Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[μ_{2}-1,4-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene- $\left.\kappa^{2} N: N^{\prime}\right] d i-\mu_{2}$-chloridocadmium]

Pin-Ning Wang, ${ }^{\text {a }}$ Chun-Wei Yeh, ${ }^{\text {b }}$ Hsun-Tsing Lee ${ }^{\text {c }}$ and Maw-Cherng Suen ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Material and Fiber, Nanya Institute of Technology, Chung-Li 320, Taiwan, ${ }^{\text {b }}$ Department of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan, and ${ }^{\mathbf{c}}$ Department of Materials Science and Engineering, Vanung University, Chung-Li 320, Taiwan
Correspondence e-mail: sun@nanya.edu.tw

Received 17 May 2011; accepted 6 July 2011
Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.044 ; w R$ factor $=0.125$; data-to-parameter ratio $=13.7$.

In the title coordination polymer, $\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ ion, situated on an inversion center, is coordinated by four bridging Cl atoms and two N atoms from two 1,4-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene (L) ligands in a distorted octahedral geometry. Each L ligand also lies across an inversion center and bridges two $\mathrm{Cd}^{\mathrm{II}}$ ions, forming infinite two-dimensional rectangular layers running parallel to (010).

Related literature

For background to coordination polymers with organic ligands, see: Kitagawa et al. (2004); Chiang et al. (2008); Yeh et al. (2008, 2009); Hsu et al. (2009). For $\mathrm{Cd}^{\mathrm{II}}$ coordination polymers, see Suen et al. (2007a,b). For related structures, see: Wang et al. (2008).

Experimental

Crystal data
$\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=399.54$
Triclinic, $P \overline{1}$
$a=3.9242$ (4) \AA
$b=8.0290(8) \AA$
$c=10.0778(10) \AA$
$\alpha=84.632(2)^{\circ}$
$\beta=81.458(2)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.319, T_{\text {max }}=0.862$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044 \quad 88$ parameters
$w R\left(F^{2}\right)=0.125$
$S=1.13$
1209 reflections
$\gamma=84.002(2)^{\circ}$
$V=311.30(5) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=2.18 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
$0.50 \times 0.50 \times 0.07 \mathrm{~mm}$

1779 measured reflections 1209 independent reflections 1204 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DAIMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We are grateful to the National Science Council of the Republic of China and the Nanya Institute of Technology for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2103).

References

Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (1997). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. \& Lai, J. Y. (2008). Cryst. Growth Des. 8, 470-477.
Hsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. \& Chen, J.-D. (2009). CrystEngComm, 11, 168-176.

Kitagawa, S., Kitaura, R. \& Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334 2375.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Suen, M.-C. \& Wang, J.-C. (2007a). J. Coord. Chem. 60, 257-268.
Suen, M.-C. \& Wang, J.-C. (2007b). J. Coord. Chem. 60, 2197-2205.
Wang, Y.-H., Lee, H.-T. \& Suen, M.-C. (2008). Polyhedron, 27, 1177-1184.
Yeh, C.-W., Chen, T.-R., Chen, J.-D. \& Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595-2603.
Yeh, C.-W., Chen, J.-D. \& Wang, J.-C. (2008). Polyhedron, 27, 3611-3618.

supporting information

Acta Cryst. (2011). E67, m1083 [doi:10.1107/S1600536811027036]

Poly $\left[\left[\mu_{2}-1,4-b i s\left(4,5-\right.\right.\right.$ dihydro-1,3-oxazol-2-yl)benzene- $\left.\kappa^{2} N: N^{\prime}\right]$ di- μ_{2}-chloridocadmium]

Pin-Ning Wang, Chun-Wei Yeh, Hsun-Tsing Lee and Maw-Cherng Suen

S1. Comment

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa et al., 2004). Roles of anion, solvent and ligand comformations in self-assembly of coordination complexes containing polydentate nitrogen ligands are very intersting (Chiang et al., 2008; Yeh et al., 2008; Hsu et al., 2009; Yeh et al., 2009). The $\mathrm{Cd}^{\text {II }}$ complexes containing polydentate ligands showing various type frameworks are also reported (Suen et al., 2007a,b). The $\mathrm{Ag}(\mathrm{I})$ complexes containing 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (L) ligands has been reported, which show various two-dimensional networks (Wang et al., 2008). The Cd^{2+} cations are sixcoordinated with four Cl atoms and two N atoms from two L ligands (Fig. 1). The $\mathrm{Cd} \cdots \mathrm{Cd}$ distances separated by the bridging L ligands and Cl atoms are 10.257 (1) and 3.924 (1) \AA, while the ligands adopt the anti conformation in the structure (Fig. 2).

S2. Experimental

An aqueous solution $(5.0 \mathrm{ml})$ of cadmium chloride $(1.0 \mathrm{mmol})$ was layered carefully over a methanolic solution $(5.0 \mathrm{ml})$ of 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (1.0 mmol) in a tube. Colourless crystals were obtained after several weeks. These were washed with methanol and collected in 65.2% yield.

S3. Refinement

H atoms were constrained to ideal geometries, with $\mathrm{C}-\mathrm{H}=0.93$ (phenyl) or 0.97 (methylene) $\AA \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
A portion of the two-dimensional net. Ellipsoids are drawn at 30% probability level, and H atoms of spheres of arbitrary radius. Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x-1, y, z$.

Figure 2
A drawing of the two-dimensional rectangular net.
Poly[$\left[\mu_{2}\right.$-1,4-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene- $\left.\kappa^{2} N: N^{\prime}\right]$ di- μ_{2}-chlorido-cadmium $]$

Crystal data

$\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right] \quad$ Hall symbol: -P 1
$M_{r}=399.54$
$a=3.9242$ (4) \AA
Triclinic, $P \overline{1}$
$b=8.0290$ (8) \AA
$c=10.0778(10) \AA$
$\alpha=84.632(2)^{\circ}$
$\beta=81.458(2)^{\circ}$
$\gamma=84.002(2)^{\circ}$
$V=311.30(5) \AA^{3}$
$Z=1$
$F(000)=196$
$D_{\mathrm{x}}=2.131 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.319, T_{\text {max }}=0.862$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.125$
$S=1.13$
1209 reflections
88 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1711 reflections
$\theta=2.6-26.0^{\circ}$
$\mu=2.18 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Parallelepiped, colourless
$0.50 \times 0.50 \times 0.07 \mathrm{~mm}$

1779 measured reflections
1209 independent reflections
1204 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-2 \rightarrow 4$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 12$

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.110 P)^{2}\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right)^{\prime} / 3$
> $(\Delta / /)_{\max }=0.001$
> $\Delta \rho_{\max }=0.93 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-1.80$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) $e t c$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Cd	0.5000	0.5000	0.5000	$0.0206(2)$
C 1	$0.9164(2)$	$0.67051(12)$	$0.60009(9)$	$0.0232(3)$
O	$0.2884(9)$	$0.1013(4)$	$0.8636(3)$	$0.0366(7)$
N	$0.4705(9)$	$0.2869(4)$	$0.6933(3)$	$0.0214(6)$
C 1	$0.6062(11)$	$0.1199(4)$	$0.6473(4)$	$0.0276(8)$
H 1 A	0.8569	0.1106	0.6290	0.033^{*}
H 1 B	0.5150	0.1001	0.5663	0.033^{*}
C 2	$0.4811(12)$	$-0.0049(5)$	$0.7647(4)$	$0.0319(9)$
H 2 A	0.3342	-0.0813	0.7368	0.038^{*}

H2B	0.6751	-0.0698	0.8001	0.038^{*}
C3	$0.3089(9)$	$0.2623(4)$	$0.8112(4)$	$0.0226(7)$
C4	$0.1447(9)$	$0.3868(4)$	$0.9047(3)$	$0.0207(7)$
C5	$0.2302(9)$	$0.5530(4)$	$0.8878(3)$	$0.0217(7)$
H5A	0.3857	0.5879	0.8141	0.026^{*}
C6	$0.0839(9)$	$0.6652(4)$	$0.9805(3)$	$0.0217(7)$
H6A	0.1363	0.7764	0.9673	0.026^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd	$0.0178(3)$	$0.0218(3)$	$0.0219(3)$	$0.00137(19)$	$-0.00280(19)$	$-0.00334(19)$
C 1	$0.0209(5)$	$0.0258(5)$	$0.0226(5)$	$0.0017(4)$	$-0.0016(4)$	$-0.0068(4)$
O	$0.051(2)$	$0.0240(13)$	$0.0264(13)$	$0.0061(13)$	$0.0120(13)$	$0.0015(10)$
N	$0.0240(15)$	$0.0221(15)$	$0.0168(14)$	$0.0029(11)$	$-0.0019(11)$	$-0.0025(11)$
C 1	$0.031(2)$	$0.0227(17)$	$0.0263(18)$	$0.0054(14)$	$0.0015(15)$	$-0.0046(14)$
C 2	$0.038(2)$	$0.0235(18)$	$0.0291(19)$	$0.0043(16)$	$0.0064(16)$	$-0.0031(15)$
C 3	$0.0192(17)$	$0.0231(17)$	$0.0253(17)$	$-0.0002(13)$	$-0.0031(13)$	$-0.0015(12)$
C 4	$0.0200(17)$	$0.0240(16)$	$0.0176(15)$	$0.0024(13)$	$-0.0023(12)$	$-0.0044(12)$
C 5	$0.0225(17)$	$0.0238(16)$	$0.0167(16)$	$0.0007(14)$	$0.0000(12)$	$0.0015(12)$
C 6	$0.0269(19)$	$0.0183(15)$	$0.0193(17)$	$-0.0018(13)$	$-0.0023(13)$	$-0.0005(12)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{Cd}-\mathrm{N}^{\mathrm{i}}$	2.467 (3)	C1-H1A	0.9700
$\mathrm{Cd}-\mathrm{N}$	2.467 (3)	C1-H1B	0.9700
$\mathrm{Cd}-\mathrm{Cl}$	2.6035 (10)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{Cd}-\mathrm{Cl}^{\text {i }}$	2.6035 (10)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{Cd}-\mathrm{Cl}^{\text {ii }}$	2.6557 (9)	C3-C4	1.471 (5)
$\mathrm{Cd}-\mathrm{Cl}^{\text {iii }}$	2.6557 (9)	C4-C5	1.398 (5)
$\mathrm{Cl}-\mathrm{Cd}^{\text {iv }}$	2.6557 (9)	C4-C6 ${ }^{\text {- }}$	1.413 (5)
$\mathrm{O}-\mathrm{C} 3$	1.355 (4)	C5-C6	1.380 (5)
O-C2	1.447 (4)	C5-H5A	0.9300
$\mathrm{N}-\mathrm{C} 3$	1.269 (5)	C6- $\mathrm{C}^{\text {v }}$	1.413 (5)
$\mathrm{N}-\mathrm{C} 1$	1.480 (4)	C6-H6A	0.9300
C1-C2	1.534 (5)		
$\mathrm{N}^{\mathrm{i}}-\mathrm{Cd}-\mathrm{N}$	180.000 (1)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.9
$\mathrm{N}^{\mathrm{i}}-\mathrm{Cd}-\mathrm{Cl}$	87.04 (8)	$\mathrm{N}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.9
$\mathrm{N}-\mathrm{Cd}-\mathrm{Cl}$	92.96 (8)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.9
$\mathrm{N}^{\mathrm{i}}-\mathrm{Cd}-\mathrm{Cl}^{\mathrm{i}}$	92.96 (8)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.9
$\mathrm{N}-\mathrm{Cd}-\mathrm{Cl}^{\text {i }}$	87.04 (8)	$\mathrm{O}-\mathrm{C} 2-\mathrm{C} 1$	103.7 (3)
$\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}^{\text {i }}$	180.000 (1)	$\mathrm{O}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.0
$\mathrm{N}^{\mathrm{i}}-\mathrm{Cd}-\mathrm{Cl}^{\text {ii }}$	87.28 (7)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.0
$\mathrm{N}-\mathrm{Cd}-\mathrm{Cl}^{\text {ii }}$	92.72 (7)	$\mathrm{O}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.0
$\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}^{\text {lii }}$	96.51 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.0
$\mathrm{Cl}^{\mathrm{i}}-\mathrm{Cd}-\mathrm{Cl}^{\text {ii }}$	83.49 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0
$\mathrm{N}^{\text {i }}-\mathrm{Cd}-\mathrm{Cl}^{\text {iii }}$	92.72 (7)	$\mathrm{N}-\mathrm{C} 3-\mathrm{O}$	117.9 (3)

$\mathrm{N}-\mathrm{Cd}-\mathrm{Cl}^{\text {iii }}$	$87.28(7)$	$\mathrm{N}-\mathrm{C} 3-\mathrm{C} 4$	$128.7(3)$
$\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}^{\text {iii }}$	$83.49(3)$	$\mathrm{O}-\mathrm{C} 3-\mathrm{C} 4$	$113.4(3)$
$\mathrm{Cl}^{\mathrm{i}}-\mathrm{Cd}-\mathrm{Cl}^{\text {iii }}$	$96.51(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C}^{\mathrm{v}}$	$119.2(3)$
$\mathrm{Cl}^{\mathrm{lii}}-\mathrm{Cd}-\mathrm{Cl}^{\text {iii }}$	$180.000(1)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$121.3(3)$
$\mathrm{Cd}-\mathrm{Cl}-\mathrm{Cd}^{\text {iv }}$	$96.51(3)$	$\mathrm{C} 6^{v}-\mathrm{C} 4-\mathrm{C} 3$	$119.3(3)$
$\mathrm{C} 3-\mathrm{O}-\mathrm{C} 2$	$106.9(3)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.0(3)$
$\mathrm{C} 3-\mathrm{N}-\mathrm{C} 1$	$107.0(3)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.0
$\mathrm{C} 3-\mathrm{N}-\mathrm{Cd}$	$140.4(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.0
$\mathrm{C} 1-\mathrm{N}-\mathrm{Cd}$	$109.9(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 4$	$120.8(3)$
$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$	$104.5(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.6
$\mathrm{~N}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.9	$\mathrm{C} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.6

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x-1, y, z$; (iii) $-x+2,-y+1,-z+1$; (iv) $x+1, y, z$; (v) $-x,-y+1,-z+2$.

