

metal-organic compounds

V = 2231.7 (3) Å³

Mo $K\alpha$ radiation

 $0.33 \times 0.23 \times 0.12 \text{ mm}$

43689 measured reflections

5640 independent reflections

4832 reflections with $I > 2\sigma(I)$

 $\mu = 0.68 \text{ mm}^{-3}$

T = 173 K

 $R_{\rm int} = 0.036$

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[bis(diphenylphosphinoyl)acetonitrile- $\kappa^2 O, O'$]copper(II)

Sicelo V. Sithole,^a Richard J. Staples^b and Werner E. Van Zyl^a*

^aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and ^bDepartment of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA Correspondence e-mail: vanzylw@ukzn.ac.za

Received 3 August 2011; accepted 4 August 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.086; data-to-parameter ratio = 19.7.

The title complex, $[Cu(C_{26}H_{20}NO_2P_2)_2]$, contains a central Cu^{II} atom surrounded by two homoleptic bidentate ligands, which form two five-membered chelate rings. The Cu atom binds to four O atoms, resulting in a four-coordinate squareplanar complex. The asymmetric unit contains half of the complex, the other half being completed by inversion symmetry. The Cu-O bond lengths have similar distances, viz. 1.9153 (10) Å for the pair opposite (trans) each other and 1.9373 (10) Å for the other (trans) pair. The P–O bond lengths are 1.5250 (11) Å, indicating significant electron delocalization across the O-P-C-P-O atoms in the chelate ring, resulting in a longer P-O bond length when compared to a formal double-bond P=O character (much shorter at approximately 1.47 Å). The two intersecting O-Cu-O angles are both linear at 180°, whilst the remaining Lshaped O-Cu-O bond angles are 88.26 (5) and 91.74 (5)°. The C-C=N fragment is slightly distorted from linearity at 177.44 (19)° and the C=N bond length of 1.151 (2) Å indicates predominantly triple-bond character.

Related literature

For recent work on bis(diphenylphosphane)acetonitrile, see: Braun *et al.* (2007); Spannhoff *et al.* (2009). For a bis(diphenylphosphane)acetonitrile complex of gold(I), see: Sithole *et al.* (2011) and for bis(diphenylphosphane)acetonitrile oxides and sulfides (and their lithiated compounds), see: Braun *et al.* (2008). For background to our interest in dinuclear gold(I) complexes, see: Van Zyl (2010)

Experimental

Crystal data [Cu(C₂₆H₂₀NO₂P_{2)2] $M_r = 944.28$ Monoclinic, P2₁/n a = 9.5917 (7) Å b = 25.8793 (19) Å c = 9.6648 (7) Å $\beta = 111.526$ (1)°}

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{min} = 0.807, T_{max} = 0.920$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.086$ S = 1.03

5640 reflections

6 parameters

286 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.49$ e Å⁻³ $\Delta \rho_{min} = -0.32$ e Å⁻³

Data collection: *COSMO* (Bruker, 2009); cell refinement: *APEX2* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

WEvZ gratefully acknowledges financial support through a UKZN Competitive Grant, as well as Rand Refineries (South Africa) for a gift of gold salt. SVS thanks the National Research Foundation (NRF) for an Innovative Grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2023).

References

- Braun, L., Kehr, G., Fröhlich, R. & Erker, G. (2008). Inorg. Chim. Acta, 361, 1668–1675.
- Braun, L., Liptau, P., Kehr, G., Ugolotti, J., Fröhlich, R. & Erker, G. (2007). Dalton Trans. pp. 1409–1415.
- Bruker (2009). APEX2, COSMO, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sithole, S. V., Staples, R. J. & van Zyl, W. E. (2011). Acta Cryst. E67, m64.
- Spannhoff, K., Kuhl, N., Kehr, G., Fröhlich, R. & Erker, G. (2009). J. Am. Chem. Soc. 131, 17836–17842.
- Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.

supporting information

Acta Cryst. (2011). E67, m1217 [doi:10.1107/S1600536811031564] Bis[bis(diphenylphosphinoyl)acetonitrile-κ²O,O']copper(II) Sicelo V. Sithole, Richard J. Staples and Werner E. Van Zyl

S1. Comment

The chemistry of the ligand bis(diphenylphosphane)acetonitrile, (dppm-CN), was recently revived when a facile preparation thereof was reported, starting with readily available acetonitrile (Braun *et al.*, 2007). Development of its chemistry followed thereafter, including the observed sharp increase in acidity by the replacement of a proton with a cyano group on the bridging carbon atom (Spannhoff *et al.*, 2009, and references therein). In continuing our interest in dinuclear gold(I) complexes (Van Zyl, 2010), we recently reported the first structural investigation of a chlorogold(I) complex with the ligand dppm-CN, (Sithole *et al.*, 2011).

A relatively straightforward method for the preparation of complex (I) would entail the reaction between Li[N=C--- $C(Ph_2P=O)_2$], prepared as described (Braun *et al.*, 2008), and $CuCl_2$ or $Cu(NO_3)_2$ (molar ratio 2:1), leading to formation of complex (I) after removal of LiCl or LiNO₃. However, in the present study, we report complex (I) was obtained in a surprisingly different manner. Formation of (I) occurred post-synthesis during the crystallization process. An initial reaction between the well characterized complexes $[Au_2\{dppm-CN\}_2]$, and $[Cu(CH_3CN)_4][PF_6]$ (1:1 molar ratio) was performed in an attempt to coordinate the copper(I) center to the CN group. The Experimental section describes a complex formed and isolated from this reaction as a colorless, free-flowing powder and suggests no sign of metal oxidation (both Au(I) and Cu(I) are closed-shell d^{10} systems and are usually colorless or pale yellow compounds, hence any sign of oxidation leading to deep color changes for either metal is readily observed). However, during subsequent crystallization procedures obvious oxidation occurred, firstly at the metal center where the precursor colorless Cu(I) species oxidized to a green-colored Cu(II) complex. Secondly, the P atoms in the anionic [dppm-CN] ligand did oxidize to the corresponding oxide analogue (not uncommon in the presence of air or moisture), and the ligand transferred also from the gold(I) center to the much more oxophillic Cu(II) center whilst retaining the negative anionic charge, *i.e.* it did not become protonated and thus neutral in the process. No attempt was made in this study to determine the concurrent reduced species, but presumably the Au(I) species reduced to Au(0) metal. Single crystal X-ray analysis subsequently revealed the green colored material to be identified as complex (I).

S2. Experimental

Preparation and characterization of complex obtained pre-crystallization: A Schlenk flask equipped with a magnetic stirrer bar was charged with previously prepared [Au₂{dppm-CN}₂] complex (400 mg, 0.33 mmol) dissolved in dichloromethane (5 ml). A dichloromethane (8 ml) solution of [Cu(CH₃CN)₄][PF₆] (123 mg, 0.33 mmol) was then added dropwise to the gold-containing solution at room temperature. The solution turned cloudy and was stirred for an hour, after which all dichloromethane solvent was removed under reduced pressure. Dry Et₂O (2 *x* 2 ml) was added to wash the product which was further dried in *vacuo* for 2 hrs. The product was obtained as a free flowing off-white powder. Yield: (387 mg, 0.21 mmol) 65%; Mp: 155–160 °C (decompose); ¹H NMR (400 MHz, CDCl₃, 298 K) $\delta_{\rm H}$ = 7.68–7.53 (m, 40H, Ph); ³¹P NMR (101 MHz, CDCl₃, 298 K) $\delta_{\rm P}$ = 22.8 (s, 2P). Green single crystals were obtained by slow evaporation of a dichloro-

methane solution of the complex.

S3. Refinement

All non-hydrogen atoms are refined anisotropically. H atoms were calculated by geometrical methods and refined as a riding model, with C—H distace 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The crystal used for the diffraction study showed no decomposition during data collection.

Figure 1

Molecular structure of the title complex. Ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the reference ones by the (-x - y, 1 - z) symmetry transformation.

Bis[bis(diphenylphosphinoyl)acetonitrile- $\kappa^2 O, O'$] copper(II)

Crystal data

$[Cu(C_{26}H_{20}NO_2P_2)_2]$
$M_r = 944.28$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 9.5917 (7) Å
<i>b</i> = 25.8793 (19) Å
c = 9.6648 (7) Å
$\beta = 111.526 (1)^{\circ}$
V = 2231.7 (3) Å ³
Z = 2

F(000) = 974 $D_x = 1.405 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9929 reflections $\theta = 2.4-28.7^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 173 KBlock, green $0.33 \times 0.23 \times 0.12 \text{ mm}$ Data collection

Bruker APEXII CCD	43689 measured reflections
diffractometer	5640 independent reflections
Radiation source: fine-focus sealed tube	4832 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
Detector resolution: 836.6 pixels mm ⁻¹	$\theta_{\text{max}} = 29.1^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
ω ,and/f 0.5° scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan	$k = -34 \rightarrow 34$
(SADABS; Bruker, 2009)	$l = -13 \rightarrow 13$
$T_{\min} = 0.807, \ T_{\max} = 0.920$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
S = 1.03	H-atom parameters constrained
5640 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0428P)^2 + 1.1569P]$
286 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a glass fiber or nylon loop using Paratone oil for Mo radiation and Mineral oil for Copper radiation. Data were measured using omega and phi scans of 0.5° per frame for 20 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using *APEX* II software and refined using *SAINT* on all observed reflections.Data reduction was performed using the *SAINT* software which corrects for Lp. Scaling and absorption corrections were applied using *SADABS6* multi-scan technique, supplied by George Sheldrick. The structures are solved by the direct method using the *SHELXS97* program and refined by least squares method on F2, *SHELXL97*, incorporated in *SHELXTL*-PC V 6.14.

All H atoms were placed in calculated positions and refined using a riding model. C—H(aromatic) = 0.94 Å and $U_{iso}(H)$ = 1.2Ueq(C) C—H (alaphatic) = 0.99 Å and $U_{iso}(H)$ = 1.2Ueq(C) CH2 = 0.98 Å and $U_{iso}(H)$ = 1.2Ueq(C) CH3 = 0.97Å and $U_{iso}(H)$ = 1.5Ueq(C) N—H = 0.86 (0.92)Å and $U_{iso}(H)$ = 1.2 $U_{eq}(N)$ O—H(alcohol) = 0.85Åand $U_{iso}(H)$ = 1.2Ueq(O) O—H(acid) = 0.82 Å and $U_{iso}(H)$ = 1.5Ueq(O)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.0000	0.0000	0.5000	0.01782 (8)
P1	0.11652 (4)	0.085542 (15)	0.73438 (4)	0.02022 (9)
P2	0.19258 (4)	0.090614 (15)	0.46718 (4)	0.01886 (9)
01	-0.01591 (12)	0.05965 (4)	0.61444 (12)	0.0222 (2)

O2	0.12911 (12)	0.03636 (4)	0.42218 (12)	0.0230 (2)
N1	0.49225 (17)	0.14605 (6)	0.81575 (19)	0.0374 (4)
C1	0.24792 (17)	0.10182 (6)	0.65683 (17)	0.0217 (3)
C2	0.38298 (18)	0.12620 (6)	0.74163 (18)	0.0243 (3)
C3	0.04936 (19)	0.14124 (6)	0.80190 (19)	0.0259 (3)
C4	-0.1033 (2)	0.15090 (8)	0.7557 (2)	0.0349 (4)
H4	-0.1730	0.1273	0.6911	0.042*
C5	-0.1545 (3)	0.19521 (8)	0.8038 (3)	0.0474 (5)
Н5	-0.2590	0.2017	0.7729	0.057*
C6	-0.0534 (3)	0.22945 (8)	0.8963 (3)	0.0525 (6)
H6	-0.0884	0.2598	0.9284	0.063*
C7	0.0989 (3)	0.22001 (9)	0.9432 (3)	0.0571 (7)
H7	0.1680	0.2438	1.0074	0.069*
C8	0.1504 (2)	0.17605 (8)	0.8966 (3)	0.0442 (5)
H8	0.2550	0.1695	0.9291	0.053*
C9	0.19949 (18)	0.04236 (6)	0.88816 (18)	0.0241 (3)
C10	0 2915 (2)	0.00309(7)	0 87194 (19)	0.0289(4)
H10	0.3206	0.0028	0 7880	0.035*
C11	0.3408 (2)	-0.03571(7)	0.9783(2)	0.0336(4)
H11	0.4036	-0.0625	0.9670	0.040*
C12	0 2983 (2)	-0.03529(8)	1 1009 (2)	0.0356(4)
H12	0.3309	-0.0621	1 1729	0.043*
C13	0.2088 (3)	0.00393 (8)	1 1186 (2)	0.0389(4)
H13	0.1812	0.0044	1 2035	0.047*
C14	0.1591(2)	0.04268(7)	1.2035 1.0126(2)	0.0335(4)
H14	0.0972	0.04200 (7)	1.0120 (2)	0.0333 (4)
C15	0.0572 0.05405 (18)	0.13679 (6)	0.36258 (18)	0.070
C16	0.05403(18)	0.13075(0) 0.18605(7)	0.30238(18) 0.4181(3)	0.0248(3)
H16	0.1270	0.10003 (7)	0.5112	0.053*
C17	-0.0536(3)	0.1933 0.22178 (0)	0.3112 0.3370 (3)	0.055
H17	-0.0526	0.22178 ())	0.3750	0.0025 (7)
C18	-0.1616(2)	0.2558 0.20742(10)	0.3750 0.2045 (3)	0.075°
U18	-0.2361	0.20742 (10)	0.2045 (5)	0.0390 (7)
П18 С10	-0.2301	0.2510	0.1303	0.072°
U19 U10	-0.1031(2) -0.2282	0.13801 (10)	0.1464(2)	0.0405 (5)
П19 С20	-0.2383	0.1493 0.12207 (8)	0.0301	0.030°
C20	-0.05557 (19)	0.12507 (8)	0.22008 (19)	0.0310 (4)
H20	-0.0337	0.0894	0.1808	0.038
C21	0.35357(17)	0.09801(0) 0.12212(7)	0.42010(17)	0.0226(3)
0.22	0.3018 (2)	0.15515 (7)	0.3125(2)	0.0322 (4)
H22	0.2780	0.1543	0.2610	0.039*
C23	0.4920 (2)	0.13646 (9)	0.2805 (2)	0.0445 (5)
H23	0.4968	0.1099	0.2069	0.053*
C24	0.6140 (2)	0.10571 (8)	0.3557 (2)	0.0406 (5)
H24	0.7030	0.1085	0.3347	0.049*
C25	0.6072 (2)	0.07084 (8)	0.4614 (2)	0.0344 (4)
H25	0.6909	0.0494	0.5118	0.041*
C26	0.47879 (18)	0.06714 (7)	0.49360 (19)	0.0272 (3)
H26	0.4743	0.0431	0.5661	0.033*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.01623 (13)	0.01786 (13)	0.01979 (13)	-0.00193 (9)	0.00712 (10)	-0.00220 (9)
P1	0.02000 (19)	0.02058 (19)	0.02087 (19)	-0.00208 (14)	0.00841 (15)	-0.00352 (14)
P2	0.01714 (18)	0.01878 (18)	0.02072 (19)	-0.00176 (14)	0.00704 (15)	-0.00045 (14)
01	0.0191 (5)	0.0225 (5)	0.0259 (6)	-0.0019 (4)	0.0093 (4)	-0.0054 (4)
O2	0.0263 (6)	0.0213 (5)	0.0259 (6)	-0.0055 (4)	0.0148 (5)	-0.0042 (4)
N1	0.0250 (8)	0.0389 (9)	0.0417 (9)	-0.0058 (6)	0.0046 (7)	-0.0069 (7)
C1	0.0187 (7)	0.0261 (7)	0.0206 (7)	-0.0035 (6)	0.0075 (6)	-0.0018 (6)
C2	0.0233 (8)	0.0237 (7)	0.0255 (8)	0.0009 (6)	0.0086 (6)	0.0004 (6)
C3	0.0324 (9)	0.0210 (7)	0.0281 (8)	0.0001 (6)	0.0157 (7)	-0.0031 (6)
C4	0.0348 (10)	0.0355 (10)	0.0347 (10)	0.0061 (8)	0.0130 (8)	-0.0032 (8)
C5	0.0535 (13)	0.0428 (11)	0.0518 (13)	0.0210 (10)	0.0262 (11)	0.0052 (10)
C6	0.0843 (18)	0.0255 (9)	0.0676 (15)	0.0096 (10)	0.0512 (14)	-0.0018 (10)
C7	0.0759 (17)	0.0362 (11)	0.0741 (17)	-0.0183 (11)	0.0450 (14)	-0.0285 (11)
C8	0.0405 (11)	0.0404 (11)	0.0563 (13)	-0.0104 (9)	0.0231 (10)	-0.0226 (10)
C9	0.0243 (8)	0.0250 (8)	0.0229 (7)	-0.0035 (6)	0.0084 (6)	-0.0024 (6)
C10	0.0286 (9)	0.0334 (9)	0.0257 (8)	0.0013 (7)	0.0113 (7)	0.0007 (7)
C11	0.0298 (9)	0.0327 (9)	0.0353 (9)	0.0039 (7)	0.0085 (7)	0.0027 (7)
C12	0.0378 (10)	0.0360 (9)	0.0263 (9)	-0.0029 (8)	0.0039 (7)	0.0057 (7)
C13	0.0523 (12)	0.0420 (11)	0.0253 (9)	-0.0019 (9)	0.0177 (8)	0.0005 (8)
C14	0.0424 (10)	0.0330 (9)	0.0298 (9)	0.0018 (8)	0.0187 (8)	-0.0023 (7)
C15	0.0210 (7)	0.0271 (8)	0.0262 (8)	0.0006 (6)	0.0085 (6)	0.0041 (6)
C16	0.0452 (11)	0.0274 (9)	0.0499 (12)	0.0070 (8)	0.0062 (10)	0.0019 (8)
C17	0.0715 (17)	0.0327 (11)	0.0784 (18)	0.0211 (11)	0.0216 (14)	0.0119 (11)
C18	0.0472 (13)	0.0583 (15)	0.0683 (16)	0.0239 (11)	0.0151 (12)	0.0355 (13)
C19	0.0283 (10)	0.0674 (15)	0.0378 (11)	0.0030 (9)	0.0055 (8)	0.0239 (10)
C20	0.0244 (8)	0.0437 (10)	0.0256 (8)	-0.0016 (7)	0.0077 (7)	0.0058 (7)
C21	0.0211 (7)	0.0237 (7)	0.0236 (7)	-0.0037 (6)	0.0090 (6)	-0.0034 (6)
C22	0.0300 (9)	0.0331 (9)	0.0369 (10)	-0.0013 (7)	0.0162 (8)	0.0069 (7)
C23	0.0454 (12)	0.0495 (12)	0.0491 (12)	-0.0050 (9)	0.0299 (10)	0.0114 (10)
C24	0.0314 (10)	0.0491 (11)	0.0514 (12)	-0.0077 (8)	0.0269 (9)	-0.0045 (9)
C25	0.0231 (8)	0.0397 (10)	0.0422 (10)	0.0016 (7)	0.0141 (8)	-0.0061 (8)
C26	0.0239 (8)	0.0287 (8)	0.0293 (8)	-0.0006 (6)	0.0102 (7)	-0.0001 (7)

Geometric parameters (Å, °)

Cu1—O2	1.9153 (10)	C11—C12	1.388 (3)
Cu1—O2 ⁱ	1.9153 (10)	C11—H11	0.9500
Cu1—O1 ⁱ	1.9373 (10)	C12—C13	1.380 (3)
Cu1—01	1.9373 (10)	C12—H12	0.9500
P101	1.5250 (11)	C13—C14	1.387 (3)
P1—C1	1.7381 (16)	C13—H13	0.9500
P1—C9	1.7953 (17)	C14—H14	0.9500
P1—C3	1.7963 (16)	C15—C16	1.383 (3)
Р2—О2	1.5287 (11)	C15—C20	1.397 (2)
P2—C1	1.7353 (16)	C16—C17	1.391 (3)

P2—C21	1.7929 (16)	С16—Н16	0.9500
P2—C15	1.7972 (16)	C17—C18	1.376 (4)
N1—C2	1.151 (2)	С17—Н17	0.9500
C1—C2	1.403 (2)	C18—C19	1.373 (4)
C3—C4	1.388 (2)	C18—H18	0.9500
C3—C8	1.392 (3)	C19—C20	1.381 (3)
C4—C5	1.393 (3)	C19—H19	0.9500
C4—H4	0.9500	C20—H20	0.9500
C5—C6	1 374 (3)	$C_{21} - C_{22}$	1 389 (2)
C5—H5	0.9500	$C_{21} - C_{26}$	1.396(2)
C6—C7	1 383 (4)	C^{22}	1.395(2)
С6—Н6	0.9500	C22H22	0.9500
C7-C8	1 380 (3)	$C_{22} = 1122$ $C_{23} = C_{24}$	1 381 (3)
C7—H7	0.9500	C23_H23	0.9500
	0.9500	C24 C25	1.382(3)
$C_0 = C_1 A$	1.302(2)	$C_{24} = C_{23}$	1.382 (3)
C_{2}	1.392(2) 1.302(2)	C_{24} C_{124} C_{25} C_{26}	1.380(2)
C_{2}	1.392 (2)	$C_{25} = C_{20}$	1.380 (2)
	1.390 (2)	C25—H25	0.9500
C10—H10	0.9500	C26—H26	0.9500
Ω^2 —Cu1— Ω^2^i	180.0	C12—C11—C10	119 92 (17)
$02-Cu1-O1^{i}$	88 26 (5)	C12—C11—H11	120.0
02^{i} Cu1 O1 ⁱ	91 74 (5)	C10-C11-H11	120.0
02 - Cu1 - 01	91 74 (5)	C_{13} C_{12} C_{11}	120.0 120.17(17)
$O2^{i} - Cu1 - O1$	88 26 (5)	C_{13} C_{12} H_{12}	110.0
$O_{2}^{i} - C_{u1} - O_{1}^{i}$	180.0	C_{11} C_{12} H_{12}	119.9
O1 P1 C1	108 10 (7)	C_{12} C_{13} C_{14}	120.08 (18)
$O_1 = P_1 = O_1$	100.19(7) 110.39(7)	C12 - C13 - C14	120.08 (18)
$C_1 = P_1 = C_2$	100.66 (8)	$C_{12} = C_{13} = H_{13}$	120.0
C1 - F1 - C9	109.00(6) 109.61(7)	C12 - C14 - C0	120.0
C1 = P1 = C2	100.01(7)	C_{13} C_{14} C	120.30 (18)
C1 - P1 - C3	112.00(8)	C13 - C14 - H14	119.9
C_{9} P_{1} C_{3}	107.93 (8)	$C_{1} = C_{14} = H_{14}$	119.9
02-P2-C1	112.92 (7)	C16 - C15 - C20	119.59 (17)
02-P2-C21	109.10(7)	C16-C15-P2	119.98 (14)
C1 - P2 - C21	106.93 (7)	C_{20} = C_{15} = P_{2}	120.42 (13)
02 - P2 - C15	108.40 (7)		120.1 (2)
C1 = P2 = C15	111.07 (8)	C15—C16—H16	119.9
C21—P2—C15	108.31 (8)	C17—C16—H16	119.9
PI—OI—Cul	124.47 (6)	C18—C17—C16	119.5 (2)
P2—O2—Cu1	125.94 (6)	C18—C17—H17	120.3
C2—C1—P2	123.44 (12)	C16—C17—H17	120.3
C2—C1—P1	121.15 (12)	C19—C18—C17	120.9 (2)
P2—C1—P1	115.20 (9)	C19—C18—H18	119.5
N1—C2—C1	177.44 (19)	C17—C18—H18	119.5
C4—C3—C8	119.55 (16)	C18—C19—C20	120.0 (2)
C4—C3—P1	120.28 (13)	C18—C19—H19	120.0
C8—C3—P1	120.13 (14)	C20—C19—H19	120.0
C3—C4—C5	120.01 (19)	C19—C20—C15	119.80 (19)

$C_3 C_4 H_4$	120.0	C10 C20 H20	120.1
$C_5 C_4 H_4$	120.0	$C_{15} = C_{20} = H_{20}$	120.1
$C_{5} = C_{4} = 114$	120.0	$C_{13} = C_{20} = 1120$	120.1
C6 C5 H5	119.8 (2)	$C_{22} = C_{21} = C_{20}$	119.05(13)
$C_0 = C_5 = H_5$	120.1	$C_{22} = C_{21} = 12$	123.03(13)
C4 - C3 - H3	120.1	C_{20} C_{21} F_{2}	117.27(12)
$C_{5} = C_{6} = C_{7}$	120.49 (19)	$C_{21} = C_{22} = C_{23}$	119.39 (17)
С5—С6—Н6	119.8	C21—C22—H22	120.2
$C = C = H \delta$	119.8	C23—C22—H22	120.2
	120.0 (2)	$C_{24} = C_{23} = C_{22}$	120.19 (18)
C8—C/—H7	120.0	C24—C23—H23	119.9
С6—С7—Н7	120.0	С22—С23—Н23	119.9
C7—C8—C3	120.1 (2)	C23—C24—C25	120.25 (17)
С7—С8—Н8	120.0	C23—C24—H24	119.9
С3—С8—Н8	120.0	C25—C24—H24	119.9
C14—C9—C10	119.37 (16)	C26—C25—C24	120.03 (18)
C14—C9—P1	122.14 (13)	C26—C25—H25	120.0
C10—C9—P1	117.91 (13)	С24—С25—Н25	120.0
С11—С10—С9	120.14 (17)	C25—C26—C21	120.27 (17)
C11—C10—H10	119.9	C25—C26—H26	119.9
С9—С10—Н10	119.9	C21—C26—H26	119.9
C1—P1—O1—Cu1	54.82 (10)	C1—P1—C9—C14	146.86 (15)
C9—P1—O1—Cu1	-65.18 (10)	C3—P1—C9—C14	24.52 (17)
C3—P1—O1—Cu1	176.68 (8)	O1—P1—C9—C10	77.18 (14)
O2—Cu1—O1—P1	-59.93 (8)	C1—P1—C9—C10	-41.93 (15)
O2 ⁱ —Cu1—O1—P1	120.07 (8)	C3—P1—C9—C10	-164.26 (13)
O1 ⁱ —Cu1—O1—P1	-147 (6)	C14—C9—C10—C11	0.8 (3)
C1—P2—O2—Cu1	40.14 (11)	P1-C9-C10-C11	-170.67 (14)
C21—P2—O2—Cu1	158.90 (8)	C9—C10—C11—C12	0.0 (3)
C15—P2—O2—Cu1	-83.36 (10)	C10-C11-C12-C13	-0.9(3)
O2 ⁱ —Cu1—O2—P2	-122 (9)	C11—C12—C13—C14	1.0 (3)
O1 ⁱ —Cu1—O2—P2	-174.51 (9)	C12—C13—C14—C9	-0.2(3)
01—Cu1—O2—P2	5,49 (9)	C10-C9-C14-C13	-0.7(3)
02 - P2 - C1 - C2	135 75 (13)	P1	170.41(15)
$C_{21} = P_{2} = C_{1} = C_{2}$	15 74 (16)	02 - P2 - C15 - C16	154 64 (15)
$C_{15} = P_{2} = C_{1} = C_{2}$	-10224(15)	$C1 - P^2 - C15 - C16$	30.03 (18)
$0^{2}-P^{2}-C^{1}-P^{1}$	-49 44 (11)	$C_{1} = P_{2} = C_{15} = C_{16}$	-87 11 (17)
$C_{21} = P_{2} = C_{1} = P_{1}$	-169.45(9)	$02 P_2 C_{15} C_{20}$	-24.48(16)
C_{15} P_{2} C_{1} P_{1}	7257(11)	C1 - P2 - C15 - C20	$-149\ 10\ (14)$
$O_1 = P_1 = C_1 = C_2$	-17075(12)	$C_{1}^{-12} = C_{15}^{-13} = C_{20}^{-20}$	149.10(14)
$C_1 = C_1 = C_2$	1/3.73(13)	$C_{21} - 12 - C_{13} - C_{20}$	93.70(13)
$C_{2} = P_{1} = C_{1} = C_{2}$	-39.50(13)	$C_{20} = C_{15} = C_{10} = C_{17}$	-0.4(3)
$C_3 = P_1 = C_1 = C_2$	5.21(11)	$P_2 = C_{13} = C_{10} = C_{17}$	-1/9.33(19)
$V_1 - r_1 - V_1 - r_2$	3.31(11)	$C_{13} - C_{10} - C_{17} - C_{18} - C_{10}$	1.2 (4)
U_{2} H_{1} U_{1} H_{2}	125.76 (9)	C10 - C1/ - C18 - C19	-1.0(4)
$V_3 - P_1 - V_1 - P_2$	-114.40 (10)	C1/-C18-C19-C20	0.1 (4)
P2 - C1 - C2 - N1	1/8 (100)	C18 - C19 - C20 - C15	0.7 (3)
P1 - C1 - C2 - N1	4 (4)	C16—C15—C20—C19	-0.5 (3)
O1—P1—C3—C4	6.89 (17)	P2-C15-C20-C19	178.61 (14)

C1—P1—C3—C4	126.36 (15)	O2—P2—C21—C22	113.92 (15)
C9—P1—C3—C4	-112.80 (15)	C1—P2—C21—C22	-123.65 (15)
O1—P1—C3—C8	-170.65 (15)	C15—P2—C21—C22	-3.87 (17)
C1—P1—C3—C8	-51.19 (18)	O2—P2—C21—C26	-64.13 (14)
C9—P1—C3—C8	69.66 (17)	C1—P2—C21—C26	58.30 (14)
C8—C3—C4—C5	0.1 (3)	C15—P2—C21—C26	178.08 (13)
P1—C3—C4—C5	-177.50 (15)	C26—C21—C22—C23	-0.9 (3)
C3—C4—C5—C6	0.5 (3)	P2-C21-C22-C23	-178.91 (15)
C4—C5—C6—C7	-0.6 (3)	C21—C22—C23—C24	-0.1 (3)
C5—C6—C7—C8	0.3 (4)	C22—C23—C24—C25	1.0 (3)
C6—C7—C8—C3	0.3 (4)	C23—C24—C25—C26	-0.9 (3)
C4—C3—C8—C7	-0.4 (3)	C24—C25—C26—C21	-0.2 (3)
P1—C3—C8—C7	177.14 (18)	C22—C21—C26—C25	1.1 (3)
O1—P1—C9—C14	-94.03 (15)	P2-C21-C26-C25	179.18 (14)

Symmetry code: (i) -x, -y, -z+1.