

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[μ -1,4-bis(1*H*-imidazol-4-yl)-benzene- $\kappa^2 N^3$: $N^{3'}$](μ -5-methylisophthalato- $\kappa^2 O^1: O^3$)cobalt(II)]

Shui-Sheng Chen,* Sen-Lin Yang and Shu-Ping Zhang

Department of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China Correspondence e-mail: sscfync@163.com

Received 10 May 2011; accepted 29 June 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.100; data-to-parameter ratio = 15.5.

In the title coordination polymer, $[Co(C_9H_6O_4)(C_{12}H_{10}N_4)]_n$, the Co^{II} atom is four-coordinated by two O atoms from two different 5-methylisophthalate bivalent anions and two N atoms from two different 1,4-bis(1H-imidazol-4-yl)benzene ligands, forming a four-coordinated tetrahedral coordination geometry. Each 5-methylisophthalate ligand acts as a μ_2 bridge, linking two Co^{II} atoms and forming chains which are further linked by 1,4-bis(1H-imidazol-4-yl)benzene ligands into a two-dimensional network parallel to $(\overline{2}01)$. These planes are, in turn, linked by two intermolecular N-H···O interactions, forming a three-dimensional structure. Weak C- $H \cdots O$ hydrogen bonds are also present in the structure.

Related literature

For background to mixed inorganic-organic hybrid materials, see: Kitagawa & Kondo (1998). For examples with mixed organic and N-containing ligands, see: Liu et al. (2007); Chen et al. (2010).

V = 1841.9 (2) Å³

Mo $K\alpha$ radiation

 $0.22 \times 0.18 \times 0.13 \text{ mm}$

16427 measured reflections

4210 independent reflections

 $\mu = 0.97 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.032$

Z = 4

Experimental

Crystal data

 $[Co(C_9H_6O_4)(C_{12}H_{10}N_4)]$ $M_{*} = 447.31$ Monoclinic, $P2_1/c$ a = 7.4608 (5) Å b = 13.8212 (10) Åc = 17.8629 (13) Å $\beta = 90.451 (1)^{\circ}$

Data collection

```
Bruker SMART APEXII CCD
  diffractometer
Absorption correction: multi-scan
                                          3540 reflections with I > 2\sigma(I)
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.815, \ T_{\max} = 0.884
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	272 parameters
$wR(F^2) = 0.100$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
4210 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O3^{i}$	0.86	2.16	2.825 (3)	134
N3-H3···O2 ⁱⁱ	0.86	1.96	2.803 (2)	165
C9−H9···O2	0.93	2.39	3.274 (3)	158
$C11-H11\cdots O3^{iii}$	0.93	2.56	3.182 (3)	124
Symmetry codes: $x + 1, -y - \frac{1}{2}, z + \frac{1}{2}$	(i) - <i>x</i> , <i>y</i> -	$+\frac{1}{2}, -z + \frac{1}{2};$	(ii) $x + 1, -y +$	$\frac{1}{2}, z + \frac{1}{2};$ (iii)

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Anhui Provincial Education Commission (Nos. KJ2011B128 and KJ2009A047Z).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2404).

References

Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, S. S., Fan, J., Okamura, T.-A. & Chen, M. S. (2010). Cryst. Growth Des. 10, 812–822.

Kitagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739-1753.

Liu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). *Inorg. Chem.* **46**, 3027–3037. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2011). E67, m1031-m1032 [doi:10.1107/S1600536811025657]

Poly[[μ -1,4-bis(1*H*-imidazol-4-yl)benzene- $\kappa^2 N^3$: N^3'](μ -5-methylisophthalato- $\kappa^2 O^1$: O^3)cobalt(II)]

Shui-Sheng Chen, Sen-Lin Yang and Shu-Ping Zhang

S1. Comment

In the last decades there has been significant interest in the design and synthesis of mixed inorganic-organic hybrid materials owing to their potential application in catalysis, gas storage and separation, ion exchange and magnetism (Kitagawa & Kondo, 1998)). Recent studies illustrated that mixed organic ligands, especially the mixed polycarboxylate and N-containing ones, with more tunable factors, are good candidates for the construction of novel MOFs (Liu *et al.*, 2007). And based on the mix ligand strategy, we focus our attention in the study of reactions of the 1,4-di(1*H*-imidazol-4-yl)benzene ligand (*L*) together with different carboxylate ligands and salts, and made a systematic investigation on the impact of carboxylate ligands on the structure of the resulting complexes; as a result a series of novel structures have been synthesized (Chen *et al.*, 2010). As an extension of the above work we report herein a new metal complex, $Co(C_9H_6O_4)$ ($C_{12}H_{10}N_4$)]_n (I) based on the organic ligands 1,4-di(1*H*-imidazol-4-yl)benzene (*L*) and 5-methylisophthalic acid (H₂pda), together with Co^{II} salts. In the title compound, the Co^{II} atom is tetrahedrally coordinated by two nitrogen atoms from two *L* molecules and two carboxylate groups) to connect Co^{II} atoms into a one-dimensional chain (Fig.2), while the *L* ligand acts as a linear bidentate bridge to link chains to form two-dimensional networks paralell to ($\overline{2}01$) (Fig.3). These planes are in turn linked into a 3D structure by two intermolecular N—H···O interactions and two weaker C-H···O contacts (Table 1)

S2. Experimental

All reagents and solvents were used as obtained commercially without further purification. A mixture containing CoCl₂.6H₂O (23.8 mg, 0.1 mmol), *L* (21.1 mg, 0.1 mmol), DMF (N:*N*'- dimethylformamide, 1 ml), 10 ml H₂O was sealed in a 16 ml Teflon-lined stainless steel container and heated at 393 K for 72 h. After cooling to room temperature within 12 h, block brown crystals of (I) suitable for X-ray diffraction analysis were obtained in 78% Yield.

S3. Refinement

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93 Å and 0.96 Å for aryl and methyl type H-atoms, respectively with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. The amide H atoms were generated theoretically, with the N—H distances 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

The *ORTEP* drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. Symmetry codes: (i) 2 - x, -y, 1 - z, (ii) 1 - x, 1/2 + y, 0.5 - z.

Figure 2

An infinite one-dimensional chain formed from Co^{II} centers and pda²⁻ anions of the compound (I).

Figure 3

The two-dimensional structure built from one-dimension chains connected by L ligands of the compound (I).

Poly[[μ -1,4-bis(1*H*-imidazol-4-yl)benzene- $\kappa^2 N^3$: N^3](μ -5-methylisophthalato- $\kappa^2 O^1$: O^3)cobalt(II)]

Crystal	data
---------	------

$[Co(C_9H_6O_4)(C_{12}H_{10}N_4)]$ $M_r = 447.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.4608 (5) Å	F(000) = 916 $D_x = 1.613 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5943 reflections $\theta = 2.2-27.5^{\circ}$
b = 13.8212 (10) Å c = 17.8629 (13) Å $\beta = 90.451 (1)^{\circ}$ $V = 1841.9 (2) \text{ Å}^{3}$ Z = 4	$\mu = 0.97 \text{ mm}^{-1}$ T = 296 K Block, purple $0.22 \times 0.18 \times 0.13 \text{ mm}$
Data collection	
Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	16427 measured reflections 4210 independent reflections 3540 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$
phi and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$

 $h = -9 \rightarrow 9$

 $k = -17 \rightarrow 17$

 $l = -23 \rightarrow 23$

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{-} = 0.815$, $T_{-} = 0.884$

 $T_{\rm min} = 0.815, \ T_{\rm max} = 0.884$

Refinement

-	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
S = 1.12	H-atom parameters constrained
4210 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0533P)^2 + 0.5242P]$
272 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.010$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
Col	0.54880 (4)	0.195950 (18)	0.350426 (14)	0.02058 (10)
C1	0.7795 (3)	0.12914 (15)	0.66061 (11)	0.0255 (4)
H1	0.8186	0.1489	0.7078	0.031*
C2	0.6298 (3)	0.17243 (15)	0.62840 (11)	0.0266 (4)
H2	0.5685	0.2200	0.6547	0.032*
C3	0.5697 (3)	0.14555 (14)	0.55695 (11)	0.0226 (4)
C4	0.6616 (3)	0.07175 (14)	0.52012 (11)	0.0238 (4)
H4	0.6235	0.0524	0.4728	0.029*
C5	0.8076 (3)	0.02726 (14)	0.55266 (11)	0.0241 (4)
Н5	0.8643	-0.0229	0.5275	0.029*
C6	0.8721 (3)	0.05623 (14)	0.62299 (10)	0.0218 (4)
C7	0.4104 (3)	0.18914 (13)	0.52141 (11)	0.0231 (4)
C8	0.2542 (3)	0.21709 (16)	0.55384 (12)	0.0295 (5)
H8	0.2285	0.2165	0.6047	0.035*
C9	0.2298 (3)	0.23532 (15)	0.43242 (11)	0.0268 (4)
Н9	0.1822	0.2503	0.3856	0.032*
C10	1.0349 (3)	0.00981 (14)	0.65210 (10)	0.0220 (4)
C11	1.1089 (3)	-0.07682 (14)	0.63344 (11)	0.0244 (4)
H11	1.0566	-0.1220	0.6015	0.029*
C12	1.2952 (3)	-0.00842 (15)	0.70919 (11)	0.0279 (4)
H12	1.3949	0.0041	0.7392	0.033*
C13	0.1442 (3)	0.10168 (13)	0.19263 (10)	0.0219 (4)
C14	-0.0230 (3)	0.11928 (14)	0.16014 (11)	0.0248 (4)
H14	-0.0810	0.1775	0.1697	0.030*
C15	-0.1051 (3)	0.05121 (15)	0.11349 (11)	0.0265 (4)

C16	-0.0144 (3)	-0.03479 (15)	0.09966 (11)	0.0270 (4)
H16	-0.0651	-0.0798	0.0671	0.032*
C17	0.1502 (3)	-0.05523 (14)	0.13329 (11)	0.0230 (4)
C18	0.2293 (3)	0.01403 (14)	0.17953 (11)	0.0234 (4)
H18	0.3399	0.0015	0.2018	0.028*
C19	-0.2909 (3)	0.06834 (19)	0.08092 (15)	0.0419 (6)
H19A	-0.3309	0.0110	0.0554	0.063*
H19B	-0.2868	0.1213	0.0462	0.063*
H19C	-0.3724	0.0835	0.1206	0.063*
C20	0.2386 (3)	-0.15191 (15)	0.12306 (11)	0.0251 (4)
C21	0.2327 (3)	0.17620 (14)	0.24256 (11)	0.0237 (4)
N1	0.3928 (2)	0.20055 (12)	0.44391 (9)	0.0231 (4)
N2	0.1423 (3)	0.24621 (13)	0.49691 (10)	0.0295 (4)
H2A	0.0348	0.2677	0.5018	0.035*
N3	1.1559 (2)	0.05179 (12)	0.70134 (9)	0.0258 (4)
H3	1.1438	0.1069	0.7231	0.031*
N4	1.2734 (2)	-0.08794 (12)	0.66891 (9)	0.0244 (4)
O1	0.3807 (2)	0.14966 (11)	0.27237 (9)	0.0342 (4)
O2	0.1604 (2)	0.25623 (10)	0.25192 (9)	0.0353 (4)
O3	0.1867 (2)	-0.21003 (11)	0.07470 (9)	0.0337 (4)
O4	0.3683 (2)	-0.17173 (11)	0.16856 (9)	0.0324 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.01940 (16)	0.01927 (15)	0.02303 (15)	0.00030 (10)	-0.00299 (10)	0.00033 (9)
C1	0.0277 (11)	0.0262 (10)	0.0225 (9)	0.0019 (9)	-0.0044 (8)	-0.0028 (7)
C2	0.0287 (12)	0.0236 (9)	0.0273 (10)	0.0052 (9)	-0.0016 (8)	-0.0029 (8)
C3	0.0212 (10)	0.0221 (9)	0.0246 (9)	0.0009 (8)	-0.0017 (7)	0.0037 (7)
C4	0.0232 (10)	0.0266 (10)	0.0216 (9)	-0.0009 (8)	-0.0033 (7)	-0.0009(7)
C5	0.0231 (10)	0.0253 (10)	0.0240 (9)	0.0030 (8)	-0.0002 (8)	-0.0028 (7)
C6	0.0199 (10)	0.0219 (9)	0.0235 (9)	0.0000 (8)	-0.0016 (7)	0.0036 (7)
C7	0.0249 (11)	0.0207 (9)	0.0237 (9)	0.0000 (8)	-0.0022 (8)	0.0017 (7)
C8	0.0290 (12)	0.0325 (11)	0.0268 (10)	0.0061 (9)	-0.0003 (9)	0.0023 (8)
C9	0.0252 (11)	0.0277 (10)	0.0275 (10)	0.0043 (9)	-0.0028 (8)	0.0032 (8)
C10	0.0210 (10)	0.0239 (9)	0.0211 (9)	0.0003 (8)	-0.0020(7)	0.0019 (7)
C11	0.0206 (10)	0.0252 (9)	0.0272 (9)	0.0014 (8)	-0.0043 (8)	-0.0016 (8)
C12	0.0241 (11)	0.0303 (10)	0.0292 (10)	0.0013 (9)	-0.0077 (8)	-0.0005 (8)
C13	0.0237 (11)	0.0202 (9)	0.0217 (9)	-0.0015 (8)	-0.0030(7)	0.0023 (7)
C14	0.0244 (11)	0.0200 (9)	0.0299 (10)	0.0033 (8)	-0.0034 (8)	0.0016 (7)
C15	0.0223 (11)	0.0279 (10)	0.0294 (10)	-0.0009 (9)	-0.0068 (8)	0.0028 (8)
C16	0.0265 (11)	0.0244 (10)	0.0299 (10)	-0.0021 (9)	-0.0071 (8)	-0.0032 (8)
C17	0.0242 (11)	0.0208 (9)	0.0241 (9)	0.0000 (8)	-0.0029 (8)	-0.0008(7)
C18	0.0210 (10)	0.0227 (9)	0.0264 (9)	0.0007 (8)	-0.0057 (8)	0.0002 (7)
C19	0.0302 (13)	0.0427 (13)	0.0525 (15)	0.0050 (11)	-0.0186 (11)	-0.0027 (11)
C20	0.0234 (11)	0.0227 (10)	0.0291 (10)	-0.0011 (8)	0.0005 (8)	-0.0004 (8)
C21	0.0280 (11)	0.0209 (9)	0.0221 (9)	-0.0014 (8)	-0.0038 (8)	0.0016 (7)
N1	0.0221 (9)	0.0242 (8)	0.0229 (8)	0.0015 (7)	-0.0024 (7)	0.0020 (6)

supporting information

N2	0.0222 (9)	0.0333 (10)	0.0330 (9)	0.0096 (8)	0.0002 (7)	0.0015 (7)
N3	0.0266 (10)	0.0224 (8)	0.0282 (8)	0.0026 (7)	-0.0059 (7)	-0.0029 (7)
N4	0.0218 (9)	0.0253 (8)	0.0259 (8)	0.0025 (7)	-0.0045 (7)	0.0002 (6)
01	0.0304 (9)	0.0307 (8)	0.0411 (9)	0.0016 (7)	-0.0150 (7)	-0.0095 (7)
O2	0.0484 (11)	0.0185 (7)	0.0388 (9)	0.0053 (7)	-0.0112 (7)	-0.0024 (6)
O3	0.0338 (9)	0.0255 (7)	0.0419 (9)	-0.0032 (7)	-0.0028 (7)	-0.0104 (6)
O4	0.0343 (9)	0.0277 (7)	0.0352 (8)	0.0100 (7)	-0.0077 (7)	-0.0052 (6)

Geometric parameters (Å, °)

Co1—O4 ⁱ	1.9611 (15)	C12—N4	1.323 (3)
Co1—O1	1.9744 (15)	C12—N3	1.338 (3)
Co1—N4 ⁱⁱ	2.0287 (17)	C12—H12	0.9300
Col—N1	2.0438 (17)	C13—C18	1.388 (3)
C1—C2	1.388 (3)	C13—C14	1.393 (3)
C1—C6	1.397 (3)	C13—C21	1.511 (3)
C1—H1	0.9300	C14—C15	1.395 (3)
C2—C3	1.400 (3)	C14—H14	0.9300
С2—Н2	0.9300	C15—C16	1.391 (3)
C3—C4	1.397 (3)	C15—C19	1.517 (3)
C3—C7	1.472 (3)	C16—C17	1.392 (3)
C4—C5	1.375 (3)	C16—H16	0.9300
C4—H4	0.9300	C17—C18	1.392 (3)
C5—C6	1.400 (3)	C17—C20	1.502 (3)
С5—Н5	0.9300	C18—H18	0.9300
C6—C10	1.465 (3)	C19—H19A	0.9600
С7—С8	1.361 (3)	C19—H19B	0.9600
C7—N1	1.398 (2)	С19—Н19С	0.9600
C8—N2	1.371 (3)	C20—O3	1.239 (2)
С8—Н8	0.9300	C20—O4	1.288 (3)
C9—N1	1.323 (3)	C21—O2	1.242 (2)
C9—N2	1.337 (3)	C21—O1	1.276 (3)
С9—Н9	0.9300	N2—H2A	0.8600
C10—C11	1.361 (3)	N3—H3	0.8600
C10—N3	1.383 (3)	N4—Co1 ⁱⁱ	2.0287 (17)
C11—N4	1.385 (3)	O4—Co1 ⁱⁱⁱ	1.9611 (15)
C11—H11	0.9300		
04 ⁱ Co1O1	112.31 (7)	C18—C13—C21	119.74 (18)
O4 ⁱ —Co1—N4 ⁱⁱ	116.69 (7)	C14—C13—C21	120.84 (18)
O1—Co1—N4 ⁱⁱ	93.09 (7)	C13—C14—C15	121.23 (19)
O4 ⁱ —Co1—N1	107.14 (7)	C13—C14—H14	119.4
O1—Co1—N1	102.97 (7)	C15—C14—H14	119.4
N4 ⁱⁱ —Co1—N1	122.64 (7)	C16—C15—C14	118.06 (19)
C2—C1—C6	120.74 (18)	C16—C15—C19	120.63 (19)
C2—C1—H1	119.6	C14—C15—C19	121.3 (2)
С6—С1—Н1	119.6	C15—C16—C17	121.72 (19)
C1—C2—C3	120.96 (19)	С15—С16—Н16	119.1

C1—C2—H2	119.5	C17—C16—H16	119.1
С3—С2—Н2	119.5	C16—C17—C18	118.98 (18)
C4—C3—C2	117.93 (19)	C16—C17—C20	120.98 (18)
C4—C3—C7	119.58 (17)	C18—C17—C20	119.98 (18)
C2—C3—C7	122.44 (18)	C13—C18—C17	120.52 (19)
C5—C4—C3	121.17 (18)	C13—C18—H18	119.7
C5—C4—H4	119.4	C17—C18—H18	119.7
C3—C4—H4	119.4	С15—С19—Н19А	109.5
C4—C5—C6	121.12 (18)	С15—С19—Н19В	109.5
C4—C5—H5	119.4	H19A—C19—H19B	109.5
С6—С5—Н5	119.4	С15—С19—Н19С	109.5
C1—C6—C5	118.01 (18)	H19A—C19—H19C	109.5
C1—C6—C10	123.85 (17)	H19B—C19—H19C	109.5
C5—C6—C10	118.13 (18)	O3—C20—O4	122.05 (19)
C8—C7—N1	108.41 (19)	O3—C20—C17	121.79 (19)
C8—C7—C3	128.57 (19)	04-C20-C17	116.14 (17)
N1	122.82 (18)	02-C21-O1	125.10 (19)
C7—C8—N2	106.62 (19)	02-C21-C13	119.87 (19)
С7—С8—Н8	126.7	O1—C21—C13	115.03 (17)
N2—C8—H8	126.7	C9—N1—C7	105.86 (17)
N1—C9—N2	111.22 (18)	C9—N1—Co1	114.42 (13)
N1—C9—H9	124.4	C7—N1—Co1	139.11 (15)
N2—C9—H9	124.4	C9—N2—C8	107.89 (18)
C11—C10—N3	105.12 (17)	C9—N2—H2A	126.1
C11—C10—C6	129.41 (18)	C8—N2—H2A	126.1
N3—C10—C6	125.24 (18)	C12—N3—C10	107.96 (17)
C10—C11—N4	110.19 (18)	C12—N3—H3	126.0
C10—C11—H11	124.9	C10—N3—H3	126.0
N4—C11—H11	124.9	C12—N4—C11	105.15 (17)
N4—C12—N3	111.57 (18)	C12—N4—Co1 ⁱⁱ	128.76 (15)
N4—C12—H12	124.2	C11—N4—Co1 ⁱⁱ	125.59 (13)
N3—C12—H12	124.2	C21—O1—Co1	138.10 (14)
C18—C13—C14	119.42 (18)	C20—O4—Co1 ⁱⁱⁱ	109.00 (13)
			()
C6—C1—C2—C3	-1.2(3)	C18—C17—C20—O3	-169.7(2)
C1—C2—C3—C4	2.0 (3)	C16—C17—C20—O4	-165.3(2)
C1—C2—C3—C7	179.3 (2)	C18—C17—C20—O4	11.9 (3)
C2—C3—C4—C5	-0.5 (3)	C18—C13—C21—O2	177.05 (19)
C7—C3—C4—C5	-177.92 (19)	C14—C13—C21—O2	-3.7 (3)
C3—C4—C5—C6	-1.8 (3)	C18—C13—C21—O1	-3.0(3)
C2—C1—C6—C5	-1.1 (3)	C14—C13—C21—O1	176.23 (19)
C2-C1-C6-C10	177.6 (2)	N2—C9—N1—C7	-0.4(2)
C4—C5—C6—C1	2.5 (3)	N2—C9—N1—Co1	-173.18 (14)
C4—C5—C6—C10	-176.18 (19)	C8—C7—N1—C9	0.6 (2)
C4—C3—C7—C8	140.6 (2)	C3—C7—N1—C9	175.72 (18)
C2—C3—C7—C8	-36.7 (3)	C8—C7—N1—Co1	170.50 (16)
C4—C3—C7—N1	-33.6 (3)	C3—C7—N1—Co1	-14.3 (3)
C2-C3-C7-N1	149.1 (2)	04^{i} —Co1—N1—C9	76.95 (16)
		0. 001 111 07	, 5, 5 (10)

$\begin{array}{c} N1 & -C7 & -C8 & -N2 \\ C3 & -C7 & -C8 & -N2 \\ C1 & -C6 & -C10 & -C11 \\ C5 & -C6 & -C10 & -C11 \\ C1 & -C6 & -C10 & -N3 \\ C5 & -C6 & -C10 & -N3 \\ N3 & -C10 & -C11 & -N4 \\ C6 & -C10 & -C11 & -N4 \\ C6 & -C10 & -C11 & -N4 \\ C18 & -C13 & -C14 & -C15 \\ C21 & -C13 & -C14 & -C15 \\ C13 & -C14 & -C15 & -C16 \\ C15 & -C16 & -C17 \\ C15 & -C16 & -C17 & -C20 \\ C14 & -C13 & -C18 & -C17 \\ \end{array}$	$\begin{array}{c} -0.5 (2) \\ -175.31 (19) \\ 159.7 (2) \\ -21.6 (3) \\ -26.5 (3) \\ 152.1 (2) \\ -1.1 (2) \\ 173.60 (19) \\ -1.3 (3) \\ 179.49 (18) \\ -0.6 (3) \\ 177.2 (2) \\ 2.6 (3) \\ -175.2 (2) \\ -2.7 (3) \\ 174.58 (19) \\ 1.2 (3) \end{array}$	$\begin{array}{l} 01 &Co1 &N1 &C9 \\ N4^{ii} &Co1 &N1 &C7 \\ 04^{ii} &Co1 &N1 &C7 \\ N4^{ii} &Co1 &N1 &C7 \\ N1 &C9 &N2 &C8 \\ C7 &C8 &N2 &C9 \\ N4 &C12 &N3 &C10 \\ C11 &C10 &N3 &C12 \\ C6 &C10 &N3 &C12 \\ C6 &C10 &N3 &C12 \\ N3 &C12 &N4 &Co11 \\ N3 &C12 &N4 &Co1^{ii} \\ C10 &C11 &N4 &Co1^{ii} \\ C10 &C11 &N4 &Co1^{ii} \\ O2 &C21 &O1 &Co1 \\ C13 &C21 &O1 &Co1 \\ O4^{ii} &Co1 &Co1 \\ O4^{ii} &Co1 &Co1 \\ \end{array}$	$\begin{array}{c} -41.65 (16) \\ -143.96 (14) \\ -92.4 (2) \\ 148.99 (19) \\ 46.7 (2) \\ 0.1 (3) \\ 0.3 (2) \\ -0.6 (2) \\ 1.0 (2) \\ -173.96 (19) \\ -0.1 (2) \\ 172.10 (14) \\ 0.8 (2) \\ -171.73 (14) \\ 10.4 (4) \\ -169.49 (15) \\ -55.5 (2) \end{array}$
C15—C16—C17—C18 C15—C16—C17—C20 C14—C13—C18—C17 C21—C13—C18—C17 C16—C17—C18—C13 C20—C17—C18—C13 C16—C17—C20—O3	$\begin{array}{c} -2.7 (3) \\ 174.58 (19) \\ 1.2 (3) \\ -179.59 (18) \\ 0.8 (3) \\ -176.52 (18) \\ 13.1 (3) \end{array}$	$\begin{array}{c} 02 - 021 - 01 - 01 - 01 \\ 01 - 01 - 01 - 01 \\ 04^{i} - 01 - 01 - 01 - 01 \\ 01 - 01 - 01 - 01$	$\begin{array}{c} -169.49 (15) \\ -55.5 (2) \\ -176.1 (2) \\ 59.4 (2) \\ -2.4 (3) \\ 176.03 (14) \end{array}$

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+2, -*y*, -*z*+1; (iii) -*x*+1, *y*-1/2, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A
N2—H2A····O3 ^{iv}	0.86	2.16	2.825 (3)	134
N3—H3…O2 ^v	0.86	1.96	2.803 (2)	165
С9—Н9…О2	0.93	2.39	3.274 (3)	158
C11—H11····O3 ^{vi}	0.93	2.56	3.182 (3)	124

Symmetry codes: (iv) -x, y+1/2, -z+1/2; (v) x+1, -y+1/2, z+1/2; (vi) x+1, -y-1/2, z+1/2.