

 $\gamma = 99.092 \ (1)^{\circ}$

Z = 1

V = 950.83 (15) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.18 \times 0.15~\mathrm{mm}$

4937 measured reflections

3294 independent reflections

3072 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.82 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.013$

316 parameters

 $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.47$ e Å⁻³

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[tetrakis(μ -pentafluorobenzoato- $\kappa^2 O:O'$)dimolybdenum(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$]

Li-Juan Han

Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China

Correspondence e-mail: 08hanlij@tongji.edu.cn

Received 14 July 2011; accepted 5 August 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.024; *wR* factor = 0.061; data-to-parameter ratio = 10.4.

In the title compound, $[Mo_2(C_7F_5O_2)_4(C_{10}H_8N_2)]_n$, the molecule forms a paddle-wheel-type structure. Each Mo2⁴⁺ unit is equatorially coordinated by four pentafluorobenzoate groups, while the axial positions are occupied by two 4,4'-bipyridine molecules. The Mo-Mo bond length of 2.1227 (4) Å is representative of a dimolybdenum quadruple bond. An infinite linear chain parallel to [110] is formed by the Mo₂⁴⁺ unit coordinating axially to the two N atoms of the 4,4'bipyridine ligand [Mo-N = 2.594 (2) Å]. The crystal packing shows molecules linked together into a three-dimensional network via Mo–N coordination interactions and weak π - π stacking interactions between perfluorophenyl rings [centroid–centroid distance = 3.7280 (3) Å and centroid-toplane distance = 3.6103(12) Å between two pentafluorophenyl rings].

Related literature

For background to coordination polymers, see: Batten (2002); Kumar *et al.* (2004). For torsion angles about the pentafluorobenzoate anion, see: Reddy *et al.* (2004); Bach *et al.* (2001); For Mo–Mo quadruple bond lengths, see: Cotton *et al.* (2005).

Experimental

Crystal data

 $\begin{bmatrix} Mo_{2}(C_{7}F_{5}O_{2})_{4}(C_{10}H_{8}N_{2}) \end{bmatrix} \\ M_{r} = 1192.34 \\ \text{Triclinic, } P\overline{1} \\ a = 8.8858 (8) \text{ Å} \\ b = 9.9311 (9) \text{ Å} \\ c = 11.1978 (10) \text{ Å} \\ a = 101.158 (1)^{\circ} \\ \beta = 94.697 (1)^{\circ} \end{bmatrix}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\rm min} = 0.849, T_{\rm max} = 0.884$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.061$ S = 1.013294 reflections

Table 1

Selected bond lengths (Å).

Mo1-O1 Mo1-O6	2.1124 (17) 2.1155 (16)	Mo1-O5	2.1427 (16)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C55−H55A…F35	0.93	2.55	3.152 (2)	122
C51−H51A…F33 ⁱⁱ	0.93	2.78	2.987 (3)	94

Symmetry code: (ii) -x + 1, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

metal-organic compounds

This work was supported by the National Natural Scientific Foundation of China (No. 20741004/B010303).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2094).

References

Bach, A., Lentz, D. & Luger, P. (2001). J. Phys. Chem. A, 105, 7405-7412.

Batten, S. R. (2002). Curr. Opin. Solid State Mater. Sci. 5, 107-114.

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). *Multiple Bonds Between Metal Atoms*, 3rd ed. New York: Springer Science and Business Media Inc. Kumar, T., Uemura, K., Chang, H.-C., Matsuda, R. & Kitagawa, S. (2004).

Angew. Chem. Int. Ed. **43**, 3269–3272. Reddy, L. S., Nangia, A. & Lynch, V. M. (2004). Cryst. Growth Des. **4**, 89–94.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m1235-m1236 [doi:10.1107/S1600536811031734]

catena-Poly[[tetrakis(μ -pentafluorobenzoato- $\kappa^2 O:O'$)dimolybdenum(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$]

Li-Juan Han

S1. Comment

The design and construction of coordination polymers are of great interest due to their structural topologies and potential application as functional materials (Batten, 2002; Kumar, *et al.*, 2004). Here, we report the synthesis and crystal structure of the coordination polymer $[Mo_2(OOCC_6F_5)_4(C_{10}H_8N_2)]_n$.

In the title compound, $Mo_2(C_7F_5O_2)_4(C_{10}H_8N_2)$, (I), the molecule forms a paddle-wheel-type structure. Each quadruply bonded Mo_2^{4+} unit is equatorially coordinated by four pertafluoro-benzoate (OOCC₆F₅) groups and the axial positions have associated with them two 4, 4-bipyridine molecules (Fig. 1). The Mo–Mo bond length of 2.1227 (4) Å is representative for dimolybdenum quadruple bonds (Cotton *et al.*, 2005). The torsion angles between the C₆F₅ group and the connected chelating ring (Mo₂OCO) are 72.081 (3)°, 75.537 (3)°, 22.059 (3)° and 22.422 (3)°, respectively, and relate to the O…F repulsion within the pentafluoro-benzonate anion (Reddy *et al.*, 2004; Bach *et al.*, 2001). Weak π - π stacking interactions between perfluorophenyl rings also affect the 72.081 (3)° and 75.537 (3)° torsion angles.

An infinite, linear chain coordination polymer is formed by the Mo₂⁴⁺ unit coordinating axially to the two N atoms of the 4, 4-bipyridine ligand [Mo–N distance = 2.5938 (2) Å] (Fig. 2). A one-dimensional linear chain is generated by the π - π stacking between perfluorophenyl rings as viewed along the equatorial position of the Mo–Mo quadruple bonds (Fig. 3), [the center-to-center distance = 3.7280 (3) Å and center-to-plane distance = 3.6103 (0) Å between two pentafluorophenyl rings]. Crystal packing shows molecules linked together into a three-dimensional network (Fig. 4) *via* Mo–N coordination interactions and perfluorophenyl rings via weak π – π stacking interactions. Weak C–H…F intermolecular interactions further stabilize the crystal structure [(F…H distances = 2.7879 (15) Å].

S2. Experimental

4, 4-bipyridine (0.312 g, 2 mmol) was dissolved in dichloromethane (30 ml), and the solution was filtered to a Schelenk tube. $Mo_2(OOCC_6F_5)_4$ (0.207 g, 0.2 mmol) was dissolved in ethanol (10 ml), resulting in a clear yellow solution. The yellow solution was carefully layered on the top of the Schelenk tube. Solution diffusion at low temperature (in refrigetator) afforded yellow X-ray quality crystals after three days. Yield: 0.190 g (80%). Anal. Calcd. for $C_{38}H_8N_2O_8F_{20}Mo_2$: C, 38.28; H, 0.68; N, 2.35. Found: C, 38.13; H, 0.53; N, 2.37.

S3. Refinement

The H atoms were positioned geometrically and refined using the riding model with C–H = 0.93 Å for aromatic H, 0.96 Å for methyl H atoms. The U_{iso} parameters for H atoms were constrained to be $1.5U_{eq}$ of the carrier atom for the methyl H atoms and $1.2U_{eq}$ of the carrier atom for the remaining H atoms.

Figure 1

Molecular structure of the title compound drawn with displacement ellipsoids at the 30% probability level. All hydrogen atoms have been omitted for clarity.

Figure 2

Part of a one-dimensional linear chain formed by a Mo–N coordination bond viewed along the *a* axis.

Figure 4

Molecular packing diagram of (I) with a view along the a axis.

catena-Poly[[tetrakis(μ -pentafluorobenzoato- $\kappa^2 O:O'$)dimolybdenum(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$]

Crystal data	
$[Mo_{2}(C_{7}F_{5}O_{2})_{4}(C_{10}H_{8}N_{2})]$ $M_{r} = 1192.34$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.8858 (8) Å b = 9.9311 (9) Å c = 11.1978 (10) Å $a = 101.158 (1)^{\circ}$ $\beta = 94.697 (1)^{\circ}$ $\gamma = 99.092 (1)^{\circ}$ $V = 950 83 (15) \text{ Å}^{3}$	Z = 1 F(000) = 578 $D_x = 2.082 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4122 reflections $\theta = 2.5-27.6^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 293 K Block, yellow $0.20 \times 0.18 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{\min} = 0.849, T_{\max} = 0.884$	493 / measured reflections 3294 independent reflections 3072 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -8 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -13 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.061$	neighbouring sites
S = 1.01	H-atom parameters constrained
3294 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2 + 0.6373P]$
316 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.32 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min} = -0.47 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mo1	0.94356 (2)	0.58128 (2)	0.480838 (17)	0.02757 (8)	_
F11	0.46291 (19)	0.34697 (17)	0.29542 (17)	0.0569 (4)	
F12	0.2509 (2)	0.1493 (2)	0.1523 (2)	0.0712 (5)	
F13	0.3174 (2)	-0.10294 (19)	0.05942 (18)	0.0682 (5)	
F14	0.6015 (2)	-0.15799 (17)	0.11139 (18)	0.0662 (5)	
F15	0.81465 (19)	0.03236 (17)	0.25713 (17)	0.0568 (4)	
F31	1.0522 (2)	0.7439 (2)	0.89717 (17)	0.0701 (5)	
F32	0.9848 (3)	0.8073 (2)	1.13037 (18)	0.0825 (6)	
F33	0.7539 (2)	0.6435 (2)	1.20533 (14)	0.0708 (6)	
F34	0.5986 (3)	0.4110 (2)	1.05142 (19)	0.0823 (6)	
F35	0.6643 (2)	0.3488 (2)	0.81764 (17)	0.0770 (6)	
01	0.75702 (18)	0.43333 (16)	0.38004 (15)	0.0332 (4)	
O2	0.87528 (19)	0.26377 (17)	0.42436 (15)	0.0345 (4)	
05	0.85431 (19)	0.59500 (18)	0.65400 (15)	0.0355 (4)	
O6	1.03083 (19)	0.58024 (17)	0.31053 (15)	0.0352 (4)	
C1	0.7665 (3)	0.3051 (3)	0.3681 (2)	0.0330 (5)	
C3	0.8955 (3)	0.5167 (3)	0.7219 (2)	0.0325 (5)	
C11	0.6483 (3)	0.1984 (3)	0.2857 (2)	0.0341 (5)	
C12	0.5018 (3)	0.2234 (3)	0.2528 (2)	0.0391 (6)	
C13	0.3913 (3)	0.1235 (3)	0.1796 (3)	0.0456 (7)	
C14	0.4231 (3)	-0.0065 (3)	0.1325 (3)	0.0467 (7)	
C15	0.5677 (3)	-0.0340 (3)	0.1609 (2)	0.0437 (6)	
C16	0.6762 (3)	0.0656 (3)	0.2357 (2)	0.0382 (6)	
C31	0.8594 (3)	0.5460 (3)	0.8527 (2)	0.0346 (5)	
C32	0.9392 (3)	0.6610 (3)	0.9340 (2)	0.0428 (6)	

C33	0.9070 (4)	0.6945 (3)	1.0538 (2)	0.0497 (7)	
C34	0.7909 (3)	0.6100 (3)	1.0917 (2)	0.0480 (7)	
C35	0.7115 (3)	0.4929 (3)	1.0133 (3)	0.0502 (7)	
C36	0.7458 (3)	0.4611 (3)	0.8941 (2)	0.0437 (6)	
N1	0.2434 (3)	0.2426 (2)	0.5169 (2)	0.0434 (5)	
C51	0.3883 (4)	0.2800 (3)	0.5640(2)	0.0498 (7)	
H51A	0.4226	0.3727	0.6027	0.060*	
C52	0.1981 (3)	0.1097 (3)	0.4617 (3)	0.0555 (8)	
H52A	0.0966	0.0810	0.4270	0.067*	
C53	0.2934 (3)	0.0113 (3)	0.4527 (3)	0.0540 (8)	
H53A	0.2554	-0.0805	0.4130	0.065*	
C54	0.4463 (3)	0.0507 (3)	0.5034 (2)	0.0377 (6)	
C55	0.4927 (3)	0.1900 (3)	0.5594 (2)	0.0467 (7)	
H55A	0.5938	0.2230	0.5938	0.056*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Mo1	0.03074 (12)	0.03149 (12)	0.02725 (12)	0.01909 (8)	0.00822 (8)	0.00964 (8)
F11	0.0419 (9)	0.0543 (10)	0.0761 (12)	0.0260 (8)	0.0033 (8)	0.0049 (9)
F12	0.0397 (9)	0.0805 (13)	0.0925 (14)	0.0211 (9)	-0.0114 (9)	0.0154 (11)
F13	0.0585 (11)	0.0614 (11)	0.0735 (12)	-0.0033 (9)	-0.0153 (10)	0.0079 (9)
F14	0.0698 (12)	0.0416 (9)	0.0795 (13)	0.0163 (9)	-0.0058 (10)	-0.0049 (9)
F15	0.0458 (9)	0.0479 (9)	0.0739 (12)	0.0251 (8)	-0.0035 (8)	-0.0034 (8)
F31	0.0668 (12)	0.0753 (13)	0.0585 (11)	-0.0139 (10)	0.0155 (9)	0.0085 (9)
F32	0.1018 (17)	0.0801 (14)	0.0504 (11)	0.0059 (12)	0.0050 (11)	-0.0135 (10)
F33	0.0872 (14)	0.1141 (16)	0.0306 (8)	0.0598 (12)	0.0245 (9)	0.0213 (9)
F34	0.0797 (14)	0.1097 (17)	0.0669 (12)	0.0041 (12)	0.0374 (11)	0.0393 (12)
F35	0.0870 (15)	0.0773 (13)	0.0534 (11)	-0.0205 (11)	0.0149 (10)	0.0069 (10)
01	0.0319 (9)	0.0335 (9)	0.0390 (9)	0.0169 (7)	0.0043 (7)	0.0098 (7)
O2	0.0357 (9)	0.0349 (9)	0.0375 (9)	0.0162 (7)	0.0044 (7)	0.0108 (7)
05	0.0391 (9)	0.0449 (10)	0.0318 (9)	0.0260 (8)	0.0126 (7)	0.0124 (7)
O6	0.0403 (10)	0.0412 (9)	0.0334 (9)	0.0225 (8)	0.0121 (7)	0.0153 (7)
C1	0.0331 (13)	0.0395 (13)	0.0328 (12)	0.0160 (11)	0.0105 (10)	0.0123 (10)
C3	0.0317 (12)	0.0401 (13)	0.0312 (12)	0.0150 (11)	0.0092 (10)	0.0116 (10)
C11	0.0344 (13)	0.0394 (13)	0.0339 (12)	0.0131 (11)	0.0097 (10)	0.0131 (10)
C12	0.0380 (14)	0.0440 (14)	0.0426 (14)	0.0178 (12)	0.0109 (11)	0.0162 (12)
C13	0.0342 (14)	0.0573 (17)	0.0504 (16)	0.0141 (13)	0.0022 (12)	0.0196 (14)
C14	0.0457 (16)	0.0500 (16)	0.0420 (15)	0.0011 (13)	-0.0020 (13)	0.0126 (13)
C15	0.0505 (16)	0.0375 (14)	0.0441 (15)	0.0117 (12)	0.0056 (13)	0.0079 (12)
C16	0.0351 (13)	0.0423 (14)	0.0419 (14)	0.0151 (11)	0.0053 (11)	0.0132 (11)
C31	0.0365 (13)	0.0452 (14)	0.0298 (12)	0.0206 (11)	0.0109 (10)	0.0128 (11)
C32	0.0408 (15)	0.0538 (16)	0.0387 (14)	0.0140 (13)	0.0112 (12)	0.0141 (12)
C33	0.0576 (18)	0.0579 (17)	0.0334 (14)	0.0234 (15)	0.0003 (13)	0.0008 (13)
C34	0.0540 (17)	0.076 (2)	0.0283 (13)	0.0404 (16)	0.0159 (12)	0.0177 (14)
C35	0.0463 (16)	0.073 (2)	0.0427 (16)	0.0201 (15)	0.0188 (13)	0.0262 (15)
C36	0.0443 (15)	0.0543 (16)	0.0357 (14)	0.0124 (13)	0.0101 (12)	0.0117 (12)
N1	0.0503 (14)	0.0533 (14)	0.0405 (12)	0.0343 (11)	0.0176 (11)	0.0187 (10)

supporting information

C51	0.0609 (19)	0.0551 (17)	0.0396 (15)	0.0382 (15)	0.0052 (13)	0.0025 (13)	
C52	0.0399 (16)	0.0552 (18)	0.084 (2)	0.0259 (14)	0.0165 (15)	0.0281 (17)	
C53	0.0416 (16)	0.0402 (15)	0.090 (2)	0.0202 (13)	0.0163 (15)	0.0234 (15)	
C54	0.0446 (15)	0.0458 (14)	0.0363 (13)	0.0264 (12)	0.0179 (11)	0.0211 (11)	
C55	0.0491 (16)	0.0586 (17)	0.0360 (14)	0.0320 (14)	0.0019 (12)	0.0018 (12)	

Geometric parameters (Å, °)

Mo1—O2 ⁱ	2.0955 (17)	C11—C12	1.397 (3)	
Mo1-01	2.1124 (17)	C11—C16	1.398 (3)	
Mo106	2.1155 (16)	C12—C13	1.366 (4)	
Mo1—Mo1 ⁱ	2.1227 (4)	C13—C14	1.379 (4)	
Mo1—O5	2.1427 (16)	C14—C15	1.379 (4)	
Mo1—N1 ⁱⁱ	2.594 (2)	C15—C16	1.362 (4)	
F11—C12	1.337 (3)	C31—C32	1.368 (4)	
F12—C13	1.335 (3)	C31—C36	1.379 (4)	
F13—C14	1.325 (3)	C32—C33	1.383 (4)	
F14—C15	1.340 (3)	C33—C34	1.373 (4)	
F15—C16	1.338 (3)	C34—C35	1.365 (4)	
F31—C32	1.338 (3)	C35—C36	1.381 (4)	
F32—C33	1.325 (3)	N1—C51	1.318 (4)	
F33—C34	1.333 (3)	N1—C52	1.327 (4)	
F34—C35	1.341 (3)	C51—C55	1.383 (4)	
F35—C36	1.333 (3)	C51—H51A	0.9300	
01—C1	1.272 (3)	C52—C53	1.385 (4)	
O2—C1	1.274 (3)	C52—H52A	0.9300	
O2-Mo1 ⁱ	2.0955 (17)	C53—C54	1.393 (4)	
О5—С3	1.261 (3)	С53—Н53А	0.9300	
O6—C3 ⁱ	1.261 (3)	C54—C55	1.385 (4)	
C1C11	1.480 (3)	C54—C54 ⁱⁱⁱ	1.489 (5)	
C3—O6 ⁱ	1.261 (3)	С55—Н55А	0.9300	
C3—C31	1.508 (3)			
O2 ⁱ —Mo1—O1	176.82 (6)	F15—C16—C11	120.6 (2)	
O2 ⁱ —Mo1—O6	92.90 (7)	C15-C16-C11	122.5 (2)	
O1—Mo1—O6	85.79 (7)	C32—C31—C36	118.0 (2)	
O2 ⁱ —Mo1—Mo1 ⁱ	92.41 (4)	C32—C31—C3	119.8 (2)	
O1-Mo1-Mo1 ⁱ	90.57 (4)	C36—C31—C3	122.2 (2)	
O6-Mo1-Mo1 ⁱ	93.70 (4)	F31—C32—C31	119.4 (2)	
O2 ⁱ —Mo1—O5	85.43 (7)	F31—C32—C33	118.7 (3)	
01—Mo1—05	95.73 (7)	C31—C32—C33	121.9 (3)	
O6—Mo1—O5	176.63 (6)	F32—C33—C34	120.4 (3)	
Mol ⁱ —Mol—O5	89.29 (4)	F32—C33—C32	120.8 (3)	
C1—O1—Mo1	117.52 (15)	C34—C33—C32	118.9 (3)	
C1—O2—Mo1 ⁱ	116.51 (15)	F33—C34—C35	119.8 (3)	
C3—O5—Mo1	117.24 (14)	F33—C34—C33	119.8 (3)	
C3 ⁱ —O6—Mo1	114.32 (14)	C35—C34—C33	120.5 (2)	
01—C1—O2	122.5 (2)	F34—C35—C34	119.9 (3)	

O1—C1—C11	119.5 (2)	F34—C35—C36	120.3 (3)
O2—C1—C11	118.0 (2)	C34—C35—C36	119.8 (3)
O5—C3—O6 ⁱ	124.7 (2)	F35—C36—C31	119.9 (2)
O5—C3—C31	117.2 (2)	F35—C36—C35	119.0 (3)
O6 ⁱ —C3—C31	118.1 (2)	C31—C36—C35	121.0 (3)
C12—C11—C16	115.6 (2)	C51—N1—C52	116.5 (2)
C12-C11-C1	122.4 (2)	N1-C51-C55	124.1(3)
C16—C11—C1	122.0(2)	N1—C51—H51A	117.9
F_{11} $-C_{12}$ $-C_{13}$	1171(2)	C55-C51-H51A	117.9
F_{11} C_{12} C_{13}	1206(2)	N1-C52-C53	123.8(3)
C_{13} C_{12} C_{11}	120.0(2) 122.3(2)	N1-C52-H52A	118.1
F_{12} C_{13} C_{12}	122.0(2) 121.0(3)	C_{53} — C_{52} —H52A	118.1
$F_{12} = C_{13} = C_{14}$	121.0(3) 1187(3)	C_{52} C_{52} C_{52} C_{54}	110.1 119.7(3)
$C_{12} - C_{13} - C_{14}$	120.3(2)	$C_{52} = C_{53} = C_{54}$	120.2
$F_{12} = C_{13} = C_{14}$	120.5(2)	C54-C53-H53A	120.2
$F_{13} = C_{14} = C_{13}$	120.5(3)	$C_{55} = C_{53} = 1155 \text{ A}$	120.2 116.0 (2)
$C_{15} = C_{14} = C_{13}$	120.0(3)	$C_{55} = C_{54} = C_{55}^{4}$	110.0(2)
$F_{14} = C_{15} = C_{15}$	119.0(3) 1204(2)	$C_{55} - C_{54} - C_{54}$	122.0(3)
$F_{14} = C_{15} = C_{10}$	120.4(2) 110.3(3)	$C_{55} - C_{54} - C_{54}$	122.0(3)
$C_{14} = C_{15} = C_{14}$	119.3(3)	$C_{51} = C_{55} = C_{54}$	119.9 (3)
$E_{10} = C_{10} = C_{14}$	120.3(2) 116.8(2)	C54 C55 H55A	120.1
115-010-015	110.8 (2)	C34—C35—II35A	120.1
$06-M_{01}-01-C1$	91 22 (16)	C1_C11_C16_F15	-2.7(4)
M_{01}^{i} Mol Ol Cl	-2.45(16)	$C_1^{-1} = C_1^{-1} $	-0.8(4)
M01 - M01 - 01 - 01	-01.80(16)	C_{12} C_{11} C_{16} C_{15}	170.2(2)
O_{2}^{i} Mol O_{2}^{i} Cl	-80.66(18)	C1 - C11 - C10 - C13	179.2(2) -721(2)
02 - M01 - 05 - C3	-69.00(10)	05-05-051-052	-72.1(3) 105 4 (3)
$M_{01} = M_{01} = 05 = C_3$	95.52(18)	00 - 03 - 031 - 032	103.4(3) 107.0(2)
M01 - M01 - 05 - 03	2.82(18)	05-05-051-050	107.0(3)
$02 - M01 - 00 - C3^{1}$	98.99 (17)	00 - 03 - 031 - 030	-73.0(3)
$01 - M01 - 06 - C3^{1}$	-83.91(17)	$C_{36} = C_{31} = C_{32} = F_{31}$	1/8.7(2)
$Mo1 - Mo1 - O6 - C3^{-1}$	6.38(17)	$C_3 = C_3 $	-2.2(4)
M01 = 01 = 01 = 02	7.5 (3) 172.20 (15)	$C_{30} = C_{31} = C_{32} = C_{33}$	-1.2(4)
	-1/2.39(15)	$C_3 = C_3 $	1/7.9 (2)
Mol = 02 - 01 - 01	-8.4(3)	$F_{31} = C_{32} = C_{33} = F_{32}$	0.9 (4)
M01 - 02 - 01 - 01	1/1.2/(15)	C_{31} — C_{32} — C_{33} — F_{32}	-1/9.3(3)
$M01 = 05 = 03 = 06^{\circ}$	-9.2(3)	$F_{31} = C_{32} = C_{33} = C_{34}$	1/9.8(2)
M01 = 05 = 0.3 = 0.31	168.03(16)	$C_{31} = C_{32} = C_{33} = C_{34}$	-0.3(4)
	-22.4(3)	F32—C33—C34—F33	1./(4)
02-C1-C11-C12	157.9 (2)	C32—C33—C34—F33	-177.3(2)
OI - CI - CII - CI6	157.6 (2)	F32—C33—C34—C35	-17/9.4(3)
02-01-011-016	-22.1(3)	C32—C33—C34—C35	1.7 (4)
C16—C11—C12—F11	-179.9(2)	F33—C34—C35—F34	-1.1(4)
C1—C11—C12—F11	0.0 (4)	C33—C34—C35—F34	179.9 (3)
C16—C11—C12—C13	2.0 (4)	F33-C34-C35-C36	177.4 (3)
C1—C11—C12—C13	-178.1(2)	C33—C34—C35—C36	-1.5 (4)
F11—C12—C13—F12	0.0 (4)	C32—C31—C36—F35	179.4 (2)
C11—C12—C13—F12	178.2 (2)	C3—C31—C36—F35	0.3 (4)
F11—C12—C13—C14	-179.9 (2)	C32—C31—C36—C35	1.3 (4)

C11—C12—C13—C14 F12—C13—C14—F13 C12—C13—C14—F13 F12—C13—C14—C15	-1.8 (4) 1.4 (4) -178.6 (2) -179.6 (3)	C3—C31—C36—C35 F34—C35—C36—F35 C34—C35—C36—F35 F34—C35—C36—C31	-177.8 (2) 0.5 (4) -178.0 (3) 178.6 (3)
C12—C13—C14—C15 F13—C14—C15—F14 C13—C14—C15—F14 F12—C14—C15—F14	0.3 (4) 1.7 (4) -177.2 (3)	C34—C35—C36—C31 C52—N1—C51—C55 C51—N1—C52—C53	$\begin{array}{c} 0.0 (4) \\ -0.3 (4) \\ 0.6 (4) \\ 0.1 (5) \end{array}$
C13-C14-C15-C16 F14-C15-C16-F15 C14-C15-C16-F15	1/9.7(2) 0.8(4) -0.7(4) -178.7(2)	N1C52C53C54 C52C53C54C55 C52C53C54C54 ⁱⁱⁱ N1C51C55C54	-0.1(3) -0.7(4) 179.9(3) -0.5(4)
F14—C15—C16—C11 C14—C15—C16—C11 C12—C11—C16—F15	177.5 (2) -0.5 (4) 177.3 (2)	C53—C54—C55—C51 C54 ⁱⁱⁱ —C54—C55—C51	1.0 (4) -179.6 (3)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
C55—H55A…F35	0.93	2.55	3.152 (2)	122
C51—H51A····F33 ^{iv}	0.93	2.78	2.987 (3)	94

Symmetry code: (iv) -x+1, -y+1, -z+2.