metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[5-Chloro-2-hydroxy-N'-(2-oxidobenzylidene)benzohydrazidato]dimethyltin(IV)

Xiuyun Zhang, Caihong Yue and Handong Yin*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 6 June 2011; accepted 29 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.029; wR factor = 0.071; data-to-parameter ratio = 14.0.

In the title compound, $[Sn(CH_3)_2(C_{14}H_9ClN_2O_3)]$, the Sn^{IV} ion is coordinated by one N and two O atoms from the 5-chloro-2-hydroxy-N'-(2-oxidobenzylidene)tridentate benzohydrazidate (L) ligand and two methyl groups in a distorted trigonal-bipyramidal geometry. In the ligand, the hydroxy group is involved in an intramolecular O-H···N hydrogen bond and the two aromatic rings form a dihedral angle of 5.5 (1)°. In the crystal, weak intermolecular C-H···O hydrogen bonds and π - π interactions between the aromatic rings [centroid–centroid distance = 3.816(3) Å] link the molecules into centrosymmetric dimers.

Related literature

For related structures, see: Yearwood et al. (2002); Hong et al. (2010); Li et al. (2009).

Experimental

Crystal data

[Sn(CH₃)₂(C₁₄H₉ClN₂O₃)] V = 1697.5 (3) Å³ $M_r = 437.44$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 7.5096 (5) Å $\mu = 1.68 \text{ mm}^$ b = 20.965 (2) Å T = 298 Kc = 10.8344 (11) Å $0.48 \times 0.41 \times 0.23 \text{ mm}$ $\beta = 95.634 (1)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.500, \ T_{\max} = 0.699$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	212 parameters
$wR(F^2) = 0.071$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
2975 reflections	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

8414 measured reflections

 $R_{\rm int} = 0.052$

2975 independent reflections

2357 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline C15-H15A\cdotsO1^{i}\\ O1-H1\cdotsN1 \end{array}$	0.96	2.59	3.430 (5)	147
	0.82	1.87	2.577 (4)	144

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We acknowledge the National Natural Science Foundation of China (grant No. 20771053) and the Natural Science Foundation of Shandong Province (grant No. Y2008B48) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5115).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,

USA. Hong, M., Yin, H.-D., Chen, S.-W. & Wang, D.-Q. (2010). J. Organomet. Chem.

695, 653-662.

Li, J., Yin, H., Wen, L. & Cui, J. (2009). Acta Cryst. E65, m1441.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yearwood, B., Parkin, S. & Atwood, D. A. (2002). Inorg. Chim. Acta, 333, 124-131.

supporting information

Acta Cryst. (2011). E67, m1028 [doi:10.1107/S1600536811025621]

$[5-Chloro-2-hydroxy-{\it N'-(2-oxidobenzylidene)} benzohydrazidato] dimethyltin (IV)$

Xiuyun Zhang, Caihong Yue and Handong Yin

S1. Comment

Organotin(IV) compounds of hydrazone Schiff bases were reported by Hong *et al.* (2010). In continuation of our study of hydrazone Schiff base organotin(IV) compounds (Li *et al.*, 2009), we have synthesized the title compound, (I).

In (I) (Fig. 1), the tin center is five-coordinated in a distorted trigonal bipyramidal geometry, being surrounded by two C atoms from the alkyl and one N atom, two O atoms from the Schiff base ligand. So the ligand coordinated to the tin atom as a tridentate ligand. In the tridentate ligand, two aromatic rings form a dihedral angle of 5.5 (1)°. The O atoms coordinate the Sn center with different bond lengths - for carbonyl O2 atom Sn—O2 = 2.183 (2) Å, and for hydroxy O3 atom Sn—O3 = 2.078 (3) Å. Similar structural parameters were observed in the related compound (Yearwood *et al.*, 2002). In (I), the angles o C15–Sn–C16, C15–Sn–O3 and C16–Sn–O3 are 129.30 (15)°, 100.22 (14)° and 95.08 (14)°, respectively, indicating the distorted trigonal bipyramidal coordination geometry.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) and π — π interactions between the aromatic rings [centroid-to-centroid distance of 3.816 (3) Å] link the molecules into centrosymmetric dimers (Fig.2).

S2. Experimental

The reaction was carried out under nitrogen atmosphere. The Schiff base ligand (0.2 mmol) was added to 30 ml e thanol with sodium ethoxide (0.4 mmol). The mixture was stirred for 0.5 h and then dichlorodimethyltin (0.2 mmol) was added. And the mixture was stirred for 12 h under reflux. After cooling to room temperature, the mixture was filtered and evaporated to dryness. The resulting solid, was then recrystallized from dichloromethane-petroleum ether (1:1, v/v). Anal. Calcd (%) for C₁₆H₁₅Cl_N2₀3_{Sn} (Mr = 437.44): C, 43.93; H, 3.46; N, 6.40; O, 10.97. Found (%): C, 43.90; H, 3.42; N, 6.35; O, 10.9.

S3. Refinement

The H atoms were positioned geometrically (C–H 0.93-0.96 Å; O–H 0.82 Å), and refined as riding, with $U_{iso}(H) = 1.2-1.5$ U_{eq} of the parent atom.

Figure 1

The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.

Figure 2

Centrosymmetric dimer in the crystal structure of (I) [symmetry code: (a) - x + 1,-y + 1,-z + 1]. Dashed lines denote intermolecular C—H···O hydrogen bonds and π — π interactions.

[5-Chloro-2-hydroxy-N'-(2- oxidobenzylidene)benzohydrazidato]dimethyltin(IV)

Crystal data	
$[Sn(CH_3)_2(C_{14}H_9ClN_2O_3)]$	F(000) = 864
$M_r = 437.44$	$D_{\rm x} = 1.712 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.5096 (5) Å	Cell parameters from 4020 reflections
b = 20.965 (2) Å	$\theta = 3.3 - 27.2^{\circ}$
c = 10.8344 (11) Å	$\mu = 1.68 \text{ mm}^{-1}$
$\beta = 95.634 \ (1)^{\circ}$	T = 298 K
$V = 1697.5 (3) Å^3$	Block, yellow
Z = 4	$0.48 \times 0.41 \times 0.23 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	8414 measured reflections
diffractometer	2975 independent reflections
Radiation source: fine-focus sealed tube	2357 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.052$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$ $h = -8 \rightarrow 8$ $k = -24 \rightarrow 23$ $l = -12 \rightarrow 12$

Absorption correction: multi-scan

(*SADABS*; Bruker, 2001) $T_{\min} = 0.500, T_{\max} = 0.699$

 φ and ω scans

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.071$	$w = 1/[\sigma^2(F_o^2) + (0.026P)^2 + 0.2305P]$
S = 1.07	where $P = (F_o^2 + 2F_c^2)/3$
2975 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
212 parameters	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.67 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0182 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sn1	0.36782 (3)	0.466514 (11)	0.80395 (2)	0.03921 (13)
Cl1	-0.1037 (2)	0.21038 (5)	0.43753 (11)	0.0807 (4)
N1	0.2415 (4)	0.48410 (14)	0.5277 (3)	0.0413 (7)
N2	0.3277 (4)	0.51754 (13)	0.6279 (3)	0.0365 (7)
01	0.1173 (5)	0.46606 (13)	0.3001 (2)	0.0606 (8)
H1	0.1802	0.4835	0.3564	0.091*
O2	0.2336 (4)	0.40168 (12)	0.6672 (2)	0.0498 (7)
O3	0.4514 (4)	0.55533 (12)	0.8723 (2)	0.0534 (7)
C1	0.1973 (5)	0.42608 (17)	0.5585 (3)	0.0369 (8)
C2	0.1016 (5)	0.38655 (16)	0.4607 (3)	0.0372 (8)
C3	0.0701 (5)	0.40754 (18)	0.3373 (3)	0.0413 (9)
C4	-0.0106 (5)	0.36639 (19)	0.2477 (3)	0.0501 (10)
H4	-0.0283	0.3799	0.1656	0.060*
C5	-0.0637 (6)	0.30721 (19)	0.2777 (3)	0.0492 (10)
Н5	-0.1184	0.2805	0.2168	0.059*
C6	-0.0362 (5)	0.28668 (17)	0.3994 (3)	0.0455 (9)
C7	0.0456 (5)	0.32594 (17)	0.4898 (3)	0.0407 (9)
H7	0.0635	0.3116	0.5713	0.049*
C8	0.3792 (5)	0.57425 (17)	0.6034 (3)	0.0409 (9)
H8	0.3597	0.5870	0.5210	0.049*
C9	0.4634 (5)	0.62022 (16)	0.6886 (3)	0.0405 (9)
C10	0.5084 (5)	0.67917 (18)	0.6401 (4)	0.0532 (10)
H10	0.4906	0.6858	0.5549	0.064*
C11	0.5786 (6)	0.72764 (19)	0.7158 (4)	0.0607 (12)
H11	0.6094	0.7666	0.6826	0.073*
C12	0.6020 (6)	0.7170 (2)	0.8418 (4)	0.0611 (12)
H12	0.6478	0.7497	0.8936	0.073*
C13	0.5603 (6)	0.66031 (19)	0.8930 (4)	0.0554 (11)
H13	0.5786	0.6551	0.9785	0.066*
C14	0.4897 (5)	0.60941 (18)	0.8185 (3)	0.0444 (9)
C15	0.6154 (5)	0.41890 (19)	0.8108 (4)	0.0536 (10)
H15A	0.6874	0.4378	0.7521	0.080*

supporting information

H15B	0.5956	0.3747	0.7907	0.080*
H15C	0.6761	0.4224	0.8927	0.080*
C16	0.1613 (6)	0.45669 (19)	0.9204 (4)	0.0528 (11)
H16A	0.2094	0.4617	1.0052	0.079*
H16B	0.1083	0.4152	0.9091	0.079*
H16C	0.0719	0.4887	0.8999	0.079*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0436 (2)	0.03337 (18)	0.04025 (17)	-0.00176 (11)	0.00207 (11)	0.00346 (11)
C11	0.1181 (11)	0.0464 (7)	0.0724 (8)	-0.0281 (7)	-0.0178 (7)	0.0042 (6)
N1	0.049 (2)	0.0347 (17)	0.0402 (16)	-0.0027 (14)	0.0022 (14)	0.0004 (14)
N2	0.0372 (18)	0.0300 (16)	0.0424 (16)	0.0005 (13)	0.0037 (13)	0.0041 (13)
01	0.087 (2)	0.0491 (18)	0.0438 (16)	-0.0106 (15)	-0.0039 (15)	0.0111 (13)
O2	0.0696 (19)	0.0399 (15)	0.0378 (14)	-0.0116 (14)	-0.0056 (13)	0.0044 (12)
O3	0.078 (2)	0.0340 (14)	0.0468 (15)	-0.0133 (14)	0.0014 (14)	0.0037 (13)
C1	0.035 (2)	0.037 (2)	0.040 (2)	0.0052 (16)	0.0058 (16)	0.0016 (16)
C2	0.036 (2)	0.038 (2)	0.0373 (19)	0.0063 (16)	0.0004 (15)	-0.0022 (16)
C3	0.045 (2)	0.036 (2)	0.043 (2)	0.0046 (17)	0.0081 (17)	0.0042 (17)
C4	0.057 (3)	0.054 (3)	0.038 (2)	0.000 (2)	-0.0014 (18)	-0.0012 (19)
C5	0.053 (3)	0.050 (2)	0.044 (2)	0.001 (2)	-0.0006 (18)	-0.0085 (19)
C6	0.050 (3)	0.038 (2)	0.047 (2)	-0.0004 (18)	0.0005 (18)	-0.0006 (17)
C7	0.043 (2)	0.042 (2)	0.0366 (19)	0.0005 (17)	-0.0003 (16)	0.0010 (17)
C8	0.042 (2)	0.036 (2)	0.047 (2)	0.0040 (17)	0.0100 (17)	0.0106 (17)
C9	0.039 (2)	0.030 (2)	0.054 (2)	0.0014 (16)	0.0118 (18)	0.0011 (17)
C10	0.056 (3)	0.038 (2)	0.066 (3)	0.0014 (19)	0.010 (2)	0.008 (2)
C11	0.063 (3)	0.033 (2)	0.089 (3)	-0.007 (2)	0.020 (3)	0.001 (2)
C12	0.058 (3)	0.044 (3)	0.082 (3)	-0.011 (2)	0.009 (2)	-0.011 (2)
C13	0.064 (3)	0.041 (2)	0.061 (3)	-0.007 (2)	0.004 (2)	-0.008 (2)
C14	0.040 (2)	0.038 (2)	0.056 (2)	0.0007 (18)	0.0088 (18)	-0.0022 (19)
C15	0.050 (3)	0.047 (2)	0.064 (3)	0.009 (2)	0.007 (2)	0.010 (2)
C16	0.052 (3)	0.062 (3)	0.045 (2)	0.001 (2)	0.0056 (19)	0.0049 (19)

Geometric parameters (Å, °)

Sn1—O3	2.078 (3)	C6—C7	1.378 (5)
Sn1—C16	2.103 (4)	C7—H7	0.9300
Sn1—C15	2.105 (4)	C8—C9	1.437 (5)
Sn1—N2	2.182 (3)	C8—H8	0.9300
Sn1—O2	2.183 (2)	C9—C10	1.398 (5)
Cl1—C6	1.740 (4)	C9—C14	1.420 (5)
N1C1	1.312 (4)	C10—C11	1.377 (6)
N1—N2	1.397 (4)	C10—H10	0.9300
N2—C8	1.286 (4)	C11—C12	1.377 (6)
O1—C3	1.349 (4)	C11—H11	0.9300
01—H1	0.8200	C12—C13	1.362 (6)
O2—C1	1.288 (4)	C12—H12	0.9300

O3—C14	1.319 (4)	C13—C14	1.409 (5)
C1—C2	1.476 (5)	С13—Н13	0.9300
C2—C7	1.385 (5)	C15—H15A	0.9600
C2—C3	1.405 (5)	C15—H15B	0.9600
C3—C4	1.393 (5)	C15—H15C	0.9600
C4—C5	1.353 (5)	C16—H16A	0.9600
C4—H4	0.9300	C16—H16B	0.9600
C5—C6	1.383 (5)	C16—H16C	0.9600
С5—Н5	0.9300	CG1—CG2 ⁱ	3.8154 (2)
O3—Sn1—C16	95.08 (14)	С6—С7—Н7	119.7
O3—Sn1—C15	100.23 (14)	С2—С7—Н7	119.7
C16—Sn1—C15	129.29 (15)	N2—C8—C9	127.6 (3)
O3—Sn1—N2	83.30 (10)	N2—C8—H8	116.2
C16—Sn1—N2	121.70 (13)	С9—С8—Н8	116.2
C15—Sn1—N2	108.00 (13)	C10—C9—C14	119.9 (3)
O3—Sn1—O2	154.56 (10)	C10—C9—C8	117.3 (3)
C16—Sn1—O2	91.59 (13)	C14—C9—C8	122.6 (3)
C15—Sn1—O2	94.35 (13)	C11—C10—C9	121.4 (4)
N2—Sn1—O2	72.36 (10)	C11—C10—H10	119.3
C1—N1—N2	112.1 (3)	C9—C10—H10	119.3
C8—N2—N1	115.4 (3)	C12—C11—C10	118.4 (4)
C8—N2—Sn1	128.0 (2)	C12—C11—H11	120.8
N1—N2—Sn1	116.6 (2)	C10—C11—H11	120.8
C3—O1—H1	109.5	C13—C12—C11	122.2 (4)
C1—O2—Sn1	114.5 (2)	C13—C12—H12	118.9
C14 - O3 - Sn1	133.1 (2)	C11—C12—H12	118.9
02-C1-N1	124.4 (3)	C12—C13—C14	121.1 (4)
02-C1-C2	118.6 (3)	C12—C13—H13	119.4
N1-C1-C2	117.1 (3)	C14—C13—H13	119.4
C7-C2-C3	118.6 (3)	03-C14-C13	1189(3)
C7—C2—C1	119.3 (3)	O3—C14—C9	124.0 (3)
$C_{3}-C_{2}-C_{1}$	122.1 (3)	C_{13} C_{14} C_{9}	1170(4)
01-C3-C4	1177(3)	Sn1—C15—H15A	109.5
$01 - C_3 - C_2$	1230(3)	n1 - C15 - H15B	109.5
C4-C3-C2	1194(4)	H15A—C15—H15B	109.5
$C_{5} - C_{4} - C_{3}$	121 3 (4)	Sn1—C15—H15C	109.5
C5-C4-H4	119.4	H15A - C15 - H15C	109.5
$C_3 - C_4 - H_4$	119.1	H15B-C15-H15C	109.5
C4-C5-C6	119.4	Sn1—C16—H16A	109.5
C4-C5-H5	120.2	Sn1_C16_H16B	109.5
C6-C5-H5	120.2	H_{164} C_{16} H_{16B}	109.5
C7_C6_C5	120.2 120.4(4)	S_n1 H16C	109.5
$C_{7} = C_{6} = C_{11}$	120.7(7)	H16A C16 H16C	109.5
$C_{1} = C_{0} = C_{11}$	120.0(3) 110 5 (3)	$H_{16} = C_{16} = H_{16} = C_{16}$	109.5
$C_{2} = C_{2} = C_{1}$	117.3(3)	птов—сто—птос	109.3
CO - C / - C Z	120.7 (3)		
C1—N1—N2—C8	178.1 (3)	C7—C2—C3—C4	-2.1 (5)

C1—N1—N2—Sn1	0.5 (4)	C1—C2—C3—C4	175.8 (3)
O3—Sn1—N2—C8	10.7 (3)	O1—C3—C4—C5	-179.2 (4)
C16—Sn1—N2—C8	102.5 (3)	C2—C3—C4—C5	1.8 (6)
C15—Sn1—N2—C8	-87.9 (3)	C3—C4—C5—C6	-0.6 (6)
O2—Sn1—N2—C8	-176.8 (3)	C4—C5—C6—C7	-0.4 (6)
O3—Sn1—N2—N1	-172.0 (2)	C4C5C6Cl1	-179.7 (3)
C16—Sn1—N2—N1	-80.1 (3)	C5—C6—C7—C2	0.1 (6)
C15—Sn1—N2—N1	89.4 (3)	Cl1—C6—C7—C2	179.4 (3)
O2—Sn1—N2—N1	0.5 (2)	C3—C2—C7—C6	1.2 (5)
O3—Sn1—O2—C1	16.0 (4)	C1—C2—C7—C6	-176.8 (3)
C16—Sn1—O2—C1	121.4 (3)	N1—N2—C8—C9	177.0 (3)
C15—Sn1—O2—C1	-109.0 (3)	Sn1—N2—C8—C9	-5.6 (5)
N2—Sn1—O2—C1	-1.5 (2)	N2-C8-C9-C10	179.8 (4)
C16—Sn1—O3—C14	-132.8 (4)	N2-C8-C9-C14	-4.8 (6)
C15—Sn1—O3—C14	95.7 (4)	C14—C9—C10—C11	0.1 (6)
N2—Sn1—O3—C14	-11.5 (4)	C8—C9—C10—C11	175.6 (4)
O2—Sn1—O3—C14	-28.3 (5)	C9-C10-C11-C12	-0.7 (6)
Sn1—O2—C1—N1	2.6 (4)	C10-C11-C12-C13	0.9 (7)
Sn1—O2—C1—C2	-178.2 (2)	C11—C12—C13—C14	-0.3 (7)
N2—N1—C1—O2	-2.1 (5)	Sn1-O3-C14-C13	-174.0 (3)
N2—N1—C1—C2	178.7 (3)	Sn1—O3—C14—C9	6.4 (6)
O2—C1—C2—C7	3.3 (5)	C12—C13—C14—O3	180.0 (4)
N1—C1—C2—C7	-177.4 (3)	C12—C13—C14—C9	-0.4 (6)
O2—C1—C2—C3	-174.6 (3)	C10-C9-C14-O3	-179.9 (4)
N1—C1—C2—C3	4.8 (5)	C8—C9—C14—O3	4.8 (6)
C7—C2—C3—O1	179.0 (3)	C10-C9-C14-C13	0.5 (5)
C1—C2—C3—O1	-3.1 (5)	C8—C9—C14—C13	-174.8 (3)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C15—H15A…O1 ⁱ	0.96	2.59	3.430 (5)	147
O1—H1…N1	0.82	1.87	2.577 (4)	144

Symmetry code: (i) -x+1, -y+1, -z+1.