

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis{2-[(2-hydroxy-2-methylpropyl)iminomethyl]-4-nitrophenolato}nickel(II) dimethylformamide monosolvate

Kouassi Ayikoé, Yilma Gultneh and Ray J. Butcher*

Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059 USA

Correspondence e-mail: rbutcher99@yahoo.com

Received 25 July 2011; accepted 2 August 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.055; wR factor = 0.174; data-to-parameter ratio = 15.9.

In the title compound, $[Ni(C_{11}H_{13}N_2O_4)_2] \cdot C_3H_7NO$, the Ni^{II} ion is octahedrally coordinated in an N₂O₄ environment by two identical Schiff base ligands. The Ni-O bond lengths range from 2.004 (2) to 2.106 (2) Å, while the Ni-N bond lengths are 2.038 (2) and 2.0465 (19) Å. The cis bond angles range from 78.64 (8) to 97.30 (8) $^{\circ}$, with the former being due to the small bite of the aminoalcohol ligand, while the trans bond angles range from 167.86 (8) to 171.23 (8)°. One of the alcohol H atoms forms a hydrogen bond with the dimethylformamide (DMF) solvent molecule, while the other links molecules into chains along the b axis through intermolecular $O-H \cdots O$ hydrogen bonds. There are bifurcated $C-H \cdots O$ interactions involving one of the nitro groups between parallel stacks of molecules in the *b*-axis direction.

Related literature

For similar nickel Schiff base complexes, see: Ali et al. (2006); Butcher et al. (1981, 2009); Gultneh et al. (1998); Mustafaa et al. (2009); Zhang et al. (2010).

Experimental

Crystal data [Ni(C11H13N2O4)2]·C3H2NO $M_r = 606.27$ Monoclinic, $P2_1/n$ a = 11.42279 (16) Å b = 11.42936 (18) Å c = 21.4903 (3) Å $\beta = 99.1120 \ (14)^{\circ}$ V = 2770.26 (7) Å³

Data collection

Oxford Diffraction Xcalibur Ruby	13929 measured reflections
Gemini diffractometer	5826 independent reflections
Absorption correction: multi-scan	4514 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.026$
Diffraction, 2009)	
$T_{\rm min} = 0.650, T_{\rm max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	367 parameters
$wR(F^2) = 0.174$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
5826 reflections	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - H \cdot$	··A
$O2A - H2A \cdots O1S$	0.82	1.94	2.734 (5)	163	
$O2B - H2B \cdots O1B^{i}$	0.82	1.81	2.619 (3)	166	
$C9A - H9AA \cdots O1A^{i}$	0.96	2.59	3.422 (4)	146	
$C11A - H11B \cdots O3B^{ii}$	0.97	2.50	3.394 (4)	153	
$C5B-H5BA\cdots O4A^{iii}$	0.93	2.57	3.418 (4)	151	
Symmetry codes: (i)	$-r + \frac{1}{2}v - \frac{1}{2}$	$-7 + \frac{3}{2}$ (i	i) $-r + \frac{3}{2}v - \frac{1}{2}$	$-7 \pm \frac{3}{2}$	(iii)

 $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}.$

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer. KA wishes to acknowledge the Howard University Graduate School of Arts & Sciences for the award of a Teaching Assistanceship as well as a GANN Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2096).

References

- Ali, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2739m2740
- Butcher, R. J., Gultneh, Y. & Ayikoé, K. (2009). Acta Cryst. E65, m1193m1194
- Butcher, R. J., O'Connor, C. J. & Sinn, E. (1981). Inorg. Chem. 20, 3486-3493
- Gultneh, Y., Khan, R. A., Ahvazi, B. & Butcher, R. J. (1998). Polyhedron, 17, 3351-3360.
- Mustafaa, I. M., Hapipaha, M. A., Abdullab, M. A. & Warda, T. R. (2009). Polyhedron, 28, 3993-3998.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Cu K α radiation

 $0.44 \times 0.21 \times 0.18 \text{ mm}$

 $\mu = 1.54 \text{ mm}^{-1}$

T = 295 K

Z = 4

Zhang, D., Weng, L. & Jin, G.-X. (2010). J. Organomet. Chem. 695, 643-647.

supporting information

Acta Cryst. (2011). E67, m1211 [doi:10.1107/S1600536811031229]

Bis{2-[(2-hydroxy-2-methylpropyl)iminomethyl]-4-nitrophenolato}nickel(II) dimethylformamide monosolvate

Kouassi Ayikoé, Yilma Gultneh and Ray J. Butcher

S1. Comment

In the title complex two uninegative tridentate ligands, 5-nitro salicylaldehydene-2,2-dimethyl ethylimine-1-ol, coordinate to the nickel atom producing N₂O₄ in a slightly distorted octahedral coordination environment. The distortion can be justified by the bond angles formed by the coordinating atoms to the metal: N(1 A)—Ni—O(2 A) = 168.90 (8)°, N(1 A)—Ni—O(1B) = 98.60 (8)°, N(1 A)—Ni—O(2B) = 93.54 (8)°, N(1 A)—Ni—N(1B) = 171.23 (8)°, O(1B)—Ni—O(2B) = 167.86° and O(1 A)—Ni—O(2 A) = 168.90 (8)°. The Ni—O bond lengths are slightly shorter than the Ni—N bond lengths [Ni—N(1 A) = 2.038 (2) Å, Ni—N(1B) = 2.0465 (19) Å, Ni—O(2B) = 2.101 (2) Å, Ni—O(2 A) = 2.106 (2) Å] as is usually found in such complexes (Ali *et al.* 2006; Butcher *et al.* 1981, 2009; Gultneh *et al.* 1998; Mustafaa *et al.* 2009; Zhang *et al.* 2010).

One of the alcohol H atoms forms a hydrogen bond with the dimethylformamide solvate molecule while the other links the molecules into chains along the b axis through intermolecular O—H…O hydrogen bonds. There are bifurcated C—H…O interactions between parallel stacks of molecules in the b direction involving one of the nitro groups.

S2. Experimental

The complex, C₂₅H₃₃N₅NiO₉, was synthesized by adding a 20 mL solution of nickel nitrate hexahydrate (0.61 gram, 2.63 mmol) to another 20 ml of methanol solution containing 1.25 gram (5.26 mmol) of the ligand, 5-nitrosalicylaldehydene-2,2-dimethyl ethylimine-1-ol. Three drops of triethylamine was added followed by continuous stirring overnight at 40°C. The solution was then filtered, evaporated under vacuum, and washed with ethanol to yield 95% of a dark greenish yellow solid. About 0.20 mg of the sample was dissolved in DMF/MeOH (1:3) then layered with diethyl ether to give dark-yellow–green crystals.

S3. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 to 0.97 Å and O—H distances of 0.82. Isotropic thermal parameters were $U_{iso}(H) = 1.2U_{eq}(C) [U_{iso}(H) = 1.5U_{eq}(C)]$.

Figure 1

Diagram of $C_{25}H_{33}N_5NiO_9$, showing atom labeling. Atomic displacement parameters are at the 30% level. Hydrogen bonds are shown by dashed lines.

Figure 2

The molecular packing for $C_{25}H_{33}N_5NiO_9$ viewed down the *a* axis. Hydrogen bonds are shown by dashed lines.

Bis{2-[(2-hydroxy-2-methylpropyl)iminomethyl]-4-nitrophenolato}nickel(II) dimethylformamide monosolvate

Crystal data
$[Ni(C_{11}H_{13}N_2O_4)_2] \cdot C_3H_7NO$
$M_r = 606.27$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 11.42279 (16) Å
<i>b</i> = 11.42936 (18) Å
c = 21.4903 (3) Å
$\beta = 99.1120 \ (14)^{\circ}$
V = 2770.26 (7) Å ³
Z = 4

F(000) = 1272 $D_x = 1.454 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 6836 reflections $\theta = 4.4-77.3^{\circ}$ $\mu = 1.54 \text{ mm}^{-1}$ T = 295 KNeedle, pale-green $0.44 \times 0.21 \times 0.18 \text{ mm}$ Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009) $T_{min} = 0.650, T_{max} = 1.000$	13929 measured reflections 5826 independent reflections 4514 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 77.5^{\circ}, \theta_{min} = 4.4^{\circ}$ $h = -13 \rightarrow 14$ $k = -14 \rightarrow 13$ $l = -26 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.174$ S = 1.05 5826 reflections 367 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.116P)^2 + 0.4736P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.56$ e Å ⁻³ $\Delta\rho_{min} = -0.53$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni	0.28214 (3)	0.69956 (4)	0.739938 (17)	0.04163 (16)	
O1A	0.13279 (18)	0.7923 (2)	0.73843 (9)	0.0627 (6)	
O2A	0.43631 (19)	0.5964 (2)	0.75995 (9)	0.0672 (6)	
H2A	0.4851	0.5947	0.7358	0.081*	
O3A	-0.2832 (2)	0.8371 (3)	0.88948 (13)	0.0905 (8)	
O4A	-0.1546 (3)	0.7581 (5)	0.95965 (12)	0.1320 (15)	
O1B	0.38319 (17)	0.84650 (17)	0.74068 (8)	0.0505 (4)	
O2B	0.1755 (2)	0.5507 (2)	0.71838 (10)	0.0850 (8)	
H2B	0.1676	0.4831	0.7297	0.102*	
O3B	0.7678 (3)	1.0122 (4)	0.58611 (14)	0.1350 (16)	
O4B	0.6486 (2)	0.9308 (3)	0.51235 (11)	0.0932 (9)	
O1S	0.6253 (5)	0.6221 (4)	0.6974 (3)	0.190 (3)	
N1A	0.29366 (18)	0.67706 (18)	0.83479 (9)	0.0418 (4)	
N2A	-0.1859 (2)	0.7931 (3)	0.90622 (13)	0.0739 (8)	
N1B	0.26685 (17)	0.69504 (17)	0.64379 (9)	0.0395 (4)	
N2B	0.6746 (2)	0.9632 (3)	0.56688 (13)	0.0737 (8)	

N1S	0.6828 (3)	0.6268 (4)	0.60657 (18)	0.0901 (10)
C1A	0.0612 (2)	0.7858 (2)	0.77807 (11)	0.0433 (5)
C2A	-0.0573 (2)	0.8288 (3)	0.76076 (13)	0.0530 (6)
H2AA	-0.0803	0.8582	0.7203	0.064*
C3A	-0.1370(2)	0.8284 (3)	0.80106 (13)	0.0536 (6)
H3AA	-0.2134	0.8566	0.7883	0.064*
C4A	-0.1031(2)	0.7851 (3)	0.86214 (13)	0.0524 (6)
C5A	0.0081 (2)	0.7403 (3)	0.88111 (11)	0.0485 (6)
Н5АА	0.0282	0.7108	0.9217	0.058*
C6A	0.0916 (2)	0.7383 (2)	0.84022 (11)	0.0421 (5)
C7A	0.2064 (2)	0.6891 (2)	0.86487 (11)	0.0444 (5)
H7AA	0.2177	0.6638	0.9065	0.053*
C8A	0.4050(2)	0.6210(2)	0.86711 (11)	0.0473(5)
C9A	0.3801(3)	0.4930(3)	0.88058 (18)	0.0779(9)
Н9АА	0 3447	0 4553	0.8423	0.117*
H9AB	0.3268	0.4889	0.9109	0.117*
H9AC	0.4530	0 4544	0.8971	0.117*
CIOA	0.4563 (3)	0.4344 0.6847 (3)	0.92732 (16)	0.0710(9)
H10A	0.4733	0.7643	0.9176	0.107*
HIOR	0.5280	0.7043	0.9464	0.107*
HIOC	0.3999	0.6835	0.9560	0.107*
C11A	0.3999 0.4935 (3)	0.6308 (4)	0.9300	0.107
HIIA	0.5215	0.7107	0.8201	0.00/48(10)
	0.5213	0.7107	0.8248	0.090
CIR	0.3012 0.4490 (2)	0.3000 0.8726 (2)	0.0340	0.090
C1B C2B	0.4490(2)	0.8720(2)	0.09802(10) 0.71580(12)	0.0403(3)
	0.5510 (2)	0.9442(2)	0.71380 (12)	0.0494 (0)
C2P	0.5080	0.9712	0.7370 0.67371(13)	0.039°
	0.0240(2)	0.9743 (3)	0.07571 (15)	0.0332 (0)
	0.0914	1.0190	0.0003	0.004°
C4D	0.3901(2)	0.9570(3)	0.01138(12)	0.0312(6)
	0.4900 (2)	0.8700 (2)	0.59204 (11)	0.0400(3)
пура	0.4778	0.8248 (2)	0.3499	0.030°
C6B C7D	0.4235(2)	0.8348(2)	0.63480 (11)	0.0410 (5)
	0.3283 (2)	0.7547 (2)	0.61084 (10)	0.0418 (5)
H/BA	0.3106	0.7463	0.56/3	0.050*
C8B	0.1836 (2)	0.6052 (2)	0.61156 (11)	0.0485 (6)
C9B	0.2573 (4)	0.5016 (3)	0.5970 (2)	0.0877 (12)
H9BA	0.3069	0.5244	0.56/0	0.132*
H9BB	0.2058	0.4392	0.5798	0.132*
H9BC	0.3059	0.4754	0.6350	0.132*
C10B	0.1066 (3)	0.6519 (3)	0.55286 (14)	0.0693 (9)
H10D	0.0621	0.7179	0.5638	0.104*
H10E	0.0531	0.5918	0.5348	0.104*
H10F	0.1560	0.6755	0.5228	0.104*
C11B	0.1044 (3)	0.5691 (3)	0.65874 (14)	0.0709 (9)
HIIC	0.0464	0.6298	0.6620	0.085*
H11D	0.0624	0.4977	0.6448	0.085*
CIS	0.6898 (11)	0.6407 (7)	0.6647 (5)	0.207 (5)

H1SA	0.7614	0.6721	0.6842	0.248*	
C2S	0.7801 (10)	0.6597 (10)	0.5804 (6)	0.282 (7)	
H2SA	0.8299	0.7096	0.6093	0.423*	
H2SB	0.7546	0.7011	0.5418	0.423*	
H2SC	0.8238	0.5913	0.5720	0.423*	
C3S	0.5866 (8)	0.5788 (7)	0.5676 (5)	0.245 (6)	
H3SA	0.5195	0.5767	0.5895	0.368*	
H3SB	0.6056	0.5008	0.5561	0.368*	
H3SC	0.5679	0.6258	0.5303	0.368*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ni	0.0460 (2)	0.0483 (3)	0.0325 (2)	-0.00103 (17)	0.01224 (16)	0.00310 (16)
O1A	0.0568 (11)	0.0894 (15)	0.0464 (10)	0.0168 (10)	0.0217 (8)	0.0294 (10)
O2A	0.0693 (12)	0.0940 (15)	0.0410 (9)	0.0308 (11)	0.0169 (9)	0.0006 (10)
O3A	0.0570 (13)	0.139 (2)	0.0816 (17)	0.0211 (14)	0.0310 (12)	0.0058 (16)
O4A	0.095 (2)	0.260 (4)	0.0514 (15)	0.061 (3)	0.0409 (13)	0.037 (2)
O1B	0.0590 (10)	0.0576 (10)	0.0398 (8)	-0.0098 (8)	0.0226 (8)	-0.0105 (8)
O2B	0.1166 (19)	0.0817 (16)	0.0496 (11)	-0.0528 (15)	-0.0091 (12)	0.0236 (11)
O3B	0.0959 (19)	0.233 (4)	0.0830 (18)	-0.101 (3)	0.0347 (15)	-0.025 (2)
O4B	0.0895 (17)	0.144 (3)	0.0539 (13)	-0.0486 (17)	0.0356 (12)	-0.0146 (14)
O1S	0.217 (5)	0.130 (4)	0.268 (7)	0.044 (4)	0.176 (5)	0.052 (4)
N1A	0.0447 (10)	0.0480 (10)	0.0334 (9)	0.0018 (8)	0.0082 (8)	-0.0002 (8)
N2A	0.0567 (14)	0.114 (2)	0.0565 (15)	0.0125 (14)	0.0244 (12)	0.0019 (15)
N1B	0.0418 (9)	0.0437 (10)	0.0341 (9)	-0.0043 (8)	0.0095 (7)	0.0010 (7)
N2B	0.0626 (14)	0.105 (2)	0.0576 (15)	-0.0316 (15)	0.0224 (12)	0.0003 (15)
N1S	0.0749 (19)	0.105 (3)	0.089 (2)	0.0207 (18)	0.0082 (17)	-0.022 (2)
C1A	0.0443 (12)	0.0489 (12)	0.0383 (11)	-0.0007 (10)	0.0118 (9)	0.0044 (10)
C2A	0.0508 (14)	0.0653 (16)	0.0437 (13)	0.0049 (12)	0.0097 (11)	0.0116 (12)
C3A	0.0461 (13)	0.0664 (16)	0.0489 (14)	0.0071 (12)	0.0095 (11)	0.0011 (12)
C4A	0.0492 (13)	0.0673 (16)	0.0432 (13)	0.0007 (12)	0.0153 (11)	-0.0008 (12)
C5A	0.0517 (13)	0.0632 (15)	0.0327 (11)	-0.0004 (12)	0.0128 (10)	0.0020 (11)
C6A	0.0447 (11)	0.0484 (12)	0.0343 (11)	-0.0022 (10)	0.0100 (9)	0.0007 (9)
C7A	0.0499 (12)	0.0564 (14)	0.0275 (10)	-0.0011 (10)	0.0081 (9)	0.0035 (9)
C8A	0.0473 (12)	0.0552 (14)	0.0381 (11)	0.0074 (11)	0.0030 (9)	-0.0033 (10)
C9A	0.087 (2)	0.0625 (19)	0.081 (2)	0.0095 (17)	0.0050 (18)	0.0098 (17)
C10A	0.0604 (17)	0.091 (2)	0.0569 (17)	0.0084 (16)	-0.0045 (14)	-0.0163 (16)
C11A	0.0565 (16)	0.113 (3)	0.0553 (16)	0.0244 (18)	0.0109 (13)	0.0081 (18)
C1B	0.0423 (11)	0.0430 (11)	0.0384 (11)	0.0006 (9)	0.0129 (9)	-0.0035 (9)
C2B	0.0524 (13)	0.0549 (14)	0.0418 (12)	-0.0059 (11)	0.0106 (10)	-0.0100 (11)
C3B	0.0491 (13)	0.0584 (15)	0.0534 (14)	-0.0153 (11)	0.0116 (11)	-0.0055 (12)
C4B	0.0480 (13)	0.0610 (15)	0.0473 (13)	-0.0086 (11)	0.0159 (11)	0.0004 (11)
C5B	0.0475 (12)	0.0569 (14)	0.0371 (11)	-0.0038 (11)	0.0123 (9)	0.0009 (10)
C6B	0.0412 (11)	0.0451 (11)	0.0386 (11)	-0.0018 (9)	0.0116 (9)	0.0001 (9)
C7B	0.0450 (11)	0.0512 (13)	0.0307 (10)	-0.0042 (10)	0.0107 (8)	-0.0003 (9)
C8B	0.0529 (13)	0.0521 (13)	0.0403 (12)	-0.0125 (11)	0.0068 (10)	0.0004 (10)
C9B	0.092 (3)	0.0579 (19)	0.112 (3)	-0.0058 (18)	0.014 (2)	-0.024 (2)

supporting information

C10B	0.0609 (17)	0.095 (2)	0.0488 (15)	-0.0250 (16)	-0.0020 (13)	0.0124 (16)
C11B	0.0742 (19)	0.089 (2)	0.0488 (15)	-0.0383 (17)	0.0064 (14)	0.0091 (15)
C1S	0.334 (13)	0.135 (6)	0.194 (8)	0.114 (8)	0.173 (9)	0.055 (6)
C2S	0.200 (10)	0.238 (12)	0.45 (2)	0.030 (9)	0.191 (12)	0.004 (12)
C3S	0.198 (8)	0.150 (7)	0.334 (13)	0.077 (6)	-0.126 (9)	-0.084 (8)

Geometric parameters (Å, °)

Ni—O1A	2.004 (2)	C8A—C9A	1.526 (4)
Ni—O1B	2.0365 (19)	С9А—Н9АА	0.9600
Ni—N1A	2.038 (2)	С9А—Н9АВ	0.9600
Ni—N1B	2.0465 (19)	С9А—Н9АС	0.9600
Ni—O2B	2.101 (2)	C10A—H10A	0.9600
Ni—O2A	2.106 (2)	C10A—H10B	0.9600
O1A—C1A	1.273 (3)	C10A—H10C	0.9600
O2A—C11A	1.429 (4)	C11A—H11A	0.9700
O2A—H2A	0.8200	C11A—H11B	0.9700
O3A—N2A	1.222 (4)	C1B—C6B	1.423 (3)
O4A—N2A	1.215 (4)	C1B—C2B	1.423 (3)
O1B—C1B	1.298 (3)	C2B—C3B	1.369 (4)
O2B—C11B	1.420 (4)	C2B—H2BA	0.9300
O2B—H2B	0.8200	C3B—C4B	1.391 (4)
O3B—N2B	1.216 (3)	СЗВ—НЗВА	0.9300
O4B—N2B	1.220 (3)	C4B—C5B	1.375 (4)
O1S—C1S	1.115 (8)	C5B—C6B	1.397 (3)
N1A—C7A	1.278 (3)	C5B—H5BA	0.9300
N1A—C8A	1.494 (3)	C6B—C7B	1.452 (3)
N2A—C4A	1.443 (4)	С7В—Н7ВА	0.9300
N1B—C7B	1.272 (3)	C8B—C9B	1.514 (5)
N1B—C8B	1.493 (3)	C8B—C10B	1.516 (4)
N2B—C4B	1.446 (3)	C8B—C11B	1.519 (4)
N1S—C1S	1.250 (9)	С9В—Н9ВА	0.9600
N1S—C2S	1.375 (10)	C9B—H9BB	0.9600
N1S—C3S	1.385 (8)	C9B—H9BC	0.9600
C1A—C6A	1.433 (3)	C10B—H10D	0.9600
C1A—C2A	1.433 (4)	C10B—H10E	0.9600
C2A—C3A	1.352 (4)	C10B—H10F	0.9600
C2A—H2AA	0.9300	C11B—H11C	0.9700
C3A—C4A	1.399 (4)	C11B—H11D	0.9700
СЗА—НЗАА	0.9300	C1S—H1SA	0.9300
C4A—C5A	1.371 (4)	C2S—H2SA	0.9600
C5A—C6A	1.396 (3)	C2S—H2SB	0.9600
С5А—Н5АА	0.9300	C2S—H2SC	0.9600
C6A—C7A	1.448 (3)	C3S—H3SA	0.9600
С7А—Н7АА	0.9300	C3S—H3SB	0.9600
C8AC10A	1.519 (4)	C3S—H3SC	0.9600
C8A—C11A	1.523 (4)		

O1A—Ni—O1B	92.52 (9)	C8A—C10A—H10B	109.5
O1A—Ni—N1A	90.16 (8)	H10A—C10A—H10B	109.5
O1B—Ni—N1A	98.60 (8)	C8A—C10A—H10C	109.5
O1A—Ni—N1B	93.48 (8)	H10A—C10A—H10C	109.5
O1B—Ni—N1B	89.22 (7)	H10B-C10A-H10C	109.5
N1A—Ni—N1B	171.23 (8)	O2A—C11A—C8A	108.8 (3)
O1A—Ni—O2B	87.84 (11)	O2A—C11A—H11A	109.9
O1B—Ni—O2B	167.86 (8)	C8A—C11A—H11A	109.9
N1A—Ni—O2B	93.54 (8)	O2A—C11A—H11B	109.9
N1B—Ni—O2B	78.64 (8)	C8A—C11A—H11B	109.9
O1A—Ni—O2A	168.90 (8)	H11A—C11A—H11B	108.3
O1B—Ni—O2A	90.31 (9)	O1B—C1B—C6B	123.3 (2)
N1A—Ni—O2A	78.79 (8)	O1B—C1B—C2B	119.5 (2)
N1B—Ni—O2A	97.30 (8)	C6B—C1B—C2B	117.3 (2)
O2B—Ni—O2A	91.64 (11)	C3B—C2B—C1B	122.3 (2)
C1A—O1A—Ni	126.42 (16)	C3B—C2B—H2BA	118.9
C11A—O2A—Ni	106.24 (17)	C1B—C2B—H2BA	118.9
C11A—O2A—H2A	109.5	C2B—C3B—C4B	119.0 (2)
Ni—O2A—H2A	120.9	С2В—С3В—Н3ВА	120.5
C1B—O1B—Ni	125.03 (15)	С4В—С3В—Н3ВА	120.5
C11B—O2B—Ni	107.94 (18)	C5B—C4B—C3B	121.1 (2)
C11B—O2B—H2B	109.5	C5B—C4B—N2B	118.7 (2)
Ni—O2B—H2B	141.8	C3B—C4B—N2B	120.1 (2)
C7A—N1A—C8A	119.1 (2)	C4B—C5B—C6B	120.8 (2)
C7A—N1A—Ni	124.07 (17)	C4B—C5B—H5BA	119.6
C8A—N1A—Ni	115.76 (15)	C6B—C5B—H5BA	119.6
O4A—N2A—O3A	122.1 (3)	C5B—C6B—C1B	119.5 (2)
O4A—N2A—C4A	118.3 (3)	C5B—C6B—C7B	116.3 (2)
O3A—N2A—C4A	119.5 (3)	C1B—C6B—C7B	124.1 (2)
C7B—N1B—C8B	118.5 (2)	N1B—C7B—C6B	126.1 (2)
C7B—N1B—Ni	125.61 (17)	N1B—C7B—H7BA	116.9
C8B—N1B—Ni	115.59 (14)	C6B—C7B—H7BA	116.9
O3B—N2B—O4B	122.2 (3)	N1B-C8B-C9B	107.4 (2)
O3B—N2B—C4B	118.1 (3)	N1B-C8B-C10B	112.8 (2)
O4B—N2B—C4B	119.6 (2)	C9B-C8B-C10B	111.8 (3)
C1S—N1S—C2S	116.5 (9)	N1B-C8B-C11B	106.3 (2)
C1S—N1S—C3S	125.0 (9)	C9B-C8B-C11B	109.5 (3)
C2S—N1S—C3S	118.5 (8)	C10B—C8B—C11B	108.9 (2)
O1A—C1A—C6A	124.0 (2)	C8B—C9B—H9BA	109.5
O1A—C1A—C2A	119.1 (2)	C8B—C9B—H9BB	109.5
C6A—C1A—C2A	116.8 (2)	Н9ВА—С9В—Н9ВВ	109.5
C3A—C2A—C1A	122.4 (2)	C8B—C9B—H9BC	109.5
СЗА—С2А—Н2АА	118.8	Н9ВА—С9В—Н9ВС	109.5
C1A—C2A—H2AA	118.8	H9BB—C9B—H9BC	109.5
C2A—C3A—C4A	119.2 (2)	C8B—C10B—H10D	109.5
С2А—С3А—НЗАА	120.4	C8B—C10B—H10E	109.5
С4А—С3А—НЗАА	120.4	H10D—C10B—H10E	109.5
C5A—C4A—C3A	121.1 (2)	C8B-C10B-H10F	109.5

C5A—C4A—N2A	120.1 (2)	H10D-C10B-H10F	109.5
C3A—C4A—N2A	118.8 (3)	H10E-C10B-H10F	109.5
C4A—C5A—C6A	120.8 (2)	O2B—C11B—C8B	109.1 (2)
С4А—С5А—Н5АА	119.6	O2B—C11B—H11C	109.9
С6А—С5А—Н5АА	119.6	C8B—C11B—H11C	109.9
C5A—C6A—C1A	119.5 (2)	O2B—C11B—H11D	109.9
С5А—С6А—С7А	116.5 (2)	C8B—C11B—H11D	109.9
C1A—C6A—C7A	124.1 (2)	H11C—C11B—H11D	108.3
N1A—C7A—C6A	126.2 (2)	O1S—C1S—N1S	131.3 (14)
N1A—C7A—H7AA	116.9	O1S—C1S—H1SA	114.3
С6А—С7А—Н7АА	116.9	N1S—C1S—H1SA	114.3
N1A-C8A-C10A	112.0 (2)	N1S—C2S—H2SA	109.5
N1A—C8A—C11A	105.7(2)	N1S—C2S—H2SB	109.5
C10A - C8A - C11A	108.1(3)	H2SA—C2S—H2SB	109.5
N1A—C8A—C9A	109.2(2)	N1S—C2S—H2SC	109.5
C10A - C8A - C9A	109.2(2) 110.9(3)	H2SA—C2S—H2SC	109.5
C11A - C8A - C9A	110.9(3)	H2SB C2S H2SC	109.5
C8A - C9A - H9AA	109 5	N1S—C3S—H3SA	109.5
C8A - C9A - H9AB	109.5	N1S—C3S—H3SB	109.5
H9AA—C9A—H9AB	109.5	H3SA—C3S—H3SB	109.5
C8A—C9A—H9AC	109.5	N1S—C3S—H3SC	109.5
H9AA - C9A - H9AC	109.5	H3SA—C3S—H3SC	109.5
H9AB - C9A - H9AC	109.5	H3SB-C3S-H3SC	109.5
C8A = C10A = H10A	109.5	11500 650 11556	109.5
	109.5		
O1B—Ni—O1A—C1A	-123.2(2)	C2A—C1A—C6A—C5A	-2.6 (4)
N1A—Ni—O1A—C1A	-24.5(2)	O1A—C1A—C6A—C7A	-1.7 (4)
N1B—Ni—O1A—C1A	147.5 (2)	C2A—C1A—C6A—C7A	178.7 (2)
O2B—Ni—O1A—C1A	69.0 (2)	C8A—N1A—C7A—C6A	-178.2(2)
O2A—Ni—O1A—C1A	-18.5 (7)	Ni—N1A—C7A—C6A	-10.8 (4)
O1A—Ni—O2A—C11A	-40.2 (6)	C5A—C6A—C7A—N1A	178.5 (3)
O1B—Ni—O2A—C11A	64.6 (2)	C1A—C6A—C7A—N1A	-2.8 (4)
N1A—Ni—O2A—C11A	-34.1 (2)	C7A—N1A—C8A—C10A	-57.3 (3)
N1B—Ni—O2A—C11A	153.9 (2)	Ni—N1A—C8A—C10A	134.3 (2)
O2B—Ni—O2A—C11A	-127.3 (2)	C7A—N1A—C8A—C11A	-174.7 (3)
O1A—Ni—O1B—C1B	-121.5 (2)	Ni—N1A—C8A—C11A	16.9 (3)
N1A—Ni—O1B—C1B	148.0 (2)	C7A—N1A—C8A—C9A	66.0 (3)
N1B—Ni—O1B—C1B	-28.0(2)	Ni—N1A—C8A—C9A	-102.5(2)
O2B—Ni—O1B—C1B	-30.0 (6)	Ni-02A-C11A-C8A	53.9 (3)
O2A—Ni—O1B—C1B	69.3 (2)	N1A—C8A—C11A—O2A	-46.3 (3)
O1A—Ni—O2B—C11B	62.1 (2)	C10A—C8A—C11A—O2A	-166.4(3)
O1B—Ni—O2B—C11B	-29.9(6)	C9A—C8A—C11A—O2A	71.9 (3)
N1A—Ni—O2B—C11B	152.1 (2)	Ni-01B-C1B-C6B	28.5 (3)
N1B—Ni—O2B—C11B	-31.9 (2)	Ni-01B-C1B-C2B	-152.63 (19)
O2A—Ni—O2B—C11B	-129.0 (2)	O1B—C1B—C2B—C3B	179.8 (3)
O1A—Ni—N1A—C7A	19.7 (2)	C6B-C1B-C2B-C3B	-1.3 (4)
O1B—Ni—N1A—C7A	112.2 (2)	C1B—C2B—C3B—C4B	1.8 (4)
O2B—Ni—N1A—C7A	-68.2 (2)	C2B—C3B—C4B—C5B	0.2 (4)
			· /

O2A—Ni—N1A—C7A	-159.2 (2)	C2B—C3B—C4B—N2B	-177.1 (3)
O1A—Ni—N1A—C8A	-172.58 (18)	O3B—N2B—C4B—C5B	-173.0 (4)
O1B—Ni—N1A—C8A	-80.00 (18)	O4B—N2B—C4B—C5B	3.4 (5)
O2B—Ni—N1A—C8A	99.57 (18)	O3B—N2B—C4B—C3B	4.3 (5)
O2A—Ni—N1A—C8A	8.60 (17)	O4B—N2B—C4B—C3B	-179.3 (3)
O1A—Ni—N1B—C7B	105.4 (2)	C3B—C4B—C5B—C6B	-2.7 (4)
O1B—Ni—N1B—C7B	12.9 (2)	N2B-C4B-C5B-C6B	174.6 (3)
O2B—Ni—N1B—C7B	-167.5 (2)	C4B-C5B-C6B-C1B	3.2 (4)
O2A—Ni—N1B—C7B	-77.3 (2)	C4B—C5B—C6B—C7B	-173.6 (2)
O1A—Ni—N1B—C8B	-80.53 (18)	O1B-C1B-C6B-C5B	177.6 (2)
O1B—Ni—N1B—C8B	-173.01 (17)	C2B-C1B-C6B-C5B	-1.3 (3)
O2B—Ni—N1B—C8B	6.57 (18)	O1B—C1B—C6B—C7B	-5.9 (4)
O2A—Ni—N1B—C8B	96.78 (18)	C2B-C1B-C6B-C7B	175.3 (2)
Ni—O1A—C1A—C6A	19.7 (4)	C8B—N1B—C7B—C6B	-171.9 (2)
Ni—O1A—C1A—C2A	-160.7 (2)	Ni—N1B—C7B—C6B	2.0 (4)
O1A—C1A—C2A—C3A	-177.8 (3)	C5B—C6B—C7B—N1B	165.8 (2)
C6A—C1A—C2A—C3A	1.8 (4)	C1B—C6B—C7B—N1B	-10.8 (4)
C1A—C2A—C3A—C4A	0.4 (5)	C7B—N1B—C8B—C9B	75.3 (3)
C2A—C3A—C4A—C5A	-1.9 (5)	Ni—N1B—C8B—C9B	-99.2 (3)
C2A—C3A—C4A—N2A	175.4 (3)	C7B-N1B-C8B-C10B	-48.3 (3)
O4A—N2A—C4A—C5A	-0.8 (5)	Ni-N1B-C8B-C10B	137.2 (2)
O3A—N2A—C4A—C5A	177.3 (3)	C7B—N1B—C8B—C11B	-167.5 (2)
O4A—N2A—C4A—C3A	-178.1 (4)	Ni-N1B-C8B-C11B	18.0 (3)
O3A—N2A—C4A—C3A	0.1 (5)	Ni-02B-C11B-C8B	51.5 (3)
C3A—C4A—C5A—C6A	1.0 (4)	N1B—C8B—C11B—O2B	-45.2 (4)
N2A—C4A—C5A—C6A	-176.2 (3)	C9B-C8B-C11B-O2B	70.6 (3)
C4A—C5A—C6A—C1A	1.2 (4)	C10B—C8B—C11B—O2B	-166.9 (3)
C4A—C5A—C6A—C7A	180.0 (3)	C2S—N1S—C1S—O1S	179.8 (8)
O1A-C1A-C6A-C5A	177.0 (3)	C3S—N1S—C1S—O1S	-1.7 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
02 <i>A</i> —H2 <i>A</i> ···O1 <i>S</i>	0.82	1.94	2.734 (5)	163	
$O2B$ — $H2B$ ···· $O1B^{i}$	0.82	1.81	2.619 (3)	166	
C9A—H9AA···O1A ⁱ	0.96	2.59	3.422 (4)	146	
C11 <i>A</i> —H11 <i>B</i> ···O3 <i>B</i> ⁱⁱ	0.97	2.50	3.394 (4)	153	
C5B—H5BA····O4A ⁱⁱⁱ	0.93	2.57	3.418 (4)	151	

Symmetry codes: (i) -x+1/2, y-1/2, -z+3/2; (ii) -x+3/2, y-1/2, -z+3/2; (iii) x+1/2, -y+3/2, z-1/2.