 110.25(17)
$C_1 = N_2 = C_4$	117.1 117.42(14)	C13 $C14$ $C15$ $C16$	119.25(17) 110.05(10)
$N_2 = N_2 = V_4$	117.42(14) 120.54(16)	C14 - C15 - C10	119.03 (19)
$N_3 - C_2 - N_2$	120.34 (10)	C14—C15—H15	120.5
$N_3 - C_2 - N_1$	117.07(17)	C16—C15—H15	120.5
N2—C2—N1	122.39 (16)		121.32 (19)
N4—C4—N2	117.08 (15)	C15—C16—H16	119.3
N4—C4—C5	120.00 (16)	C11—C16—H16	119.3
N2—C4—C5	122.92 (16)	C18—C17—N5	122.7 (2)
C6—C5—C4	116.60 (16)	C18—C17—C22	119.0 (2)
C6—C5—C11	122.45 (16)	N5—C17—C22	118.38 (18)
C4—C5—C11	120.95 (16)	C19—C18—C17	120.8 (2)
C5-C6-N1	119.27 (16)	C19—C18—H18	119.6
C5—C6—C9	125.29 (16)	C17—C18—H18	119.6
N1-C6-C9	115.35 (16)	C18—C19—C20	120.9 (2)
C2—N3—H3A	120.0	C18—C19—H19	119.5
C2—N3—H3B	120.0	C20—C19—H19	119.5
H3A—N3—H3B	120.0	C19—C20—C21	118.9 (2)
C4—N4—H4A	120.0	C19—C20—H20	120.6
C4—N4—H4B	120.0	C21—C20—H20	120.6
H4A—N4—H4B	120.0	C20—C21—C22	122.3 (2)
C6—C9—C10	110.93 (18)	C20—C21—H21	118.8
С6—С9—Н9А	109.5	C22—C21—H21	118.8
С10—С9—Н9А	109.5	C21—C22—C17	118.07 (19)
С6—С9—Н9В	109.5	C21—C22—C23	117.99 (17)
C10—C9—H9B	109.5	C17-C22-C23	123.93 (18)
H9A—C9—H9B	108.0	02-C23-01	123.28 (18)
C9—C10—H10A	109.5	O2—C23—C22	117.42 (17)

C9—C10—H10B	109.5	O1—C23—C22	119.29 (16)
H10A-C10-H10B	109.5	O3—C24—N5	123.6 (3)
C9—C10—H10C	109.5	O3—C24—C25	121.7 (2)
H10A-C10-H10C	109.5	N5-C24-C25	114.8 (2)
H10B-C10-H10C	109.5	C24—C25—H25A	109.5
C12—C11—C16	117.94 (17)	C24—C25—H25B	109.5
C12—C11—C5	121.79 (17)	H25A—C25—H25B	109.5
C16—C11—C5	120.26 (17)	С24—С25—Н25С	109.5
C13—C12—C11	121.50 (19)	H25A—C25—H25C	109.5
C13—C12—H12	119.3	H25B—C25—H25C	109.5
C11—C12—H12	119.3		
C4—N2—C2—N3	-178.21 (17)	C12-C13-C14-Cl1	-178.78 (17)
C4—N2—C2—N1	2.2 (3)	C13—C14—C15—C16	-0.9 (3)
C6—N1—C2—N3	-177.84 (17)	Cl1—C14—C15—C16	178.42 (17)
C6—N1—C2—N2	1.8 (3)	C14—C15—C16—C11	0.2 (3)
C2—N2—C4—N4	175.89 (16)	C12-C11-C16-C15	0.7 (3)
C2—N2—C4—C5	-4.6 (3)	C5-C11-C16-C15	-179.95 (19)
N4—C4—C5—C6	-177.47 (17)	C24—N5—C17—C18	-1.4 (4)
N2-C4-C5-C6	3.1 (3)	C24—N5—C17—C22	178.4 (2)
N4—C4—C5—C11	1.7 (3)	N5-C17-C18-C19	-179.5 (2)
N2-C4-C5-C11	-177.80 (16)	C22-C17-C18-C19	0.7 (4)
C4—C5—C6—N1	1.0 (3)	C17—C18—C19—C20	0.0 (5)
C11—C5—C6—N1	-178.14 (16)	C18—C19—C20—C21	-0.5 (5)
C4—C5—C6—C9	-175.26 (17)	C19—C20—C21—C22	0.2 (4)
C11—C5—C6—C9	5.6 (3)	C20-C21-C22-C17	0.5 (3)
C2—N1—C6—C5	-3.3 (3)	C20—C21—C22—C23	-179.9 (2)
C2—N1—C6—C9	173.28 (17)	C18—C17—C22—C21	-0.9 (3)
C5—C6—C9—C10	100.7 (2)	N5-C17-C22-C21	179.27 (19)
N1-C6-C9-C10	-75.7 (2)	C18—C17—C22—C23	179.5 (2)
C6-C5-C11-C12	-80.4 (2)	N5-C17-C22-C23	-0.3 (3)
C4—C5—C11—C12	100.5 (2)	C21—C22—C23—O2	-2.1 (3)
C6-C5-C11-C16	100.3 (2)	C17—C22—C23—O2	177.44 (19)
C4—C5—C11—C16	-78.8 (2)	C21—C22—C23—O1	177.81 (18)
C16—C11—C12—C13	-1.1 (3)	C17—C22—C23—O1	-2.7 (3)
C5-C11-C12-C13	179.58 (19)	C17—N5—C24—O3	-0.3 (4)
C11—C12—C13—C14	0.5 (3)	C17—N5—C24—C25	-179.4 (2)
C12—C13—C14—C15	0.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N5—H5…O1	0.86	1.90	2.614 (2)	140
C9—H9 <i>B</i> ···N5	0.97	2.87	3.683 (3)	142
N1—H1···O1 ⁱ	0.86	1.86	2.715 (2)	177
N3—H3 <i>B</i> ···O2 ⁱ	0.86	1.96	2.802 (3)	165
N3—H3A····O2 ⁱⁱ	0.86	2.16	2.897 (2)	143

N4—H4A···O3ⁱⁱⁱ 0.86 2.01 2.859 (2) 168 C10—H10B···C11^{iv} 0.96 2.95 3.864 (3) 160

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) x-1/2, -y+1/2, z-1/2; (iii) -x, -y+1, -z+1; (iv) x, -y, z-1/2.