Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[diaquabis(3-methyl-pyridine- κN)cobalt(II)]- μ-sulfato- $\left.\kappa^{2} O: O^{\prime}\right]$

Naveed Alam, ${ }^{\text {a }}$ Matthias Zeller, ${ }^{\text {b }}$ Nur Syamimi Ahmad Tajidi, ${ }^{\text {c }}$ Zainudin Arifin ${ }^{\text {c* }}$ and Muhammad Mazhar ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan,
${ }^{\mathbf{b}}$ Department of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, Ohio 44555, USA, and ${ }^{\text {c }}$ Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: zainudin@um.edu.my
Received 27 April 2011; accepted 30 June 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.027 ; w R$ factor $=0.075$; data-to-parameter ratio $=18.8$.

The environment of the $\mathrm{Co}^{\text {II }}$ ion in the title compound, $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, exhibits an octahedral configuration with the two 3-methylpyridine ligands lying in cis positions with respect to each other and trans to the two coordinated water molecules. The axial positions are occupied by O atoms of the sulfate ions. Co and S atoms occupy special positions (twofold axis, Wyckoff position $4 c$). Neighboring $\mathrm{Co}^{\mathrm{II}}$ ions are covalently connected with each other through the sulfate ions, thus creating infinite polymeric chains that run along the c axis. The water molecules are connected with neighboring sulfate ions through strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Intramolecular hydrogen bonds parallel to the propagation direction of the chains stabilize the polymeric chains, and intermolecular hydrogen bonds between chains connect neighboring chains with each other, thus leading to polymeric double chains.

Related literature

For the complexation of cobalt ions by sulfate, see: Das et al. (2009); Majumder et al. (2005); Masuhara et al. (2007); Zhong et al. (2006); Zhong et al. (2011); Dietz et al. (2009); Wu et al. (2008); Carlucci et al. (2003); Ali et al. (2005); Vreshch et al. (2003).

Experimental

Crystal data
$\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \quad V=1628.7(4) \AA^{3}$
$M_{r}=377.27$
Orthorhombic, Pbcn
$Z=4$
$a=15.132$ (2) \AA
Mo $K \alpha$ radiation
$b=16.687$ (2) \AA
$\mu=1.21 \mathrm{~mm}^{-1}$
$b=16.687$ (2) А
$T=100 \mathrm{~K}$
$c=6.4503$ (9) A
$0.60 \times 0.12 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.786, T_{\text {max }}=0.865$

> 15656 measured reflections 2028 independent reflections 1892 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.075 \quad$ independent and constrained
$S=1.08$ refinement
2028 reflections
108 parameters
$\Delta \rho_{\max }=0.57 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$
2 restraints
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{1}-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	$0.82(2)$	$1.86(2)$	$2.6652(15)$	$166(2)$
O1-H1A $^{\mathrm{ii}}$	$0 \mathrm{O}^{1}$	$0.84(2)$	$1.92(2)$	$2.7331(14)$

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

This project was financed by the University of Malaya, UMRG grant: RG097/10AET. The X-ray diffractometer was funded by NSF Grant 0087210, Ohio Board of Regents Grant CAP-491, and Youngstown State University.

[^0]
metal-organic compounds

References

Ali, H. M., Puvaneswary, S. \& Ng, S. W. (2005). Acta Cryst. E61, m474-m475. Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Carlucci, L., Ciani, G., Proserpio, D. M. \& Rizzato, S. (2003). CrystEngComm, 5, 190-199.
Das, B. K., Bora, S. J., Bhattacharyya, M. K. \& Barman, R. K. (2009). Acta Cryst. B65, 467-473.
Dietz, C., Seidel, R. W. \& Oppel, I. M. (2009). Z. Kristallogr. New Cryst. Struct. 224, 509-511.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Majumder, A., Choudhury, C.R., Mitra, S., Marschner, C. \& Baumgartner, J. (2005). Z. Naturforsch. Teil B, 60, 99-105.

Masuhara, N., Hayami, S., Motokawa, N., Shuto, A., Inoue, K. \& Maeda, Y. (2007). Chem. Lett. 36, 90-91.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Vreshch, V. D., Chernega, A. N., Howard, J. A. K., Sieler, J. \& Domasevitch, K. V. (2003). Dalton Trans. pp. 1707-1711.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wu, B.-L., Zhang, P., Niu, Y.-Y., Zhang, H.-Y., Li, Z.-J. \& Hou, H.-W. (2008). Inorg. Chim. Acta, 361, 2203-2209.
Zhong, K.-L., Pan, X.-X., Cao, G.-Q. \& Chen, L. (2011). Acta Cryst. E67, m43.
Zhong, K.-L., Zhu, Y.-M. \& Lu, W.-J. (2006). Acta Cryst. E62, m631-m633.

supporting information

Acta Cryst. (2011). E67, m1065-m1066 [doi:10.1107/S1600536811025815]

catena-Poly[[diaquabis(3-methylpyridine- κN)cobalt(II)]- μ-sulfato- $\left.\kappa^{2} O: O^{\prime}\right]$

Naveed Alam, Matthias Zeller, Nur Syamimi Ahmad Tajidi, Zainudin Arifin and Muhammad Mazhar

S1. Comment

Sulfate coordination to cobalt ions may be divided into three commonly reported modes: monodentate (Das et al.,2009, Majumder et al., 2005), bidentate (Masuhara et al.., 2007, Zhong et al.,2006, 2011) or bidentate-bridged metal to metal coordination (Dietz et al., 2009, Wu et al., 2008, Carlucci et al., 2003, Ali et al., 2005, Vreshch et al., 2003). The last mode of coordination is particularly common where the sulfate ion acts as a bridge that links two cobalt ions to form an extended polymeric structure. Further evidence for the different modes of sulfate coordination is reflected in the infra-red absorption spectrum due to the reduction in symmetry in sulfate coordination.
In the title compound, the cobalt(II) complex exhibits octahedral symmetry with the two 3-methylpyridine ligands lying in cis position with respect to each other, and trans to the two coordinated water molecules. The axial positions are occupied by oxygen atoms of the sulfate ions. Both Co and S occupy special positions (two-fold axis, Wyckoff position $4 c)$. Neighboring cobalt ions are covalently connected with each other through the sulfate ions thus creating infinite polymeric chains that stretch parallel to the c axis direction. The water molecules are connected with neighboring sulfate ions through strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Intramolecular hydrogen bonds parallel to the propagation direction of the chains stabilize the polymeric chains, and intermolecular hydrogen bonds between chains connect neighboring strains with each other, thus leading to polymeric double chains.

S2. Experimental

Potassium O-n-butyl xanthate $(1.00 \mathrm{~g}, 0.53 \mathrm{mmol})$ was dissolved in acetone $(20 \mathrm{~mL})$ and placed in a three-necked round bottom flask fitted with a reflux condenser, a magnetic stirrer and a vacuum line. $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.78 \mathrm{~g}, 2.70 \mathrm{mmol})$ was added directly into the reaction flask. The contents were stirred to dissolve the salt completely. About 30 ml of 3methylpyridine was added and stirring was continued for another hour. Any insoluble matter was removed by filtration, and slow evaporation of the reaction mixture at room temperature yielded 60% of red needles of the title compound as the unexpected product. m.p. $=373 \mathrm{~K}$. Elemental analysis: Found (Calc.) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{CoO}_{6} \mathrm{~S}$: C 38.64 (38.20); H 4.66 (4.80); N 7.51 (7.42).

S3. Refinement

Water hydrogen atoms were located in the difference density Fourier map and their position were refined with an O-H distance restraint of $0.84 \AA$ within a standard deviation of $0.02 \AA$. All other hydrogen atoms were placed in calculated positions and all H atoms were refined riding on the respective carrier atom with an isotropic displacement parameter 1.5 (methyl, hydroxyl) or 1.2 times (aromatic) that of the adjacent carbon or oxygen atom.

Figure 1
Thermal ellipsoid representation of the title compound with atom numbering scheme. Displacement elliposoids are at the 50% level, hydrogen atoms are shown as spheres of arbitrari radii. Symmetry operators: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+1$, $y,-z+3 / 2$.

Figure 2
One of the infinite double chains formed by the title compound. View down the b-axis. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are symbolized as blue dashed lines.

Figure 3

Packing arrangement of the title compound. H atoms have been omitted for clarity.

catena-Poly[[diaquabis(3-methylpyridine- $\kappa \mathrm{N})$ cobalt(II)] $-\mu$-sulfato- $\left.\kappa^{2} \mathrm{O}: \mathrm{O}^{\prime}\right]$

Crystal data

$\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=377.27$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=15.132$ (2) \AA
$b=16.687$ (2) \AA
$c=6.4503$ (9) \AA
$V=1628.7$ (4) \AA^{3}
$Z=4$
$F(000)=780$

Data collection

Bruker SMART APEX CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
$T_{\text {min }}=0.786, T_{\text {max }}=0.865$
$D_{\mathrm{x}}=1.539 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 373 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5623 reflections
$\theta=2.4-30.5^{\circ}$
$\mu=1.21 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, red
$0.60 \times 0.12 \times 0.12 \mathrm{~mm}$

15656 measured reflections
2028 independent reflections
1892 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-20 \rightarrow 19$
$k=-22 \rightarrow 22$
$l=-8 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.075$
$S=1.08$
2028 reflections
108 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0404 P)^{2}+0.7529 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\text {max }}=0.57 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\text {min }}=-0.32$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
C1	$0.59471(10)$	$0.18494(8)$	$0.0429(2)$	$0.0210(3)$
H1	0.5466	0.1895	-0.0509	0.025^{*}
C2	$0.65854(10)$	$0.12686(8)$	$0.0035(2)$	$0.0236(3)$
C3	$0.72901(10)$	$0.12145(9)$	$0.1412(3)$	$0.0250(3)$
H3	0.7745	0.0832	0.1193	0.030^{*}
C4	$0.73227(10)$	$0.17218(9)$	$0.3100(3)$	$0.0268(3)$
H4	0.7800	0.1691	0.4054	0.032^{*}
C5	$0.66527(9)$	$0.22760(9)$	$0.3387(2)$	$0.0224(3)$
H5	0.6675	0.2617	0.4564	0.027^{*}
C6	$0.65160(13)$	$0.07315(11)$	$-0.1835(3)$	$0.0384(4)$
H6A	0.6325	0.0196	-0.1399	0.058^{*}
H6B	0.7094	0.0694	-0.2513	0.058^{*}
H6C	0.6084	0.0955	-0.2808	0.058^{*}
Co1	0.5000	$0.325574(15)$	0.2500	$0.01344(10)$
N1	$0.59730(8)$	$0.23485(7)$	$0.20607(18)$	$0.0175(2)$
O1	$0.59964(7)$	$0.41307(6)$	$0.21413(16)$	$0.0177(2)$
H1A	$0.5893(14)$	$0.4584(10)$	$0.263(3)$	0.027^{*}
H1B	$0.6013(12)$	$0.4199(11)$	$0.088(2)$	0.027^{*}
O2	$0.52369(7)$	$0.32565(5)$	$0.57274(15)$	$0.0183(2)$
O3	$0.42370(6)$	$0.42849(6)$	$0.69346(15)$	$0.0181(2)$
S1	0.5000	$0.37749(3)$	0.7500	$0.01309(12)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C1	$0.0248(7)$	$0.0188(6)$	$0.0192(6)$	$0.0005(5)$	$-0.0001(5)$	$-0.0020(5)$
C2	$0.0287(7)$	$0.0185(6)$	$0.0234(7)$	$0.0004(5)$	$0.0057(6)$	$-0.0018(5)$
C3	$0.0221(7)$	$0.0199(7)$	$0.0329(8)$	$0.0042(5)$	$0.0066(6)$	$0.0021(6)$
C4	$0.0212(7)$	$0.0271(8)$	$0.0320(8)$	$0.0017(6)$	$-0.0033(6)$	$0.0009(6)$
C5	$0.0222(7)$	$0.0236(7)$	$0.0215(7)$	$-0.0002(5)$	$-0.0025(5)$	$-0.0027(5)$
C6	$0.0487(10)$	$0.0320(9)$	$0.0346(9)$	$0.0125(8)$	$0.0008(8)$	$-0.0145(8)$
Co1	$0.01657(15)$	$0.01387(15)$	$0.00988(14)$	0.000	$0.00000(8)$	0.000
N1	$0.0185(6)$	$0.0168(5)$	$0.0173(5)$	$0.0001(4)$	$0.0008(4)$	$-0.0007(4)$
O1	$0.0224(5)$	$0.0159(5)$	$0.0148(5)$	$-0.0010(4)$	$-0.0002(4)$	$-0.0017(4)$
O2	$0.0258(5)$	$0.0187(5)$	$0.0105(5)$	$0.0047(4)$	$0.0004(4)$	$-0.0012(3)$
O3	$0.0200(5)$	$0.0184(5)$	$0.0159(4)$	$0.0032(4)$	$-0.0009(4)$	$-0.0012(4)$
S1	$0.0168(2)$	$0.0135(2)$	$0.0090(2)$	0.000	$0.00065(14)$	0.000

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{N} 1$	1.3427 (18)	C6-H6C	0.9800
C1-C2	1.392 (2)	Col-O1	2.1115 (10)
C1-H1	0.9500	$\mathrm{Col-O1}{ }^{\text {i }}$	2.1115 (10)
C2-C3	1.391 (2)	$\mathrm{Co} 1-\mathrm{O}^{2}{ }^{\text {i }}$	2.1124 (10)
C2-C6	1.506 (2)	Col-O2	2.1124 (10)
C3-C4	1.380 (2)	Col-N1	2.1308 (12)
C3-H3	0.9500	Col-N1 ${ }^{\text {i }}$	2.1308 (12)
C4-C5	1.385 (2)	$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	0.835 (15)
C4-H4	0.9500	$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B}$	0.820 (15)
C5-N1	1.3431 (19)	$\mathrm{O} 2-\mathrm{S} 1$	1.4779 (10)
C5-H5	0.9500	O3-S1	1.4799 (10)
C6-H6A	0.9800	$\mathrm{S} 1-\mathrm{O} 2{ }^{\text {ii }}$	1.4779 (10)
C6-H6B	0.9800	$\mathrm{S} 1-\mathrm{O}^{\text {ii }}$	1.4799 (10)
N1-C1-C2	123.71 (14)	$\mathrm{O} 1 \mathrm{i}-\mathrm{Co} 1-\mathrm{O} 2$	90.73 (4)
N1-C1-H1	118.1	$\mathrm{O} 2 \mathrm{i}-\mathrm{Co} 1-\mathrm{O} 2$	179.93 (5)
C2-C1-H1	118.1	$\mathrm{O} 1-\mathrm{Co1-N1}$	89.05 (5)
C3-C2-C1	117.41 (13)	$\mathrm{O} 1{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 1$	177.82 (4)
C3-C2-C6	121.76 (14)	$\mathrm{O} 2 \mathrm{i}-\mathrm{Co} 1-\mathrm{N} 1$	89.23 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	120.82 (14)	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1$	90.82 (4)
C4-C3-C2	119.45 (13)	$\mathrm{O} 1-\mathrm{Col}-\mathrm{N} 1^{\text {i }}$	177.82 (4)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.3	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Col}-\mathrm{N} 1^{\text {i }}$	89.05 (5)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.3	$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	90.82 (4)
C3-C4-C5	119.27 (15)	$\mathrm{O} 2-\mathrm{Col}-\mathrm{N} 1^{\text {i }}$	89.23 (4)
C3-C4-H4	120.4	N1-Col-N1 ${ }^{\text {i }}$	89.44 (6)
C5-C4-H4	120.4	C1-N1-C5	117.75 (12)
N1-C5-C4	122.40 (14)	C1-N1-Col	121.65 (10)
N1-C5-H5	118.8	C5-N1-Col	120.56 (9)
C4-C5-H5	118.8	Col-O1-H1A	116.7 (15)
C2-C6-H6A	109.5	Co1-O1-H1B	103.1 (13)

C2-C6-H6B	109.5	H1A-O1-H1B	104.9 (17)
H6A-C6-H6B	109.5	S1-O2-Co1	136.19 (6)
C2-C6-H6C	109.5	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 2{ }^{\text {ii }}$	108.35 (8)
H6A-C6-H6C	109.5	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3{ }^{\text {ii }}$	109.76 (6)
H6B-C6-H6C	109.5	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{S} 1-\mathrm{O} 3{ }^{\text {ii }}$	109.58 (5)
$\mathrm{O} 1-\mathrm{Col}-\mathrm{Ol}^{\text {i }}$	92.51 (6)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	109.58 (5)
$\mathrm{O} 1-\mathrm{Col-O} 2^{\text {i }}$	90.73 (4)	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{S} 1-\mathrm{O} 3$	109.76 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 2^{\mathrm{i}}$	89.22 (4)	$\mathrm{O} 3{ }^{\text {ii- }} \mathrm{S} 1-\mathrm{O} 3$	109.79 (8)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$	89.22 (4)		
N1-C1-C2-C3	-0.6 (2)	N1- ${ }^{\text {i }}$ Col-N1-C1	65.61 (10)
N1-C1-C2-C6	-179.69 (15)	O1-Co1-N1-C5	61.84 (11)
C1-C2-C3-C4	0.8 (2)	$\mathrm{O} 2 \mathrm{C}-\mathrm{Col}-\mathrm{N} 1-\mathrm{C} 5$	152.59 (11)
C6-C2-C3-C4	179.90 (15)	O2-Col-N1-C5	-27.36 (11)
C2-C3-C4-C5	-0.1 (2)	N 1 - $-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 5$	-116.59 (12)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	-1.0 (2)	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2-\mathrm{S} 1$	78.59 (9)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	-0.4 (2)	$\mathrm{O} 1-\mathrm{Col}-\mathrm{O} 2-\mathrm{S} 1$	-13.91 (9)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co} 1$	177.45 (11)	N1-Co1-O2-S1	167.62 (9)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	1.2 (2)	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 2-\mathrm{S} 1$	-102.95 (10)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{Col}$	-176.65 (11)	$\mathrm{Co} 1-\mathrm{O} 2-\mathrm{S} 1-\mathrm{O}^{2 i}$	138.72 (11)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 1$	-115.96 (11)	$\mathrm{Co} 1-\mathrm{O} 2-\mathrm{S} 1-\mathrm{O}^{3 i}$	-101.66 (9)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 1$	-25.22 (11)	$\mathrm{Co} 1-\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	18.98 (11)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 1$	154.83 (11)		

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 B \cdots 3^{\text {i }}$	$0.82(2)$	$1.86(2)$	$2.6652(15)$	$166(2)$
$\mathrm{O} 1 — \mathrm{H} 1 A \cdots 3^{\text {iii }}$	$0.84(2)$	$1.92(2)$	$2.7331(14)$	$165(2)$

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (iii) $-x+1,-y+1,-z+1$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2108).

