Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Poly[( $\mu_4$ -benzene-1,3,5-tricarboxylato)bis(N,N-dimethylformamide)cerium(III)]

### Zhongyue Li\* and Kun Liu

The Department of Physics-Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China Correspondence e-mail: lizhongyue@hpu.edu.cn

Received 3 June 2011; accepted 13 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.009 Å; R factor = 0.046; wR factor = 0.076; data-to-parameter ratio = 12.9.

The asymmetric unit of the title rare earth coordination polymer,  $[Ce(C_9H_3O_6)(C_3H_7NO)_2]_n$ , contains one eight-coordinated Ce<sup>3+</sup> ion, one benzene-1,3,5-tricarboxylate (BTC) ligand and two coordinated *N*,*N*-dimethylformamide (DMF) molecules. The Ce<sup>3+</sup> ion is coordinated by six O atoms from four carboxylate groups of the BTC ligands and by two O atoms from two terminal DMF molecules.

### **Related literature**

Metal-organic framework (MOF) design and construction is currently a flourishing field of research owing to the intriguing molecular topologies and the potentially exploitable adsorption, catalytic, fluorescence, and magnetic properties, see: Chen *et al.* (2006); Serre *et al.* (2007); Zhang *et al.* (2007). As functional metal centers, rare earth metals are attracting increasing attention from synthesis chemists for their coordination properties and special chemical characteristics arising from 4f electrons and their propensity to form isostructural complexes, see: Thirumurugan *et al.* (2004); Long *et al.* (2001).



## Experimental

#### Crystal data

 $[Ce(C_9H_3O_6)(C_3H_7NO)_2]$   $M_r = 493.43$ Monoclinic,  $P2_1/n$  a = 10.6994 (11) Å b = 13.6773 (14) Å c = 12.1961 (13) Å  $\beta = 101.574$  (2)°

### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001)  $T_{min} = 0.226, T_{max} = 0.351$ 

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$  $wR(F^2) = 0.076$ S = 1.023087 reflections  $V = 1748.5 (3) \text{ Å}^{3}$  Z = 4Mo K\alpha radiation  $\mu = 2.65 \text{ mm}^{-1}$  T = 298 K $0.8 \times 0.6 \times 0.5 \text{ mm}$ 

9223 measured reflections 3087 independent reflections 2516 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.059$ 

239 parameters H-atom parameters constrained  $\Delta \rho_{max} = 1.14$  e Å<sup>-3</sup>  $\Delta \rho_{min} = -1.05$  e Å<sup>-3</sup>

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

We thank the Open Research Fund of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (grant No. 2011–08).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2010).

### References

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,, Wisconsin, USA.
- Chen, B. L., Liang, C. D., Yang, J., Contreras, D. S., Clancy, Y. L., Lobkovsky, E. B., Yaghi, O. M. & Dai, S. (2006). *Angew. Chem. Int. Ed.* **45**, 1390–1393.
- Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schroder, M. (2001). Angew. Chem. Int. Ed. 40, 2443–2447.
- Serre, C., Mellot-Draznieks, C., Surblé, S., Audebrand, N., Filinchuk, Y. & Férey, G. (2007). Science, 315, 1828–1831.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923–2928.
- Zhang, J., Liu, R., Feng, P. Y. & Bu, X. H. (2007). Angew. Chem. Int. Ed. 46, 8388–8391.

# supporting information

Acta Cryst. (2011). E67, m1020 [doi:10.1107/S160053681102277X]

# Poly[( $\mu_4$ -benzene-1,3,5-tricarboxylato)bis(N,N-dimethylformamide)cerium(III)]

# Zhongyue Li and Kun Liu

## S1. Experimental

All reagents were of analytical grade. A mixture of cerium nitrate (40 mg, 0.10 mmol) and  $\mu_3$ -benzene-1,3,5-tricarboxylate acid(H<sub>3</sub>BTC) (10 mg, 0.05 mmol) was dissolved in *N*,*N*'-dimethylformamide (DMF) (10 mL) and isopropanol (2 mL) at room temperature, two drops of triethylamine was added, then some nitric acid(2M) was added utill the solution is clear. This mixture was placed in a 20 mL test tube. Then a small vial containing triethylamine (0.1 mL) and DMF (1.5 mL) was put in the test tube. The test tube was left undisturbed at room temperature for 15 days.

### S2. Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å.



# Figure 1

Coordination environment of Ce in the compound with nonhydrogen atoms represented by thermal ellipsoids draw at 30 % probability level.

# Poly[(µ<sub>4</sub>-benzene-1,3,5-tricarboxylato)bis(*N*,*N*- dimethylformamide)cerium(III)]

| Crystal data                             |                                                           |
|------------------------------------------|-----------------------------------------------------------|
| $[Ce(C_9H_3O_6)(C_3H_7NO)_2]$            | Z = 4                                                     |
| $M_r = 493.43$                           | F(000) = 972                                              |
| Monoclinic, $P2_1/n$                     | $D_x = 1.874 \text{ Mg m}^{-3}$                           |
| a = 10.6994 (11) Å                       | Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$    |
| b = 13.6773 (14) Å                       | $\mu = 2.65 \text{ mm}^{-1}$                              |
| c = 12.1961 (13) Å                       | T = 298  K                                                |
| $\beta = 101.574$ (2)°                   | Rod, colorless                                            |
| V = 1748.5 (3) Å <sup>3</sup>            | $0.8 \times 0.6 \times 0.5 \text{ mm}$                    |
| Data collection                          |                                                           |
| Bruker SMART CCD area-detector           | 9223 measured reflections                                 |
| diffractometer                           | 3087 independent reflections                              |
| Radiation source: fine-focus sealed tube | 2516 reflections with $I > 2\sigma(I)$                    |
| Graphite monochromator                   | $R_{int} = 0.059$                                         |
| $\varphi$ and $\omega$ scans             | $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.3^{\circ}$ |
| Absorption correction: multi-scan        | $h = -9 \rightarrow 12$                                   |
| ( <i>SADABS</i> ; Bruker, 2001)          | $k = -16 \rightarrow 16$                                  |
| $T_{\min} = 0.226, T_{\max} = 0.351$     | $l = -13 \rightarrow 14$                                  |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.046$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.076$                               | neighbouring sites                                         |
| S = 1.02                                        | H-atom parameters constrained                              |
| 3087 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0173P)^2]$                    |
| 239 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.008$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 1.14 \text{ e} \text{ Å}^{-3}$    |
| direct methods                                  | $\Delta \rho_{\rm min} = -1.05 \text{ e } \text{\AA}^{-3}$ |
|                                                 |                                                            |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x           | У           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|-------------|-------------|-------------|-----------------------------|
| Cel  | 0.62306 (3) | 1.03609 (3) | 0.39566 (3) | 0.01481 (11)                |
| C1   | 0.6993 (6)  | 0.9240 (4)  | 0.6584 (5)  | 0.0170 (15)                 |
| C2   | 0.8218 (6)  | 0.8724 (4)  | 0.7133 (6)  | 0.0188 (15)                 |
| C3   | 0.9313 (6)  | 0.8882 (4)  | 0.6695 (5)  | 0.0189 (15)                 |
| Н3   | 0.9285      | 0.9309      | 0.6096      | 0.023*                      |
| C4   | 1.0448 (6)  | 0.8403 (4)  | 0.7153 (5)  | 0.0174 (15)                 |
| C5   | 1.0469 (6)  | 0.7730 (4)  | 0.7994 (5)  | 0.0179 (15)                 |
| Н5   | 1.1210      | 0.7378      | 0.8264      | 0.021*                      |
| C6   | 0.9388 (6)  | 0.7571 (4)  | 0.8446 (5)  | 0.0178 (15)                 |
| C7   | 0.8280 (6)  | 0.8097 (4)  | 0.8014 (5)  | 0.0206 (15)                 |
| H7   | 0.7567      | 0.8018      | 0.8334      | 0.025*                      |
| C8   | 0.9393 (6)  | 0.6846 (5)  | 0.9368 (6)  | 0.0184 (15)                 |
| C9   | 0.8386 (6)  | 1.1342 (4)  | 0.3310 (6)  | 0.0189 (15)                 |
| C10  | 0.8855 (7)  | 0.8868 (5)  | 0.3589 (7)  | 0.0347 (19)                 |
| H10  | 0.9423      | 0.8752      | 0.4260      | 0.042*                      |
| C11  | 0.8492 (8)  | 0.9013 (7)  | 0.1589 (7)  | 0.068 (3)                   |
| H11A | 0.7749      | 0.9368      | 0.1690      | 0.102*                      |
| H11B | 0.8236      | 0.8408      | 0.1212      | 0.102*                      |
| H11C | 0.8959      | 0.9396      | 0.1148      | 0.102*                      |
| C12  | 1.0614 (7)  | 0.8523 (6)  | 0.2683 (8)  | 0.061 (3)                   |
| H12A | 1.1029      | 0.9018      | 0.2327      | 0.091*                      |
| H12B | 1.0622      | 0.7915      | 0.2290      | 0.091*                      |
| H12C | 1.1057      | 0.8444      | 0.3445      | 0.091*                      |
| C13  | 0.4387 (8)  | 0.9287 (5)  | 0.1597 (7)  | 0.038 (2)                   |
| H13  | 0.3729      | 0.9378      | 0.1982      | 0.046*                      |

| C14  | 0.2840 (8) | 0.8444 (6) | 0.0187 (8) | 0.068 (3)   |
|------|------------|------------|------------|-------------|
| H14A | 0.2850     | 0.7743     | 0.0206     | 0.102*      |
| H14B | 0.2575     | 0.8662     | -0.0573    | 0.102*      |
| H14C | 0.2255     | 0.8684     | 0.0627     | 0.102*      |
| C15  | 0.5082 (8) | 0.8594 (6) | 0.0012 (7) | 0.053 (2)   |
| H15A | 0.5838     | 0.8965     | 0.0303     | 0.080*      |
| H15B | 0.4775     | 0.8761     | -0.0759    | 0.080*      |
| H15C | 0.5278     | 0.7909     | 0.0072     | 0.080*      |
| N1   | 0.9291 (6) | 0.8814 (4) | 0.2665 (6) | 0.0356 (16) |
| N2   | 0.4117 (6) | 0.8815 (4) | 0.0643 (5) | 0.0374 (16) |
| 01   | 0.7104 (4) | 0.9890 (3) | 0.5883 (4) | 0.0250 (11) |
| O2   | 0.5978 (4) | 0.9001 (3) | 0.6867 (4) | 0.0263 (11) |
| 03   | 0.8522 (4) | 1.1009 (3) | 0.4277 (4) | 0.0268 (11) |
| O4   | 0.7289 (4) | 1.1428 (3) | 0.2671 (4) | 0.0289 (12) |
| 05   | 0.5116 (4) | 0.8900 (3) | 0.4415 (4) | 0.0241 (11) |
| O6   | 0.6335 (4) | 1.1973 (3) | 0.4976 (4) | 0.0270 (12) |
| O7   | 0.7738 (5) | 0.9063 (3) | 0.3633 (4) | 0.0406 (14) |
| O8   | 0.5433 (4) | 0.9618 (4) | 0.2023 (4) | 0.0342 (12) |
|      |            |            |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$   | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|--------------|--------------|------------|---------------|--------------|---------------|
| Cel | 0.01096 (19) | 0.01648 (19) | 0.0170 (2) | -0.00043 (18) | 0.00285 (13) | -0.00011 (19) |
| C1  | 0.012 (4)    | 0.018 (4)    | 0.019 (4)  | 0.001 (3)     | -0.001 (3)   | -0.005 (3)    |
| C2  | 0.012 (4)    | 0.017 (4)    | 0.026 (4)  | 0.001 (3)     | 0.000 (3)    | -0.002 (3)    |
| C3  | 0.020 (4)    | 0.016 (3)    | 0.021 (4)  | -0.001 (3)    | 0.004 (3)    | 0.006 (3)     |
| C4  | 0.020 (4)    | 0.011 (3)    | 0.021 (4)  | -0.001 (3)    | 0.005 (3)    | 0.002 (3)     |
| C5  | 0.010 (4)    | 0.017 (4)    | 0.025 (4)  | 0.000 (3)     | -0.001 (3)   | 0.004 (3)     |
| C6  | 0.016 (4)    | 0.015 (4)    | 0.022 (4)  | 0.002 (3)     | 0.003 (3)    | 0.003 (3)     |
| C7  | 0.016 (4)    | 0.026 (4)    | 0.021 (4)  | 0.001 (3)     | 0.005 (3)    | 0.005 (3)     |
| C8  | 0.013 (4)    | 0.016 (4)    | 0.026 (4)  | -0.005 (3)    | 0.003 (3)    | -0.002 (3)    |
| C9  | 0.015 (4)    | 0.015 (4)    | 0.029 (4)  | -0.004(3)     | 0.009 (3)    | 0.000 (3)     |
| C10 | 0.032 (5)    | 0.024 (4)    | 0.047 (6)  | 0.007 (4)     | 0.004 (4)    | -0.011 (4)    |
| C11 | 0.068 (7)    | 0.096 (8)    | 0.037 (6)  | 0.023 (6)     | 0.006 (5)    | -0.025 (6)    |
| C12 | 0.032 (5)    | 0.060 (6)    | 0.097 (8)  | 0.011 (4)     | 0.029 (5)    | -0.020 (6)    |
| C13 | 0.044 (5)    | 0.041 (5)    | 0.029 (5)  | 0.003 (4)     | 0.004 (4)    | 0.001 (4)     |
| C14 | 0.069 (7)    | 0.071 (7)    | 0.053 (7)  | -0.018 (5)    | -0.014 (5)   | -0.015 (5)    |
| C15 | 0.075 (7)    | 0.043 (5)    | 0.039 (6)  | -0.004 (4)    | 0.006 (5)    | -0.006 (4)    |
| N1  | 0.029 (4)    | 0.030 (4)    | 0.049 (5)  | 0.005 (3)     | 0.011 (3)    | -0.013 (3)    |
| N2  | 0.043 (4)    | 0.040 (4)    | 0.024 (4)  | -0.005 (3)    | -0.004 (3)   | -0.005 (3)    |
| 01  | 0.023 (3)    | 0.024 (3)    | 0.025 (3)  | 0.002 (2)     | -0.002 (2)   | 0.010(2)      |
| O2  | 0.012 (3)    | 0.039 (3)    | 0.029 (3)  | 0.003 (2)     | 0.005 (2)    | 0.008 (2)     |
| O3  | 0.021 (3)    | 0.036 (3)    | 0.026 (3)  | -0.002 (2)    | 0.008 (2)    | 0.004 (2)     |
| O4  | 0.012 (3)    | 0.042 (3)    | 0.032 (3)  | 0.003 (2)     | 0.003 (2)    | 0.009 (2)     |
| 05  | 0.019 (3)    | 0.019 (3)    | 0.035 (3)  | -0.004(2)     | 0.007 (2)    | -0.007 (2)    |
| O6  | 0.030 (3)    | 0.025 (3)    | 0.030 (3)  | -0.008(2)     | 0.016 (2)    | -0.007 (2)    |
| 07  | 0.028 (3)    | 0.036 (3)    | 0.060 (4)  | 0.003 (2)     | 0.015 (3)    | -0.012 (3)    |
| 08  | 0.031 (3)    | 0.036 (3)    | 0.031 (3)  | 0.002 (3)     | -0.002 (2)   | -0.011 (3)    |
|     |              |              |            |               |              |               |

Geometric parameters (Å, °)

| Cel—Ol                  | 2.434 (4)   | С9—03                                | 1.245 (8)  |
|-------------------------|-------------|--------------------------------------|------------|
| Ce1—O5                  | 2.448 (4)   | C9—O4                                | 1.278 (7)  |
| Cel—O7                  | 2.483 (5)   | C9—C4 <sup>iii</sup>                 | 1.511 (8)  |
| Ce1—O6                  | 2.522 (4)   | C10—O7                               | 1.236 (7)  |
| Ce1-O2 <sup>i</sup>     | 2.531 (4)   | C10—N1                               | 1.306 (9)  |
| Ce1—O8                  | 2.553 (5)   | C10—H10                              | 0.9300     |
| Ce1—O3                  | 2.562 (4)   | C11—N1                               | 1.441 (10) |
| Ce1—O4                  | 2.565 (4)   | C11—H11A                             | 0.9600     |
| Ce1-O5 <sup>i</sup>     | 2.862 (4)   | C11—H11B                             | 0.9600     |
| Ce1—C9                  | 2.910 (6)   | C11—H11C                             | 0.9600     |
| Ce1—C8 <sup>ii</sup>    | 3.049 (6)   | C12—N1                               | 1.466 (8)  |
| Ce1-Ce1 <sup>i</sup>    | 4.1322 (7)  | C12—H12A                             | 0.9600     |
| C1—O2                   | 1.247 (7)   | C12—H12B                             | 0.9600     |
| C101                    | 1.256 (7)   | C12—H12C                             | 0.9600     |
| C1—C2                   | 1.520 (8)   | C13—O8                               | 1.222 (8)  |
| C2—C7                   | 1.367 (8)   | C13—N2                               | 1.311 (9)  |
| C2—C3                   | 1.399 (8)   | C13—H13                              | 0.9300     |
| C3—C4                   | 1.394 (8)   | C14—N2                               | 1.459 (9)  |
| С3—Н3                   | 0.9300      | C14—H14A                             | 0.9600     |
| C4—C5                   | 1.374 (8)   | C14—H14B                             | 0.9600     |
| C4—C9 <sup>iii</sup>    | 1.511 (8)   | C14—H14C                             | 0.9600     |
| C5—C6                   | 1.394 (8)   | C15—N2                               | 1.438 (9)  |
| С5—Н5                   | 0.9300      | C15—H15A                             | 0.9600     |
| C6—C7                   | 1.397 (8)   | C15—H15B                             | 0.9600     |
| C6—C8                   | 1.498 (8)   | C15—H15C                             | 0.9600     |
| С7—Н7                   | 0.9300      | O2—Cel <sup>i</sup>                  | 2.531 (4)  |
| C8—O6 <sup>iv</sup>     | 1.236 (7)   | O5—C8 <sup>vi</sup>                  | 1.276 (7)  |
| C8—O5 <sup>v</sup>      | 1.276 (7)   | O5—Cel <sup>i</sup>                  | 2.862 (4)  |
| C8—Ce1 <sup>iv</sup>    | 3.049 (6)   | O6—C8 <sup>ii</sup>                  | 1.236 (7)  |
| 01—Ce1—O5               | 70.96 (14)  | С4—С3—Н3                             | 119.9      |
| 01-Ce1-07               | 80.11 (16)  | С2—С3—Н3                             | 119.9      |
| O5—Ce1—O7               | 79.29 (15)  | C5—C4—C3                             | 119.8 (6)  |
| 01—Ce1—O6               | 77.59 (14)  | C5—C4—C9 <sup>iii</sup>              | 122.9 (6)  |
| O5-Ce1-O6               | 125.18 (13) | C3—C4—C9 <sup>iii</sup>              | 117.3 (6)  |
| O7—Ce1—O6               | 137.51 (16) | C4—C5—C6                             | 120.6 (6)  |
| O1-Ce1-O2 <sup>i</sup>  | 128.43 (14) | C4—C5—H5                             | 119.7      |
| O5-Ce1-O2 <sup>i</sup>  | 85.03 (14)  | C6—C5—H5                             | 119.7      |
| O7—Ce1—O2 <sup>i</sup>  | 140.18 (16) | C5—C6—C7                             | 118.7 (6)  |
| O6—Ce1—O2 <sup>i</sup>  | 80.79 (15)  | C5—C6—C8                             | 121.4 (5)  |
| O1-Ce1-08               | 141.15 (15) | C7—C6—C8                             | 119.9 (5)  |
| O5—Ce1—O8               | 78.37 (15)  | C2—C7—C6                             | 121.5 (6)  |
| O7—Ce1—O8               | 71.08 (16)  | С2—С7—Н7                             | 119.2      |
| 06—Ce1—08               | 140.98 (15) | С6—С7—Н7                             | 119.2      |
| O2 <sup>i</sup> —Ce1—O8 | 70.00 (14)  | O6 <sup>iv</sup> —C8—O5 <sup>v</sup> | 122.6 (6)  |
| 01—Ce1—O3               | 76.95 (14)  | O6 <sup>iv</sup> —C8—C6              | 119.1 (6)  |

| O5—Ce1—O3                             | 137.95 (14) | O5 <sup>v</sup> —C8—C6         | 118.3 (5) |
|---------------------------------------|-------------|--------------------------------|-----------|
| O7—Ce1—O3                             | 68.89 (15)  | $O6^{iv}$ —C8—Ce $1^{iv}$      | 53.7 (3)  |
| O6—Ce1—O3                             | 71.07 (14)  | $O5^{v}$ —C8—Ce1 <sup>iv</sup> | 69.4 (3)  |
| O2 <sup>i</sup> —Ce1—O3               | 136.88 (14) | C6—C8—Ce1 <sup>iv</sup>        | 167.4 (4) |
| O8—Ce1—O3                             | 114.27 (14) | O3—C9—O4                       | 122.0 (6) |
| O1—Ce1—O4                             | 127.54 (14) | O3—C9—C4 <sup>iii</sup>        | 119.4 (6) |
| O5—Ce1—O4                             | 153.98 (15) | O4C9C4 <sup>iii</sup>          | 118.5 (6) |
| O7—Ce1—O4                             | 85.95 (15)  | O3—C9—Ce1                      | 61.5 (3)  |
| O6—Ce1—O4                             | 79.79 (14)  | O4C9Ce1                        | 61.7 (3)  |
| O2 <sup>i</sup> —Ce1—O4               | 93.02 (14)  | C4 <sup>iii</sup> —C9—Ce1      | 165.2 (4) |
| O8—Ce1—O4                             | 76.61 (15)  | O7—C10—N1                      | 124.5 (8) |
| O3—Ce1—O4                             | 50.97 (14)  | O7—C10—H10                     | 117.8     |
| O1—Ce1—O5 <sup>i</sup>                | 64.72 (13)  | N1-C10-H10                     | 117.8     |
| O5—Ce1—O5 <sup>i</sup>                | 78.09 (14)  | N1—C11—H11A                    | 109.5     |
| O7—Ce1—O5 <sup>i</sup>                | 142.78 (15) | N1—C11—H11B                    | 109.5     |
| O6—Ce1—O5 <sup>i</sup>                | 47.78 (12)  | H11A—C11—H11B                  | 109.5     |
| $O2^{i}$ —Ce1—O5 <sup>i</sup>         | 66.03 (13)  | N1—C11—H11C                    | 109.5     |
| O8—Ce1—O5 <sup>i</sup>                | 131.33 (13) | H11A—C11—H11C                  | 109.5     |
| $O3$ — $Ce1$ — $O5^i$                 | 111.80 (13) | H11B—C11—H11C                  | 109.5     |
| O4—Ce1—O5 <sup>i</sup>                | 124.65 (13) | N1—C12—H12A                    | 109.5     |
| O1—Ce1—C9                             | 102.23 (17) | N1—C12—H12B                    | 109.5     |
| O5—Ce1—C9                             | 152.48 (15) | H12A—C12—H12B                  | 109.5     |
| O7—Ce1—C9                             | 73.23 (16)  | N1—C12—H12C                    | 109.5     |
| O6—Ce1—C9                             | 76.78 (15)  | H12A—C12—H12C                  | 109.5     |
| O2 <sup>i</sup> —Ce1—C9               | 117.46 (17) | H12B-C12-H12C                  | 109.5     |
| O8—Ce1—C9                             | 93.97 (17)  | O8—C13—N2                      | 125.4 (7) |
| O3—Ce1—C9                             | 25.29 (16)  | O8—C13—H13                     | 117.3     |
| O4—Ce1—C9                             | 26.02 (16)  | N2—C13—H13                     | 117.3     |
| O5 <sup>i</sup> —Ce1—C9               | 124.18 (15) | N2—C14—H14A                    | 109.5     |
| O1—Ce1—C8 <sup>ii</sup>               | 67.83 (15)  | N2—C14—H14B                    | 109.5     |
| O5—Ce1—C8 <sup>ii</sup>               | 102.05 (15) | H14A—C14—H14B                  | 109.5     |
| O7—Ce1—C8 <sup>ii</sup>               | 145.03 (17) | N2—C14—H14C                    | 109.5     |
| O6—Ce1—C8 <sup>ii</sup>               | 23.26 (14)  | H14A—C14—H14C                  | 109.5     |
| O2 <sup>i</sup> —Ce1—C8 <sup>ii</sup> | 73.98 (16)  | H14B—C14—H14C                  | 109.5     |
| O8—Ce1—C8 <sup>ii</sup>               | 143.82 (16) | N2—C15—H15A                    | 109.5     |
| O3—Ce1—C8 <sup>ii</sup>               | 89.90 (15)  | N2—C15—H15B                    | 109.5     |
| O4—Ce1—C8 <sup>ii</sup>               | 102.32 (16) | H15A—C15—H15B                  | 109.5     |
| O5 <sup>i</sup> —Ce1—C8 <sup>ii</sup> | 24.66 (13)  | N2—C15—H15C                    | 109.5     |
| C9—Ce1—C8 <sup>ii</sup>               | 99.56 (17)  | H15A—C15—H15C                  | 109.5     |
| O1—Ce1—Ce1 <sup>i</sup>               | 60.72 (10)  | H15B—C15—H15C                  | 109.5     |
| O5—Ce1—Ce1 <sup>i</sup>               | 42.67 (9)   | C10—N1—C11                     | 121.7 (7) |
| O7—Ce1—Ce1 <sup>i</sup>               | 116.20 (11) | C10—N1—C12                     | 120.9 (7) |
| O6—Ce1—Ce1 <sup>i</sup>               | 82.87 (9)   | C11—N1—C12                     | 117.3 (6) |
| O2 <sup>i</sup> —Ce1—Ce1 <sup>i</sup> | 70.56 (10)  | C13—N2—C15                     | 121.6 (7) |
| O8—Ce1—Ce1 <sup>i</sup>               | 109.76 (11) | C13—N2—C14                     | 122.2 (7) |
| O3—Ce1—Ce1 <sup>i</sup>               | 134.19 (10) | C15—N2—C14                     | 116.2 (7) |
| O4—Ce1—Ce1 <sup>i</sup>               | 157.85 (10) | C1                             | 140.8 (4) |
| $O5^{i}$ —Ce1—Ce1 <sup>i</sup>        | 35.43 (8)   | C1—O2—Ce1 <sup>i</sup>         | 126.5 (4) |

| C9—Ce1—Ce1 <sup>i</sup>                | 156.13 (14) | C9—O3—Ce1                    | 93.2 (4)    |  |
|----------------------------------------|-------------|------------------------------|-------------|--|
| C8 <sup>ii</sup> —Ce1—Ce1 <sup>i</sup> | 59.61 (12)  | C9—O4—Ce1                    | 92.3 (4)    |  |
| O2—C1—O1                               | 125.5 (6)   | C8 <sup>vi</sup> —O5—Ce1     | 164.1 (4)   |  |
| O2—C1—C2                               | 118.6 (6)   | $C8^{vi}$ — $O5$ — $Ce1^{i}$ | 85.9 (3)    |  |
| O1—C1—C2                               | 115.9 (5)   | Ce1—O5—Ce1 <sup>i</sup>      | 101.90 (14) |  |
| С7—С2—С3                               | 119.0 (6)   | C8 <sup>ii</sup> —O6—Ce1     | 103.0 (4)   |  |
| C7—C2—C1                               | 122.6 (5)   | C10-07-Ce1                   | 145.6 (4)   |  |
| C3—C2—C1                               | 118.3 (6)   | C13—O8—Ce1                   | 130.4 (5)   |  |
| C4—C3—C2                               | 120.2 (6)   |                              |             |  |
|                                        |             |                              |             |  |

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+3/2, *y*+1/2, -*z*+3/2; (iii) -*x*+2, -*y*+2, -*z*+1; (iv) -*x*+3/2, *y*-1/2, -*z*+3/2; (v) *x*+1/2, -*y*+3/2, *z*+1/2; (vi) *x*-1/2, -*y*+3/2, *z*-1/2.