

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Phenyl-6,7-dihydrodibenzo[*c*,*f*][1,5]azabismocin-12(5*H*)-yl perchlorate

Xiao-Wen Zhang^a* and Ting Fan^b

^aCollege of Environment Protection and Safety Engineering, University of South China, Hengyang 421001, People's Republic of China, and ^bKey Laboratory of Pollution Control and Resource Use of Hunan Province, University of South China, Hengyang 421001, People's Republic of China Correspondence e-mail: shawn_zhang@sina.com

Received 4 May 2011; accepted 31 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.018 Å; R factor = 0.065; wR factor = 0.163; data-to-parameter ratio = 13.4.

In the title compound, $[Bi(C_{20}H_{17}N)(CIO_4)]$ or $C_{20}H_{17}Bi-CINO_4$, the Bi^{III} ion assumes a distorted ψ trigonalbipyramidal geometry, with two C atoms and the electron lone pair of the Bi atom at the equatorial positions and an amine N atom and a perchlorate O atom at the apical positions. Weak intermolecular C-H···O hydrogen bonding is present in the crystal structure.

Related literature

For the synthesis of 12-chloro-6-phenyl-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azabismocine, see: Zhang *et al.* (2009). For general background, see: Shimada *et al.* (2004); Yin *et al.* (2008); Zhang *et al.* (2010); Tan & Zhang (2011). For related structures, see: Ohkata *et al.* (1989); Minoura *et al.* (1999).

Experimental

Crystal data

[Bi(C ₂₀ H ₁₇ N)(ClO ₄)]
$M_r = 579.78$
Monoclinic, $P2_1/c$
a = 12.0635 (10) Å

b = 14.0755 (12) Å c = 11.5121 (10) Å $\beta = 107.590 (2)^{\circ}$ $V = 1863.4 (3) \text{ Å}^{3}$

metal-organic compounds

 $0.32 \times 0.21 \times 0.20 \text{ mm}$

9267 measured reflections 3279 independent reflections

2585 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int}=0.166$

Z = 4Mo $K\alpha$ radiation $\mu = 9.63 \text{ mm}^{-1}$

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.100, T_{\max} = 0.145$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ 244 parameters $wR(F^2) = 0.163$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 4.89$ e Å $^{-3}$ 3279 reflections $\Delta \rho_{min} = -4.14$ e Å $^{-3}$

Table 1 Selected bond lengths (Å).

Bi-N1	2.387 (10)	Bi-C1	2.245 (13)
Bi-O1	2.546 (10)	Bi-C8	2.204 (12)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$C4-H4\cdots O3^{i}$ $C14-H14B\cdots O2^{ii}$	0.93 0.97	2.46 2.55	3.137 (17) 3.398 (16)	130 146	
Symmetry codes: (i) $-x + 1$, $-y + 2$, $-z + 1$; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.					

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the National Science Foundation of China (grant No. 51074093) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5208).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Minoura, M., Kanamori, Y., Miyake, A. & Akiba, K. (1999). Chem. Lett. pp. 861–862.
- Ohkata, K., Takemoto, S., Ohnishi, M. & Akiba, K. Y. (1989). Tetrahedron Lett. 30, 4841–4844.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimada, S., Yamazaki, O., Tanaka, T., Suzuki, Y. & Tanaka, M. (2004). J. Organomet. Chem. 689, 3012–3023.
- Tan, N. & Zhang, X. (2011). Acta Cryst. E67, m252.
- Yin, S., Maruyama, J., Yamashita, T. & Shimada, S. (2008). Angew. Chem. Int. Ed. 47, 6590–6593.

Zhang, X.-W., Qiu, R.-H., Tan, N.-Y., Yin, S.-F., Xia, J., Au, C.-T. & Luo, S.-L. (2010). *Tetrahedron Lett.* **51**, 153–156.

Zhang, X.-W., Xia, J., Yan, H.-W., Luo, S.-L., Yin, S.-F., Au, C.-T. & Wong, W.-Y. (2009). J. Organomet. Chem. 694, 3019–3026.

supporting information

Acta Cryst. (2011). E67, m875 [doi:10.1107/S1600536811021039]

6-Phenyl-6,7-dihydrodibenzo[c,f][1,5]azabismocin-12(5H)-yl perchlorate

Xiao-Wen Zhang and Ting Fan

S1. Comment

Bismuth is a nontoxic and noncarcinogenic element and many of its compounds are low in toxicity and can be safely used in areas such as medicine, catalysis, and synthesis (Shimada *et al.*, 2004; Yin *et al.*, 2008; Zhang, Qiu, Tan *et al.*, 2010). The 5,6,7,12-tetrahydrodibenz[c,f][1,5]azabismocine framework is highly stable as a organobismuth Fragment because the weakly coordination exists between bismuth and nitrogen atoms on 1,5-azabismocine (Ohkata *et al.*, 1989; Minoura *et al.*, 1999), and therefore, is suitable for the study of organobismuth compounds bearing various groups on the bismuth and nitrogen atom for potential uses.

In the present paper, we report the crystal structure of the title compound (Fig. 1). The central bismuth–containing part of the complex exhibits a distorted pseudo trigonal–bipyramidal structure. The C (8), C (1) atoms and a lone electron pair of the Bi atom exist at the equatorial positions while the N (1) and O (1) atoms are located at the apical positions. The Bi–C (8) and Bi–C (1) distance is 2.250 (13) Å and 2.204 (12) Å, respectively. The C (8)–Bi–C (1) angle is 92.5 (5) ° while the N (1)–Bi–O (1) angle is 154.0 (3)°(rather than 180°). The Bi–N (1) distance (2.388 (10) Å) is shorter than 2.607 (5) Å of the precursor, $C_6H_3N(CH_2C_6H_4)_2BiCl$. The Bi–O (1) distance(2.546 (10) Å) is shorter than Bi–Cl(1) distance 2.597 (19) Å also(Zhang, Xia, Yan *et al.*, 2009).

S2. Experimental

The following procedures are recommended for synthesis of the title compound (I): 12-chloro-6-phenyl-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azabismocine (0.516 g, 1.0 mmol) was dissolved in 15 ml THF, then a solution of AgClO₄ (0.207 g, 1.0 mmol) in 15.0 ml THF was added. After the mixture was stirred in the dark at room temperature for 2 h, it was filtered. The filtrate mixed with 1.0 ml hexane was refrigerated for 24 h, giving colorless crystals (0.539 g, 93.0%).

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å for aryl, 0.98 Å methine and 0.97 Å for methylene H atoms, respectively. $U_{iso}(H)=1.2U_{eq}(C)$ for all H atoms.

Figure 1

The molecular structure of the title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

6-Phenyl-6,7-dihydrodibenzo[c,f][1,5]azabismocin-12(5H)-yl perchlorate

Crystal data	
$[Bi(C_{20}H_{17}N)(ClO_4)]$	F(000) = 1104
$M_r = 579.78$	$D_{\rm x} = 2.067 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2936 reflections
a = 12.0635 (10) Å	$\theta = 2.7 - 24.2^{\circ}$
b = 14.0755 (12) Å	$\mu = 9.63 \text{ mm}^{-1}$
c = 11.5121 (10) Å	T = 293 K
$\beta = 107.590 \ (2)^{\circ}$	Prismatic, colorless
$V = 1863.4 (3) Å^3$	$0.32 \times 0.21 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	9267 measured reflections 3279 independent reflections
Radiation source: fine-focus sealed tube	2585 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.166$
φ and ω scans	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 1.8^\circ$
Absorption correction: empirical (using	$h = -10 \rightarrow 14$
intensity measurements)	$k = -13 \rightarrow 16$
(SADABS; Bruker, 2001)	$l = -13 \rightarrow 13$
$T_{\min} = 0.100, \ T_{\max} = 0.145$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from
$wR(F^2) = 0.163$	neighbouring sites
S = 1.02	H-atom parameters constrained
3279 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0816P)^2]$

244 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 4.89 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -4.14 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Bi	0.74646 (4)	0.77309 (3)	0.84604 (4)	0.0321 (2)	
Cl1	0.7240 (3)	1.0213 (2)	0.8825 (3)	0.0378 (7)	
N1	0.7225 (7)	0.6171 (8)	0.7606 (7)	0.033 (2)	
01	0.7940 (9)	0.9494 (7)	0.8480 (10)	0.063 (3)	
O2	0.6291 (9)	0.9730 (7)	0.9075 (10)	0.069 (3)	
O3	0.6836 (10)	1.0854 (8)	0.7850 (10)	0.071 (3)	
O4	0.7937 (12)	1.0687 (8)	0.9874 (10)	0.086 (4)	
C1	0.6226 (11)	0.7895 (8)	0.6574 (11)	0.037 (3)	
C2	0.6002 (10)	0.8714 (8)	0.5878 (10)	0.034 (3)	
H2	0.6373	0.9281	0.6181	0.041*	
C3	0.5204 (11)	0.8671 (9)	0.4706 (11)	0.041 (3)	
H3	0.5026	0.9222	0.4241	0.049*	
C4	0.4688 (12)	0.7846 (8)	0.4240 (12)	0.042 (3)	
H4	0.4163	0.7830	0.3459	0.051*	
C5	0.4949 (11)	0.7005 (9)	0.4943 (11)	0.037 (3)	

Н5	0.4603	0.6435	0.4617	0.045*
C6	0.5695 (10)	0.7026 (9)	0.6080 (10)	0.033 (3)
C7	0.5996 (10)	0.6133 (8)	0.6827 (9)	0.031 (3)
H7A	0.5489	0.6068	0.7335	0.037*
H7B	0.5881	0.5586	0.6292	0.037*
C8	0.8978 (11)	0.7594 (8)	0.7776 (11)	0.030 (3)
C9	0.9896 (11)	0.8252 (10)	0.7942 (12)	0.047 (3)
Н9	0.9914	0.8787	0.8421	0.056*
C10	1.0741 (11)	0.8122 (10)	0.7424 (14)	0.051 (4)
H10	1.1337	0.8565	0.7542	0.062*
C11	1.0723 (14)	0.7321 (10)	0.6709 (16)	0.055 (4)
H11	1.1291	0.7246	0.6321	0.066*
C12	0.9893 (10)	0.6651 (9)	0.6570 (11)	0.038 (3)
H12	0.9919	0.6101	0.6132	0.045*
C13	0.8986 (9)	0.6785 (8)	0.7091 (9)	0.030 (2)
C14	0.8015 (10)	0.6065 (8)	0.6812 (10)	0.033 (3)
H14A	0.8350	0.5433	0.6923	0.040*
H14B	0.7555	0.6128	0.5965	0.040*
C15	0.7472 (9)	0.5399 (9)	0.8534 (10)	0.033 (3)
C16	0.6852 (11)	0.4552 (9)	0.8367 (12)	0.041 (3)
H16	0.6240	0.4455	0.7659	0.049*
C17	0.7139 (13)	0.3865 (10)	0.9238 (14)	0.053 (4)
H17	0.6723	0.3298	0.9117	0.064*
C18	0.8062 (14)	0.4002 (11)	1.0325 (14)	0.058 (4)
H18	0.8251	0.3532	1.0919	0.069*
C19	0.8671 (14)	0.4831 (12)	1.0489 (13)	0.064 (4)
H19	0.9281	0.4920	1.1202	0.077*
C20	0.8408 (11)	0.5534 (11)	0.9634 (11)	0.050 (3)
H20	0.8833	0.6097	0.9763	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Bi	0.0313 (3)	0.0438 (3)	0.0201 (3)	0.00040 (18)	0.0062 (2)	-0.00470 (18)
Cl1	0.0407 (17)	0.0414 (16)	0.0248 (14)	0.0024 (13)	0.0001 (12)	0.0037 (13)
N1	0.018 (5)	0.070 (7)	0.007 (4)	0.002 (4)	-0.001 (4)	0.001 (4)
01	0.047 (6)	0.064 (7)	0.079 (8)	0.005 (5)	0.020 (5)	-0.009 (6)
02	0.054 (6)	0.076 (7)	0.086 (8)	0.001 (5)	0.036 (6)	0.026 (6)
03	0.082 (8)	0.065 (7)	0.059 (7)	0.000 (6)	0.008 (6)	0.034 (6)
O4	0.122 (11)	0.076 (8)	0.035 (6)	-0.017 (7)	-0.015 (6)	-0.011 (6)
C1	0.038 (7)	0.045 (7)	0.033 (7)	0.005 (5)	0.016 (6)	-0.005 (6)
C2	0.041 (7)	0.038 (6)	0.025 (6)	0.005 (5)	0.012 (5)	0.003 (5)
C3	0.043 (7)	0.053 (8)	0.032 (7)	0.013 (6)	0.019 (6)	0.013 (6)
C4	0.044 (8)	0.049 (8)	0.030 (7)	0.006 (6)	0.006 (6)	-0.004 (6)
C5	0.034 (7)	0.050 (8)	0.022 (6)	0.002 (5)	-0.002 (5)	-0.008(5)
C6	0.021 (6)	0.054 (7)	0.025 (6)	0.000 (5)	0.006 (5)	0.007 (5)
C7	0.033 (6)	0.036 (6)	0.020 (5)	-0.006 (5)	0.003 (5)	0.004 (5)
C8	0.030 (7)	0.038 (6)	0.027 (6)	0.001 (5)	0.015 (5)	0.003 (5)

C9	0.045 (8)	0.045 (8)	0.048 (8)	-0.013 (6)	0.010 (6)	-0.015 (7)
C10	0.031 (7)	0.058 (8)	0.066 (9)	-0.013 (6)	0.015 (7)	0.005 (8)
C11	0.051 (10)	0.066 (10)	0.058 (10)	0.007 (7)	0.030 (8)	0.012 (8)
C12	0.035 (7)	0.046 (7)	0.034 (6)	0.004 (5)	0.012 (5)	-0.003 (6)
C13	0.031 (6)	0.039 (6)	0.020 (5)	0.002 (5)	0.006 (5)	0.003 (5)
C14	0.034 (6)	0.042 (7)	0.026 (6)	-0.001 (5)	0.014 (5)	-0.003 (5)
C15	0.036 (7)	0.036 (7)	0.030 (6)	0.004 (5)	0.015 (5)	0.006 (5)
C16	0.038 (7)	0.045 (8)	0.039(7)	0.005 (6)	0.010 (6)	0.010 (6)
C17	0.059 (9)	0.045 (8)	0.063 (9)	0.005 (7)	0.029 (8)	0.020 (7)
C18	0.066 (10)	0.063 (10)	0.050 (9)	0.020 (8)	0.026 (8)	0.024 (8)
C19	0.061 (10)	0.083 (12)	0.041 (8)	0.011 (9)	0.005 (7)	0.018 (8)
C20	0.042 (8)	0.069 (10)	0.027 (7)	0.000(7)	-0.007 (6)	0.004 (7)

Geometric parameters (Å, °)

Bi—N1	2.387 (10)	C8—C13	1.387 (17)	
Bi01	2.546 (10)	C8—C9	1.411 (17)	
Bi—C1	2.245 (13)	C9—C10	1.340 (18)	
Bi—C8	2.204 (12)	С9—Н9	0.9300	
Cl1-03	1.407 (10)	C10—C11	1.39 (2)	
Cl104	1.413 (10)	C10—H10	0.9300	
Cl1—O2	1.434 (10)	C11—C12	1.349 (19)	
Cl1-01	1.448 (10)	C11—H11	0.9300	
N1—C7	1.484 (13)	C12—C13	1.410 (16)	
N1-C15	1.490 (15)	C12—H12	0.9300	
N1-C14	1.514 (12)	C13—C14	1.508 (15)	
C1—C2	1.383 (16)	C14—H14A	0.9700	
C1—C6	1.418 (17)	C14—H14B	0.9700	
C2—C3	1.402 (17)	C15—C16	1.389 (18)	
С2—Н2	0.9300	C15—C20	1.432 (16)	
C3—C4	1.351 (18)	C16—C17	1.360 (18)	
С3—Н3	0.9300	C16—H16	0.9300	
C4—C5	1.414 (18)	C17—C18	1.41 (2)	
C4—H4	0.9300	C17—H17	0.9300	
C5—C6	1.347 (16)	C18—C19	1.36 (2)	
С5—Н5	0.9300	C18—H18	0.9300	
С6—С7	1.504 (16)	C19—C20	1.365 (19)	
C7—H7A	0.9700	C19—H19	0.9300	
С7—Н7В	0.9700	C20—H20	0.9300	
C8—Bi—C1	92.5 (5)	C13—C8—C9	118.4 (11)	
C8—Bi—N1	77.4 (4)	C13—C8—Bi	115.1 (8)	
C1—Bi—N1	74.6 (4)	C9—C8—Bi	126.5 (9)	
C8—Bi—O1	83.1 (4)	C10—C9—C8	121.5 (13)	
C1—Bi—O1	89.4 (4)	С10—С9—Н9	119.3	
N1—Bi—O1	154.0 (3)	С8—С9—Н9	119.3	
O3—Cl1—O4	110.7 (7)	C9—C10—C11	119.7 (13)	
O3—Cl1—O2	111.0 (7)	C9—C10—H10	120.2	

O4—C11—O2	110.9 (7)	C11—C10—H10	120.2
O3—Cl1—O1	108.6 (7)	C12—C11—C10	120.9 (13)
O4—C11—O1	108.6 (8)	C12—C11—H11	119.5
O2—C11—O1	106.9 (6)	C10-C11-H11	119.5
C7—N1—C15	110.7 (9)	C11—C12—C13	120.0 (12)
C7—N1—C14	109.2 (8)	C11—C12—H12	120.0
C15—N1—C14	109.6 (8)	C13—C12—H12	120.0
C7—N1—Bi	104.8 (7)	C8—C13—C12	119.4 (11)
C15—N1—Bi	113.7 (6)	C8—C13—C14	122.3 (10)
C14—N1—Bi	108.6 (7)	C12—C13—C14	118.2 (10)
Cl1—O1—Bi	122.3 (6)	C13—C14—N1	113.3 (9)
C2—C1—C6	120.1 (12)	C13—C14—H14A	108.9
C2—C1—Bi	127.1 (9)	N1—C14—H14A	108.9
C6—C1—Bi	112.7 (8)	C13—C14—H14B	108.9
C1—C2—C3	118.6 (12)	N1—C14—H14B	108.9
С1—С2—Н2	120.7	H14A—C14—H14B	107.7
С3—С2—Н2	120.7	C16—C15—C20	119.0 (11)
C4—C3—C2	121.3 (12)	C16—C15—N1	123.0 (10)
С4—С3—Н3	119.4	C20-C15-N1	118.0 (11)
С2—С3—Н3	119.4	C17—C16—C15	120.1 (13)
C3—C4—C5	119.8 (13)	С17—С16—Н16	119.9
C3—C4—H4	120.1	С15—С16—Н16	119.9
С5—С4—Н4	120.1	C16—C17—C18	120.8 (14)
C6—C5—C4	120.4 (12)	С16—С17—Н17	119.6
С6—С5—Н5	119.8	С18—С17—Н17	119.6
С4—С5—Н5	119.8	C19—C18—C17	119.2 (13)
C5—C6—C1	119.8 (12)	C19—C18—H18	120.4
C5—C6—C7	120.9 (11)	C17—C18—H18	120.4
C1—C6—C7	119.3 (11)	C18—C19—C20	121.6 (15)
N1—C7—C6	109.9 (9)	С18—С19—Н19	119.2
N1—C7—H7A	109.7	С20—С19—Н19	119.2
С6—С7—Н7А	109.7	C19—C20—C15	119.4 (14)
N1—C7—H7B	109.7	C19—C20—H20	120.3
С6—С7—Н7В	109.7	C15—C20—H20	120.3
H7A—C7—H7B	108.2		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4—H4…O3 ⁱ	0.93	2.46	3.137 (17)	130
C14—H14 <i>B</i> ···O2 ⁱⁱ	0.97	2.55	3.398 (16)	146

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, -y+3/2, z-1/2.