Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-(Cyclohexane-1,1-diyl)dianilinium dichloride monohydrate

Hui-Fen Qian^a* and Wei Huang^b

^aCollege of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^bState Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: qhf@njut.edu.cn

Received 15 July 2011; accepted 15 August 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.005 Å; R factor = 0.065; wR factor = 0.212; data-to-parameter ratio = 13.8.

In the title compound, $C_{18}H_{24}N_2^{2+}\cdot 2Cl^-\cdot H_2O$, both the cation and the water molecule lie on a twofold crystallographic axis. In the cation, the two benzene rings are perpendicular to each other, making a symmetry-constrained dihedral angle of 90°. In the crystal, $N-H\cdots Cl$, $O-H\cdots Cl$ and $N-H\cdots O$ hydrogen bonds result in the formation of a three-dimensional network.

Related literature

For related structures, see: Hanton *et al.* (1992); Qian & Huang (2010).

Experimental

Crystal data $C_{18}H_{24}N_2^{2+}\cdot 2Cl^-\cdot H_2O$

 $M_r = 357.31$

Monoclinic, $P2_1/m$ a = 8.442 (3) Å b = 9.548 (4) Å c = 12.098 (5) Å $\beta = 107.085$ (5)° V = 932.1 (6) Å³

Data collection

Bruker 1K CCD area-detector	4705 measured reflections
diffractometer	1735 independent reflections
Absorption correction: multi-scan	1158 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.102$
$T_{\min} = 0.959, \ T_{\max} = 0.965$	

Z = 2

Mo $K\alpha$ radiation

 $0.12 \times 0.12 \times 0.10 \text{ mm}$

 $\mu = 0.35 \text{ mm}^-$

T = 291 K

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.065 & 126 \text{ parameters} \\ wR(F^2) = 0.212 & H\text{-atom parameters constrained} \\ S = 1.10 & \Delta\rho_{\max} = 0.74 \text{ e } \text{\AA}^{-3} \\ 1735 \text{ reflections} & \Delta\rho_{\min} = -0.51 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N2-H2C\cdots Cl1^i$	0.89	2.70	3.253 (3)	121
$N2-H2C\cdots Cl1^{ii}$	0.89	2.53	3.252 (3)	139
$N2-H2B\cdots Cl1^{iii}$	0.89	2.41	3.253 (3)	159
$N2-H2A\cdots Cl1^{iv}$	0.89	2.46	3.252 (3)	148
$O1 - H1E \cdot \cdot \cdot Cl1^v$	0.85	2.42	3.183 (3)	150
$O1-H1D\cdots Cl1^{vi}$	0.82	2.38	3.183 (3)	167
$N1-H1C\cdots Cl1^{vii}$	0.90	2.22	3.101 (3)	165
$N1-H1B\cdotsO1^{viii}$	0.90	1.78	2.678 (6)	172
$N1-H1A\cdots Cl1^{ix}$	0.90	2.23	3.101 (3)	163

Symmetry codes: (i) $x + 1, -y + \frac{3}{2}$; z; (ii) $-x + 2, y - \frac{1}{2}, -z + 1$; (iii) x + 1, y - 1, z; (iv) -x + 2, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 1; (vi) $-x + 1, y - \frac{1}{2}, -z + 1$; (vii) x + 1, y - 1, z - 1; (viii) x, y, z - 1; (ix) $x + 1, -y + \frac{3}{2}, z - 1$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We would like to acknowledge the National Natural Science Foundation of China (No. 20871065) and the Jiangsu Province Department of Science and Technology (No. BK2009226) for financial aid.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2022).

References

- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hanton, L. R., Hunter, C. A. & Purvis, D. H. (1992). Chem. Commun. pp. 1134–1136.
- Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o1060.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o2420 [doi:10.1107/S1600536811032995]

4,4'-(Cyclohexane-1,1-diyl)dianilinium dichloride monohydrate

Hui-Fen Qian and Wei Huang

S1. Comment

There have been only one related single-crystal structural report on 1,1-bis(4-amino-3,5-dimethylphenyl)cyclohexane (Hanton *et al.*, 1992). We have previously reported the single-crystal structure of a similar compound biphenyl-3,3',4,4'- tetraamine (Qian & Huang, 2010). In this work, we describe the single-crystal structure of hydrochloride salt of 1,1-bis(4-aminophenyl)cyclohexane.

The atom-numbering scheme of the title compound is shown in Fig. 1, while selected bond distances and bond angles are given in Table 1. The two phenyl rings of the title compound are perpendicular to each other with a dihedral angle of 90°. In the crystal packing, N—H…Cl and O—H…Cl hydrogen-bond interactions give rise to a three-dimensional network.

S2. Experimental

The treatment of 1,1-bis(4-aminophenyl)cyclohexane dissolved in methanol with an excess of hydrochloric acid yields the title compound. Single crystals suitable for X-ray diffraction measurement were obtained after 7 days' slow evaporation of the mother liquid at room temperature in air. Anal. Calcd. For $C_{18}H_{24}N_2^{2+}$.2Cl⁻.H₂O: C, 60.50; H, 7.33; N, 7.84%. Found: C, 60.31; H, 7.55; N, 7.96%.

S3. Refinement

The non-hydrogen atoms were refined anisotropically, whereas the H atoms bonded with carbon, nitrogen and oxygen atoms were placed in geometrically idealized positions (C—H = 0.93 or 0.97 Å, N—H = 0.89 Å and O—H = 0.82 or 0.85 Å) and refined as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.2U \sim eq \sim (N)$ and $U iso \sim (H) = 1.5U \sim eq \sim (O)$. The hydrogen atoms bonded to atoms O1 and N2 are refined as the model with split positions.

Figure 1

An *ORTEP* drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A) x, 0.5-y, z]

4,4'-(Cyclohexane-1,1-diyl)dianilinium dichloride monohydrate

Crystal data	
$C_{18}H_{24}N_2^{2+}\cdot 2Cl^-\cdot H_2O$	F(000) = 380
$M_r = 357.31$	$D_{\rm x} = 1.273 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/m$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yb	Cell parameters from 1254 reflections
a = 8.442 (3) Å	$\theta = 2.5 - 24.5^{\circ}$
b = 9.548 (4) Å	$\mu = 0.35 \text{ mm}^{-1}$
c = 12.098 (5) Å	T = 291 K
$\beta = 107.085 (5)^{\circ}$	Block, colourless
V = 932.1 (6) Å ³	$0.12 \times 0.12 \times 0.10 \text{ mm}$
Z = 2	

Data collection

Bruker 1K CCD area-detector	4705 measured reflections
diffractometer	1735 independent reflections
Radiation source: fine-focus sealed tube	1158 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.102$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 10$
(<i>SADABS</i> ; Bruker, 2000)	$k = -11 \rightarrow 10$
$T_{\min} = 0.959, T_{\max} = 0.965$	$l = -14 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from
$wR(F^2) = 0.212$	neighbouring sites
S = 1.10	H-atom parameters constrained
1735 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1167P)^2]$
126 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.74 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.51 \text{ e } \text{Å}^{-3}$

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
0.9232 (4)	0.2500	-0.0868 (3)	0.0294 (9)	
1.0908 (5)	0.2500	-0.0779 (3)	0.0359 (9)	
1.1675	0.2500	-0.0048	0.043*	
1.1484 (5)	0.2500	-0.1747 (4)	0.0417 (10)	
1.2616	0.2500	-0.1659	0.050*	
1.0383 (5)	0.2500	-0.2816 (3)	0.0386 (10)	
0.8702 (5)	0.2500	-0.2956 (3)	0.0425 (10)	
0.7954	0.2500	-0.3694	0.051*	
0.8136 (5)	0.2500	-0.1994 (3)	0.0372 (10)	
0.7000	0.2500	-0.2095	0.045*	
0.8564 (4)	0.2500	0.0183 (3)	0.0319 (9)	
0.7457 (3)	0.1189 (3)	0.0130 (2)	0.0424 (8)	
0.6611	0.1165	-0.0613	0.051*	
0.8131	0.0354	0.0190	0.051*	
0.6634 (4)	0.1176 (4)	0.1081 (3)	0.0613 (11)	
	x 0.9232 (4) 1.0908 (5) 1.1675 1.1484 (5) 1.2616 1.0383 (5) 0.8702 (5) 0.7954 0.8136 (5) 0.7000 0.8564 (4) 0.7457 (3) 0.6611 0.8131 0.6634 (4)	xy $0.9232 (4)$ 0.2500 $1.0908 (5)$ 0.2500 1.1675 0.2500 1.1675 0.2500 $1.1484 (5)$ 0.2500 1.2616 0.2500 $1.0383 (5)$ 0.2500 $0.8702 (5)$ 0.2500 0.7954 0.2500 0.7000 0.2500 0.7000 0.2500 $0.7457 (3)$ $0.1189 (3)$ 0.6611 0.0354 $0.6634 (4)$ $0.1176 (4)$	xyz $0.9232 (4)$ 0.2500 $-0.0868 (3)$ $1.0908 (5)$ 0.2500 $-0.0779 (3)$ 1.1675 0.2500 -0.0048 $1.1484 (5)$ 0.2500 $-0.1747 (4)$ 1.2616 0.2500 -0.1659 $1.0383 (5)$ 0.2500 $-0.2816 (3)$ $0.8702 (5)$ 0.2500 -0.3694 $0.8136 (5)$ 0.2500 $-0.2956 (3)$ 0.7000 0.2500 -0.2095 $0.8564 (4)$ 0.2500 $0.0183 (3)$ $0.7457 (3)$ $0.1189 (3)$ $0.0130 (2)$ 0.6611 0.1165 -0.0613 0.8131 0.0354 0.0190 $0.6634 (4)$ $0.1176 (4)$ $0.1081 (3)$	xyz $U_{iso}*/U_{eq}$ 0.9232 (4)0.2500-0.0868 (3)0.0294 (9)1.0908 (5)0.2500-0.0779 (3)0.0359 (9)1.16750.2500-0.00480.043*1.1484 (5)0.2500-0.1747 (4)0.0417 (10)1.26160.2500-0.16590.050*1.0383 (5)0.2500-0.2816 (3)0.0386 (10)0.8702 (5)0.2500-0.2956 (3)0.0425 (10)0.79540.2500-0.1994 (3)0.0372 (10)0.70000.2500-0.20950.045*0.8564 (4)0.25000.0183 (3)0.0319 (9)0.7457 (3)0.1189 (3)0.0130 (2)0.0424 (8)0.66110.1165-0.06130.051*0.81310.03540.01900.051*

H9A	0.7474	0.1105	0.1824	0.074*	
H9B	0.5920	0.0362	0.0991	0.074*	
C10	0.5613 (6)	0.2500	0.1054 (4)	0.077 (2)	
H10A	0.4679	0.2500	0.0358	0.092*	
H10B	0.5181	0.2500	0.1713	0.092*	
C11	1.0029 (4)	0.2500	0.1307 (3)	0.0305 (9)	
C12	1.0744 (3)	0.1265 (3)	0.1817 (2)	0.0403 (8)	
H12	1.0283	0.0417	0.1503	0.048*	
C13	1.2123 (4)	0.1256 (3)	0.2777 (2)	0.0436 (8)	
H13	1.2590	0.0414	0.3101	0.052*	
C14	1.2789 (5)	0.2500	0.3243 (3)	0.0362 (10)	
C11	0.35794 (16)	1.02159 (14)	0.60558 (11)	0.1036 (6)	
N1	1.1019 (5)	0.2500	-0.3833 (3)	0.0507 (10)	
H1A	1.1617	0.3283	-0.3818	0.061*	0.50
H1B	1.0163	0.2500	-0.4484	0.061*	
H1C	1.1641	0.1729	-0.3814	0.061*	0.50
N2	1.4267 (4)	0.2500	0.4255 (3)	0.0493 (10)	
H2A	1.5082	0.2037	0.4086	0.059*	0.50
H2B	1.4031	0.2084	0.4846	0.059*	0.50
H2C	1.4584	0.3378	0.4446	0.059*	0.50
01	0.8669 (6)	0.2500	0.4122 (4)	0.128 (2)	
H1D	0.8043	0.3178	0.3960	0.192*	0.50
H1E	0.7860	0.1950	0.3841	0.192*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.030 (2)	0.025 (2)	0.032 (2)	0.000	0.0082 (15)	0.000
C2	0.030 (2)	0.039 (2)	0.039 (2)	0.000	0.0105 (16)	0.000
C3	0.035 (2)	0.046 (3)	0.048 (2)	0.000	0.0184 (19)	0.000
C4	0.041 (2)	0.041 (2)	0.041 (2)	0.000	0.0226 (19)	0.000
C5	0.044 (2)	0.046 (3)	0.036 (2)	0.000	0.0099 (18)	0.000
C6	0.028 (2)	0.043 (2)	0.041 (2)	0.000	0.0109 (17)	0.000
C7	0.0252 (19)	0.036 (2)	0.033 (2)	0.000	0.0060 (15)	0.000
C8	0.0352 (16)	0.054 (2)	0.0357 (15)	-0.0139 (14)	0.0078 (12)	0.0014 (13)
С9	0.0405 (18)	0.099 (3)	0.0450 (18)	-0.0282 (19)	0.0127 (14)	0.0056 (18)
C10	0.035 (3)	0.155 (6)	0.045 (3)	0.000	0.018 (2)	0.000
C11	0.0286 (19)	0.035 (2)	0.0291 (19)	0.000	0.0101 (15)	0.000
C12	0.0418 (17)	0.0318 (16)	0.0425 (16)	0.0008 (13)	0.0051 (13)	-0.0019 (12)
C13	0.0439 (17)	0.0334 (17)	0.0456 (17)	0.0044 (13)	0.0007 (13)	0.0073 (13)
C14	0.030(2)	0.043 (2)	0.033 (2)	0.000	0.0056 (17)	0.000
Cl1	0.1165 (11)	0.1117 (11)	0.1092 (10)	0.0666 (8)	0.0747 (8)	0.0572 (7)
N1	0.053 (2)	0.057 (3)	0.050 (2)	0.000	0.0262 (18)	0.000
N2	0.041 (2)	0.058 (3)	0.039 (2)	0.000	-0.0023 (15)	0.000
01	0.106 (4)	0.199 (7)	0.067 (3)	0.000	0.007 (3)	0.000

Geometric parameters (Å, °)

C1—C2	1.388 (5)	С9—Н9В	0.9700
C1—C6	1.404 (5)	C10—C9 ⁱ	1.525 (5)
C1—C7	1.535 (5)	C10—H10A	0.9700
C2—C3	1.393 (5)	C10—H10B	0.9700
C2—H2	0.9300	C11-C12 ⁱ	1.384 (3)
C3—C4	1.352 (6)	C11—C12	1.384 (3)
С3—Н3	0.9300	C12—C13	1.383 (4)
C4—C5	1.379 (6)	C12—H12	0.9300
C4—N1	1.480 (5)	C13—C14	1.363 (3)
С5—С6	1.382 (5)	C13—H13	0.9300
С5—Н5	0.9300	C14—C13 ⁱ	1.363 (3)
С6—Н6	0.9300	C14—N2	1.469 (5)
C7—C11	1.546 (5)	N1—H1A	0.8993
С7—С8	1.552 (4)	N1—H1B	0.8990
C7—C8 ⁱ	1.552 (4)	N1—H1C	0.9005
С8—С9	1.508 (4)	N2—H2A	0.8900
C8—H8A	0.9700	N2—H2B	0.8900
C8—H8B	0.9700	N2—H2C	0.8900
C9—C10	1.525 (5)	O1—H1D	0.8217
С9—Н9А	0.9700	O1—H1E	0.8491
			100.4
C2-C1-C6	116.2 (3)	C10—C9—H9B	109.4
$C_2 - C_1 - C_7$	123.4 (3)	H9A—C9—H9B	108.0
C6-C1-C7	120.4 (3)	C9 ⁴ —C10—C9	112.0 (4)
C1 - C2 - C3	122.3 (4)	$C9^{-}$ C10-H10A	109.2
C1 - C2 - H2	118.9	C9 - C10 - H10A	109.2
C3—C2—H2	118.9	C9 ⁴ —C10—H10B	109.2
C4 - C3 - C2	119.5 (4)	C9—C10—H10B	109.2
C4—C3—H3	120.3	H10A - C10 - H10B	107.9
С2—С3—Н3	120.3		116.8 (3)
C_{3} C_{4} C_{5}	120.7 (4)	C12 - C11 - C7	121.54 (17)
$C_3 - C_4 - N_1$	118.7 (3)	C12— $C12$ — $C12$	121.54 (17)
C_{3} — C_{4} — N_{1}	120.6 (4)	C13 - C12 - C11	121.9 (3)
C4 - C5 - C6	119.7 (4)	C13—C12—H12	119.0
С4—С5—Н5	120.2	CII—CI2—HI2	119.0
С6—С5—Н5	120.2	C14-C13-C12	119.0 (3)
C_{5}	121.6 (4)	C14—C13—H13	120.5
C_{2} C_{0} H_{0}	119.2	C12—C13—H13	120.5
CI - Co - Hb	119.2	$C13 - C14 - C13^{\circ}$	121.2 (3)
CI - C/ - CII	109.6 (3)	C13— $C14$ — $N2$	119.38 (18)
C1 - C/ - C8	109.2 (2)	C13 - C14 - N2	119.38 (18)
$C_1 = C_7 = C_8^{\text{o}}$	110.03 (19)	C4 N1 U1D	108.8
$C_1 - C_7 - C_8^{i}$	109.2 (2)	C4—NI—HIB	109.5
$C_1 - C_2 - C_3^{\circ}$	110.63 (19)	HIA - NI - HIB	108.0
$C_0 = C_1 = C_2^{\prime}$	107.3(3)	U4-NI-HIU	109.5
し9—し8—し/	112.4 (3)	HIA-NI-HIU	111.0

С9—С8—Н8А	109.1	H1B—N1—H1C	109.6
С7—С8—Н8А	109.1	C14—N2—H2A	109.5
С9—С8—Н8В	109.1	C14—N2—H2B	109.5
С7—С8—Н8В	109.1	H2A—N2—H2B	109.5
H8A—C8—H8B	107.8	C14—N2—H2C	109.5
C8—C9—C10	111.2 (3)	H2A—N2—H2C	109.5
С8—С9—Н9А	109.4	H2B—N2—H2C	109.5
С10—С9—Н9А	109.4	H1D—O1—H1E	90.4
С8—С9—Н9В	109.4		
C6—C1—C2—C3	0.0	C1—C7—C8—C9	-175.1 (2)
C7—C1—C2—C3	180.0	C11—C7—C8—C9	64.2 (3)
C1—C2—C3—C4	0.0	C8 ⁱ —C7—C8—C9	-56.7 (4)
C2—C3—C4—C5	0.0	C7—C8—C9—C10	56.5 (3)
C2-C3-C4-N1	180.0	C8—C9—C10—C9 ⁱ	-53.9 (5)
C3—C4—C5—C6	0.0	C1-C7-C11-C12 ⁱ	88.2 (3)
N1-C4-C5-C6	180.0	C8-C7-C11-C12 ⁱ	-151.3 (3)
C4—C5—C6—C1	0.0	$C8^{i}$ — $C7$ — $C11$ — $C12^{i}$	-32.3 (4)
C2-C1-C6-C5	0.0	C1—C7—C11—C12	-88.2 (3)
C7—C1—C6—C5	180.0	C8—C7—C11—C12	32.3 (4)
C2-C1-C7-C11	0.0	C8 ⁱ —C7—C11—C12	151.3 (3)
C6—C1—C7—C11	180.0	C12 ⁱ —C11—C12—C13	-1.0 (5)
C2—C1—C7—C8	-121.3 (2)	C7—C11—C12—C13	175.6 (3)
C6—C1—C7—C8	58.7 (2)	C11—C12—C13—C14	0.6 (5)
C2-C1-C7-C8 ⁱ	121.3 (2)	C12-C13-C14-C13 ⁱ	-0.2 (6)
C6-C1-C7-C8 ⁱ	-58.7 (2)	C12-C13-C14-N2	-179.2 (3)

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2C···Cl1 ⁱⁱ	0.89	2.70	3.253 (3)	121
N2—H2C···Cl1 ⁱⁱⁱ	0.89	2.53	3.252 (3)	139
N2—H2B····Cl1 ^{iv}	0.89	2.41	3.253 (3)	159
N2—H2A···Cl1 ^v	0.89	2.46	3.252 (3)	148
O1—H1E····Cl1 ^{vi}	0.85	2.42	3.183 (3)	150
O1—H1D····Cl1 ^{vii}	0.82	2.38	3.183 (3)	167
N1—H1C···Cl1 ^{viii}	0.90	2.22	3.101 (3)	165
N1—H1 B ···O1 ^{ix}	0.90	1.78	2.678 (6)	172
N1—H1A····Cl1 ^x	0.90	2.23	3.101 (3)	163

Symmetry codes: (ii) x+1, -y+3/2, z; (iii) -x+2, y-1/2, -z+1; (iv) x+1, y-1, z; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+1, -z+1; (vii) -x+1, y-1/2, -z+1; (viii) x+1, y-1/2, -z+1; (viii) x+1, y-1/2, -z+1; (viii) -x+1, -y+3/2, z-1; (viii) -x+1, -y+3/2, -z+1; (viii) -x+1, -z+1; (viii) -x+1; (vii