metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[(1,10-phenanthroline){µ₃-2,2',2"-[1,3,5-triazine-2,4,6-triyltris(sulfanediyl)]triacetato}cadmium] 0.42-hydrate]

Chun-Jing Chi, Yan-Qiang Peng, Su-Yuan Zeng and De-Zhi Sun*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: sundezhi@lcu.edu.cn

Received 9 May 2011; accepted 20 May 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.030; wR factor = 0.071; data-to-parameter ratio = 11.7.

The asymmetric unit of the title complex, { $[Cd(C_9H_7N_3O_6S_3) (C_{12}H_8N_2)]\cdot 0.42H_2O_n$, contains a Cd^{II} atom, one doubly 2,2',2"-[1,3,5-triazine-2,4,6-trivltris(sulfanedeprotonated diyl)]triacetic acid ligand (HTTTA²⁻), a 1,10-phenanthroline (phen) ligand and a fractionally occupied water molecule [site occupancy = 0.421(15)]. The Cd^{II} atom is six-coordinated within a distorted octahedral coordination geometry. Six coordination arises from four O atoms derived from three different HTTTA²⁻ ligands, and two N atoms of the chelating phen molecule. The incompletely deprotonated triazine ligand adopts a μ_3 - η^1 : η^1 : η^2 coordination mode, resulting in the formation of chains along the c axis based on Cd_2O_2 dimeric units. Adjacent chains are stacked through π - π stacking [3.533 (2) Å between phen and triazine rings] and $C-H \cdots O$ interactions, forming supramolecular sheets in the *ab* plane. Intra-and intermolecular $O-H \cdots O$ hydrogen bonds are also observed.

Related literature

For background to metal-organic frameworks, see: Rao *et al.* (2004); Rowsell & Yaghi (2005); Wu *et al.* (2009). For similar structures, see: Lu *et al.* (2010); Wang *et al.* (2007).

Experimental

Crystal data $[Cd(C_9H_7N_3O_6S_3)(C_{12}H_8N_2)]$ -- $\beta = 114.197 \ (2)^{\circ}$ $0.42H_2O$ $\gamma = 113.909 \ (2)^{\circ}$ $M_r = 649.53$ V = 1161.1 (4) Å³ Triclinic, $P\overline{1}$ Z = 2a = 10.618 (2) Å Mo $K\alpha$ radiation b = 10.987 (2) Å $\mu = 1.26 \text{ mm}^{-1}$ c = 12.601 (2) Å T = 298 K $\alpha = 95.815 (3)^{\circ}$ $0.30 \times 0.28 \times 0.26 \text{ mm}$

Data collection

Bruker APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.691, T_{max} = 0.720

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.071$ S = 1.07 4024 reflections 343 parameters 3 restraints 6114 measured reflections 4024 independent reflections 3322 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.47 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

2.447 (2)	Cd1-O5 ⁿ	2.295 (2)
2.274 (2)	Cd1-N4	2.331 (3)
2.490 (3)	Cd1-N5	2.320 (3)
	2.447 (2) 2.274 (2) 2.490 (3)	$\begin{array}{ccc} 2.447 & (2) & Cd1 - O5^{a} \\ 2.274 & (2) & Cd1 - N4 \\ 2.490 & (3) & Cd1 - N5 \end{array}$

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x + 1, -y + 1, -z + 2.

°).

Table 2	
Hydrogen-bond geometry	(Å,

$D - H \cdots A$ D	−H H·	$\cdot \cdot A$ D	$\cdots A$ 1	$D - H \cdots A$
$\begin{array}{ccc} 03 - H3 \cdots 06^{iii} & 0. \\ 07 - H71 \cdots 02^{iv} & 0. \\ C15 - H15 \cdots 02^{v} & 0. \\ C17 - H17 \cdots 02^{v} & 0. \end{array}$	82 1.6 75 (2) 2.3 93 2.5 93 2.5	68 2. 55 (12) 2. 60 3. 57 3.	439 (4) 1 984 (11) 1 294 (6) 1 353 (6) 1	54 42 (18) 43 42

Symmetry codes: (iii) x, y + 1, z; (iv) -x + 2, -y + 2, -z + 2; (v) x - 1, y - 1, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2000); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics:

SHELXTL (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Foundation of Shandong Natural Science (grant No. ZR2010BL020).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2743).

References

- Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lu, Q., Wang, D. & Wang, S. (2010). Acta Cryst. C66, m351-m354.
- Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.
- Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Wang, S. N., Sun, R., Wang, X. S., Li, Y. Z., Pan, Y., Bai, J. F., Scheer, M. & You, X. Z. (2007). CrystEngComm, 9, 1051–1061.
- Wu, S., Ma, L., Long, L., Zheng, L. & Lin, W. (2009). Inorg. Chem. 48, 2436– 2442.

supporting information

Acta Cryst. (2011). E67, m826-m827 [doi:10.1107/S1600536811019210]

Poly[[(1,10-phenanthroline){ μ_3 -2,2',2''-[1,3,5-triazine-2,4,6-triyltris(sulfanediyl)]triacetato}cadmium] 0.42-hydrate]

Chun-Jing Chi, Yan-Qiang Peng, Su-Yuan Zeng and De-Zhi Sun

S1. Comment

The assembly of coordination architectures has attracted much attention in recent years due to their potential applications in separation, sorption, hydrogen storage, and catalysis, as well as due to their intriguing topologies such as molecular ladders, grids, rings, boxes, honeycombs, and diamondoids (Rowsell & Yaghi, 2005). Flexible multi-functional carboxy-lic acids are widely investigated in this regard (Rao *et al.*, 2004; Rowsell & Yaghi 2005; Wu *et al.*, 2009). Previous reports of an alkaline earth and a series of lanthanide coordination complexes based on H₃TTTA, 2,2',2"-[1,3,5-triazine-2,4,6-triyltris(sulfanediyl)]tris-acetic acid, have appeared (Lu, *et al.*, 2010; Wang, *et al.*, 2007). Herein, we obtained a new Cd^{II} complex assembled from this flexible ligand.

As shown in Fig.1, the asymmetric unit consists of one Cd^{II} ion, one HTTTA²⁻ dianion, a chelating 1,10-phenanthroline (phen) ligand and approximately half a disordered water molecule (site occupancy = 0.421 (15)). The Cd center is six-coordinated defined by four oxygen atoms derived from three different HTTTA²⁻ anions, and two nitrogen atoms of a chelating phen molecule; Table 1. The N5—Cd1—N4 angle is acute at 71.86 (9)° and consequently, the coordination geometry around the metal center is much distorted. The HTTTA²⁻ ligands act as μ_3 -bridges, connecting neighboring Cd centers to generate 1-D chains along the *c* axis. The H atom of the carboxylic group of the HTTTA²⁻ ligand was assigned to O3 according to the long C7—O3 distance of 1.283 (4) Å as well as O3—H3…O6 hydrogen bonding interactions, Table 2. Within the chains, Cd₂O₂ units are formed through the η^2 -bridged carboxylate oxygen atoms O1, with the Cd1…Cd1ⁱ distance and Cd1—O1—Cd1ⁱ (symmetry code: *i*, 1 - *x*, 2 - *y*, 2 - *z*.) angle being 3.829 (3) Å and 108.3 (3)°, respectively.

Neighboring chains are connected to each other through weak intermolecular π - π stacking interactions between phen and triazine rings with the average interplanar separation of 3.533 (2) Å. As a result, two-dimensional supramolecular sheets are formed along the *ab* plane, Fig. 2. These sheets are reinforced *via* nonclassical weak C—H…O interactions Table 2.

S2. Experimental

A mixture of 2,2',2"-((1,3,5-triazine-2,4,6-triyl)tris(sulfanediyl))triacetic acid (0.010 g, 0.025 mmol), phenanthroline (0.008 g, 0.05 mmol) and Cd(OAc)₂.6H₂O (0.013 g, 0.025 mmol) in 10 mL H₂O was placed in a Parr Teflon-lined stainless steel vessel and heated to 80 °C for 24 h. The reaction system was cooled to room temperature slowly and yellow blocks were obtained. After filtration, the crystals were washed with water and dried in air. (Yield 64% based on Cd(OAc)₂.6H₂O). Calcd.: C 38.80, H 2.44, N 10.78; C₂₁H_{15.84}CdN₅O_{6.42}S₃ requires: C 38.43, H 2.70, N 10.42 %. IR (KBr pellet): 3421 (m,br), 2908 (w), 1591 (m), 1517 (vw), 1425 (m), 1381 (m), 1266 (m), 1246 (m), 1222 (m), 855 (m), 785 (w), 730 (m), 669 (w) cm⁻¹.

S3. Refinement

The O7 water molecule was fractionally disordered and was refined isotropically to an occupancy of 0.421 (15). The H atoms on this water molecule were located from a difference Fourier Map. The O—H bond distances were fixed to 0.75 (2) Å, and the H—O7—H angle was fixed to 109.79 (4) °; only one of the H atoms was found to be engaged in hydrogen bonding interactions. The remaining H-atoms were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.93 - 0.97 Å and O—H = 0.82 (2) Å, and with $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Figure 1

A view of the asymmetric unit of the title complex extended to show i) the coordination geometry about the Cd1 atom and ii) the coordinating mode of the μ_3 -ligand. The figure shows atom labels and 30% probability displacement ellipsoids for non-hydrogen atoms. Only the H3 atom is shown with the others omitted for clarity. Symmetry codes: (i) 2 - *x*, 1 - *y*, 1 - *z* and (ii) *x*, 1/2 - *y*, 1/2 + *z*.

Figure 2

The two-dimensional sheet in the title complex connected by C—H···O and π - π stacking interactions (dashed blue lines). Hydrogen atoms are omitted for clarity.

Poly[[(1,10-phenanthroline) $\{\mu_3-2,2',2''-[1,3,5-triazine-2,4,6-triy]$ triacetato]cadmium] 0.42hydrate]

Crystal data	
$[Cd(C_9H_7N_3O_6S_3)(C_{12}H_8N_2)]\cdot 0.42H_2O$	Z = 2
$M_r = 649.53$	F(000) = 648
Triclinic, P1	$D_{\rm x} = 1.858 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.618 (2) Å	Cell parameters from 3004 reflections
b = 10.987 (2) Å	$\theta = 2.3 - 27.8^{\circ}$
c = 12.601 (2) Å	$\mu = 1.26 \text{ mm}^{-1}$
$\alpha = 95.815 \ (3)^{\circ}$	T = 298 K
$\beta = 114.197 \ (2)^{\circ}$	Block, yellow
$\gamma = 113.909 \ (2)^{\circ}$	$0.30 \times 0.28 \times 0.26 \text{ mm}$
V = 1161.1 (4) Å ³	
Data collection	
Bruker APEX CCD area-detector	6114 measured reflections
diffractometer	4024 independent reflections
Radiation source: fine-focus sealed tube	3322 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.018$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 6$
(SADABS; Sheldrick, 1996)	$k = -11 \rightarrow 13$
$T_{\min} = 0.691, \ T_{\max} = 0.720$	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.071$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
4024 reflections	and constrained refinement
343 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0324P)^2]$
3 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.44 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	0.42035 (3)	0.85652 (2)	1.06635 (2)	0.03328 (10)	
C1	0.4810 (4)	0.6039 (3)	0.8043 (3)	0.0323 (8)	
C2	0.4472 (4)	0.6269 (3)	0.6212 (3)	0.0359 (8)	
C3	0.3023 (4)	0.4203 (3)	0.6345 (3)	0.0356 (8)	
C4	0.7363 (4)	0.8372 (3)	0.9962 (3)	0.0331 (8)	
H4A	0.8205	0.8656	1.0798	0.040*	
H4B	0.7782	0.8275	0.9424	0.040*	
C5	0.6972 (4)	0.9555 (3)	0.9826 (3)	0.0346 (8)	
C6	0.6109 (4)	0.8984 (3)	0.6309 (3)	0.0426 (9)	
H6A	0.6908	0.9023	0.7073	0.051*	
H6B	0.6661	0.9586	0.5955	0.051*	
C7	0.5189 (4)	0.9579 (4)	0.6602 (3)	0.0385 (8)	
C8	0.1498 (4)	0.1658 (4)	0.6678 (3)	0.0418 (9)	
H8A	0.1936	0.2377	0.7438	0.050*	
H8B	0.0417	0.0990	0.6446	0.050*	
C9	0.2466 (4)	0.0902 (3)	0.6898 (3)	0.0362 (8)	
C10	0.1914 (4)	0.7138 (4)	0.7677 (3)	0.0456 (9)	
H10	0.2475	0.8042	0.7672	0.055*	
C11	0.0686 (5)	0.6091 (5)	0.6563 (3)	0.0555 (11)	
H11	0.0439	0.6302	0.5833	0.067*	
C12	-0.0148 (4)	0.4762 (4)	0.6546 (3)	0.0501 (10)	
H12	-0.0969	0.4063	0.5806	0.060*	
C13	0.0238 (4)	0.4452 (4)	0.7654 (3)	0.0374 (8)	
C14	-0.0603 (4)	0.3101 (4)	0.7722 (4)	0.0484 (10)	

H14	-0.1414	0.2364	0.7003	0.058*	
C15	-0.0245 (4)	0.2871 (4)	0.8809 (4)	0.0458 (9)	
H15	-0.0817	0.1981	0.8832	0.055*	
C16	0.1006 (4)	0.3981 (3)	0.9934 (3)	0.0350 (8)	
C17	0.1391 (4)	0.3790 (4)	1.1094 (4)	0.0418 (9)	
H17	0.0825	0.2921	1.1153	0.050*	
C18	0.2594 (4)	0.4883 (4)	1.2119 (3)	0.0415 (9)	
H18	0.2871	0.4769	1.2890	0.050*	
C19	0.3412 (4)	0.6180 (4)	1.2008 (3)	0.0385 (8)	
H19	0.4236	0.6922	1.2720	0.046*	
C20	0.1881 (3)	0.5322 (3)	0.9908 (3)	0.0278 (7)	
C21	0.1479 (4)	0.5563 (3)	0.8738 (3)	0.0296 (7)	
N1	0.5244 (3)	0.6901 (3)	0.7429 (2)	0.0339 (7)	
N2	0.3350 (4)	0.4923 (3)	0.5603 (3)	0.0425 (7)	
N3	0.3688 (3)	0.4680 (3)	0.7551 (2)	0.0365 (7)	
N4	0.2304 (3)	0.6890 (3)	0.8734 (2)	0.0344 (6)	
N5	0.3072 (3)	0.6407 (3)	1.0937 (2)	0.0311 (6)	
01	0.5578 (3)	0.9325 (2)	0.9501 (2)	0.0360 (5)	
O2	0.8069 (3)	1.0707 (3)	1.0042 (3)	0.0579 (7)	
O3	0.3680 (3)	0.8904 (3)	0.5892 (2)	0.0601 (8)	
Н3	0.3281	0.9298	0.6119	0.072*	
O4	0.5906 (3)	1.0653 (3)	0.7466 (2)	0.0525 (7)	
O5	0.3310 (3)	0.1012 (3)	0.7971 (2)	0.0483 (6)	
O6	0.2284 (3)	0.0185 (3)	0.5955 (2)	0.0665 (8)	
S 1	0.57763 (10)	0.66671 (9)	0.96406 (7)	0.0340 (2)	
S2	0.49678 (13)	0.72178 (10)	0.52847 (9)	0.0503 (3)	
S3	0.14725 (13)	0.24605 (10)	0.55044 (9)	0.0552 (3)	
O7	0.9389 (12)	0.8880 (13)	0.7511 (12)	0.098 (5)	0.421 (15)
H71	0.97 (2)	0.876 (19)	0.813 (8)	0.17 (10)*	0.421 (15)
H72	0.95 (3)	0.85 (2)	0.711 (15)	0.3 (2)*	0.421 (15)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03706 (16)	0.02399 (14)	0.03189 (15)	0.01304 (11)	0.01291 (11)	0.01064 (10)
C1	0.0352 (19)	0.0324 (19)	0.0380 (19)	0.0237 (16)	0.0181 (15)	0.0130 (15)
C2	0.047 (2)	0.035 (2)	0.037 (2)	0.0277 (18)	0.0229 (17)	0.0142 (16)
C3	0.040 (2)	0.0288 (18)	0.037 (2)	0.0221 (16)	0.0128 (16)	0.0106 (15)
C4	0.0322 (18)	0.0341 (19)	0.0313 (18)	0.0170 (15)	0.0137 (15)	0.0098 (15)
C5	0.047 (2)	0.0301 (19)	0.0312 (18)	0.0199 (18)	0.0213 (16)	0.0127 (15)
C6	0.052 (2)	0.034 (2)	0.047 (2)	0.0192 (18)	0.0299 (18)	0.0166 (17)
C7	0.047 (2)	0.0312 (19)	0.0337 (19)	0.0173 (18)	0.0175 (17)	0.0140 (16)
C8	0.043 (2)	0.033 (2)	0.043 (2)	0.0192 (17)	0.0150 (17)	0.0107 (16)
C9	0.0319 (19)	0.0278 (18)	0.035 (2)	0.0100 (15)	0.0105 (16)	0.0074 (15)
C10	0.050(2)	0.046 (2)	0.039 (2)	0.0238 (19)	0.0170 (18)	0.0214 (18)
C11	0.056 (3)	0.071 (3)	0.034 (2)	0.036 (2)	0.0135 (19)	0.019 (2)
C12	0.036 (2)	0.057 (3)	0.032 (2)	0.019 (2)	0.0042 (16)	-0.0011 (18)
C13	0.0286 (18)	0.041 (2)	0.0357 (19)	0.0166 (16)	0.0120 (15)	0.0046 (16)

supporting information

C14	0.031 (2)	0.033 (2)	0.051 (2)	0.0029 (17)	0.0125 (17)	-0.0060 (17)
C15	0.034 (2)	0.028 (2)	0.062 (3)	0.0072 (16)	0.0226 (18)	0.0067 (18)
C16	0.0305 (18)	0.0285 (18)	0.052 (2)	0.0161 (15)	0.0241 (16)	0.0120 (16)
C17	0.049 (2)	0.0315 (19)	0.070 (3)	0.0250 (18)	0.043 (2)	0.0268 (19)
C18	0.056 (2)	0.044 (2)	0.043 (2)	0.031 (2)	0.0327 (19)	0.0223 (18)
C19	0.050(2)	0.034 (2)	0.0316 (19)	0.0229 (18)	0.0183 (17)	0.0114 (15)
C20	0.0267 (17)	0.0246 (17)	0.0386 (19)	0.0158 (14)	0.0185 (15)	0.0098 (14)
C21	0.0256 (17)	0.0306 (18)	0.0361 (18)	0.0160 (15)	0.0161 (14)	0.0099 (15)
N1	0.0421 (17)	0.0325 (16)	0.0294 (15)	0.0190 (14)	0.0186 (13)	0.0116 (13)
N2	0.057 (2)	0.0333 (17)	0.0352 (16)	0.0241 (15)	0.0195 (15)	0.0104 (13)
N3	0.0386 (16)	0.0305 (16)	0.0365 (17)	0.0182 (14)	0.0144 (13)	0.0100 (13)
N4	0.0360 (16)	0.0339 (16)	0.0315 (15)	0.0178 (13)	0.0142 (13)	0.0127 (13)
N5	0.0327 (15)	0.0268 (15)	0.0326 (15)	0.0152 (13)	0.0150 (12)	0.0085 (12)
01	0.0432 (14)	0.0350 (13)	0.0465 (14)	0.0261 (12)	0.0274 (12)	0.0215 (11)
O2	0.0495 (17)	0.0328 (15)	0.084 (2)	0.0135 (13)	0.0330 (15)	0.0213 (14)
O3	0.0507 (17)	0.0477 (16)	0.0560 (17)	0.0255 (14)	0.0089 (14)	-0.0075 (13)
O4	0.0543 (16)	0.0355 (14)	0.0496 (16)	0.0102 (13)	0.0257 (13)	-0.0012 (12)
05	0.0434 (15)	0.0679 (18)	0.0361 (14)	0.0318 (14)	0.0164 (12)	0.0213 (13)
O6	0.078 (2)	0.075 (2)	0.0409 (16)	0.0550 (18)	0.0101 (14)	0.0029 (15)
S1	0.0398 (5)	0.0301 (5)	0.0326 (5)	0.0182 (4)	0.0167 (4)	0.0131 (4)
S2	0.0826 (8)	0.0418 (5)	0.0415 (5)	0.0332 (5)	0.0399 (5)	0.0174 (4)
S3	0.0654 (7)	0.0296 (5)	0.0379 (5)	0.0169 (5)	0.0052 (5)	0.0089 (4)
O7	0.076 (6)	0.102 (8)	0.076 (8)	0.033 (5)	0.014 (5)	0.025 (6)

Geometric parameters (Å, °)

Cd1—O1	2.447 (2)	С9—Об	1.253 (4)
Cd1—O1 ⁱ	2.274 (2)	C10—N4	1.316 (4)
Cd1—O4 ⁱ	2.490 (3)	C10—C11	1.397 (5)
Cd1—O5 ⁱⁱ	2.295 (2)	C10—H10	0.9300
Cd1—N4	2.331 (3)	C11—C12	1.359 (5)
Cd1—N5	2.320 (3)	C11—H11	0.9300
C1—N1	1.340 (4)	C12—C13	1.405 (5)
C1—N3	1.341 (4)	C12—H12	0.9300
C1—S1	1.742 (3)	C13—C21	1.405 (4)
C2—N2	1.336 (4)	C13—C14	1.422 (5)
C2—N1	1.341 (4)	C14—C15	1.344 (5)
C2—S2	1.742 (3)	C14—H14	0.9300
C3—N3	1.320 (4)	C15—C16	1.433 (5)
C3—N2	1.348 (4)	C15—H15	0.9300
C3—S3	1.761 (3)	C16—C20	1.400 (4)
C4—C5	1.522 (4)	C16—C17	1.410 (5)
C4—S1	1.800(3)	C17—C18	1.354 (5)
C4—H4A	0.9700	C17—H17	0.9300
C4—H4B	0.9700	C18—C19	1.393 (5)
С5—О2	1.228 (4)	C18—H18	0.9300
C5—O1	1.265 (4)	C19—N5	1.325 (4)
С6—С7	1.512 (5)	C19—H19	0.9300

C6—S2	1.790 (4)	C20—N5	1.349 (4)
С6—Н6А	0.9700	C20—C21	1.443 (4)
С6—Н6В	0.9700	C21—N4	1.365 (4)
C7—O4	1.220 (4)	O1—Cd1 ⁱ	2.274 (2)
С7—О3	1.283 (4)	О3—Н3	0.8201
C8—C9	1.526 (5)	O4—Cd1 ⁱ	2,490 (3)
C8—S3	1 793 (4)	$05-Cd1^{ii}$	2,295(2)
C8—H8A	0.9700	07—H71	0.75(2)
C8_H8B	0.9700	07_H72	0.75(2)
C9	1,237(4)	07-11/2	0.75 (2)
05	1.237 (4)		
01^{i} Cd1 05 ⁱⁱ	107 00 (9)	C11_C10_H10	118.0
O1 - Cd1 = O5	107.00(9) 154.48(0)	C_{12} C_{11} C_{10}	120.0(3)
$O_{1}^{ii} C_{1}^{ii} N_{2}^{ii}$	104.40(9)	$C_{12} = C_{11} = C_{10}$	120.0 (3)
O_{1}^{i} Cd1 N4	90.30(9) 107.24(0)	C_{12} C_{11} H_{11}	120.0
OI - CuI - N4	107.24(9) 121.22(10)		120.0
N5 Cd1 N4	131.23(10)	C11 - C12 - C13	119.5 (5)
$N_{2} = C_{1} = N_{4}$	/1.86 (9)	C11—C12—H12	120.2
	/1.65 (9)	C13—C12—H12	120.2
05 ⁿ —Cd1—01	79.40 (8)	C12—C13—C21	117.2 (3)
N5—Cd1—O1	131.20 (8)	C12—C13—C14	123.2 (3)
N4—Cd1—O1	79.61 (9)	C21—C13—C14	119.6 (3)
$O1^{i}$ —Cd1—O4 ⁱ	82.53 (8)	C15—C14—C13	121.1 (3)
$O5^{ii}$ —Cd1—O4 ⁱ	84.79 (9)	C15—C14—H14	119.5
N5—Cd1—O4 ⁱ	80.69 (9)	C13—C14—H14	119.5
N4—Cd1—O4 ⁱ	133.26 (9)	C14—C15—C16	120.8 (3)
O1—Cd1—O4 ⁱ	143.94 (8)	C14—C15—H15	119.6
N1—C1—N3	126.4 (3)	C16—C15—H15	119.6
N1—C1—S1	119.5 (2)	C20—C16—C17	117.5 (3)
N3—C1—S1	114.1 (2)	C20—C16—C15	120.0 (3)
N2—C2—N1	126.4 (3)	C17—C16—C15	122.5 (3)
N2—C2—S2	114.1 (2)	C18—C17—C16	119.4 (3)
N1—C2—S2	119.4 (2)	С18—С17—Н17	120.3
N3—C3—N2	127.3 (3)	С16—С17—Н17	120.3
N3—C3—S3	121.0 (3)	C17—C18—C19	119.3 (3)
N2-C3-S3	111.6(2)	C17—C18—H18	120.4
$C_{5}-C_{4}-S_{1}$	117.4(2)	C19-C18-H18	120.1
$C_5 - C_4 - H_4 A$	108.0	N5-C19-C18	123.1(3)
S1 - C4 - H4A	108.0	N5H19	118.4
$C_5 C_4 H_{4B}$	108.0	$C_{18} C_{10} H_{10}$	118.4
S1_C4_H4B	108.0	N_{5} C_{20} C_{16}	122.6(3)
	107.2	N5 C20 C21	122.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.2 122.5 (2)	$N_{3} = C_{20} = C_{21}$	118.0(3)
02 - 03 - 01	125.5(5) 116.2(2)	$C_{10} - C_{20} - C_{21}$	110.0(3)
02 - 03 - 04	110.3(3)	104 - 0.21 - 0.13	122.4(3)
01 - 03 - 04	120.2(3)	104 - 0.21 - 0.20	11/.9(3)
C = C = S = C = S = S = S = S = S = S =	110.0 (3)	C13 - C21 - C20	119.7 (3)
С/—Сб—НбА	108.3	C1 - N1 - C2	113.5 (3)
S2—C6—H6A	108.3	C2—N2—C3	113.0 (3)
С7—С6—Н6В	108.3	C3—N3—C1	113.3 (3)

S2—C6—H6B	108.3	C10—N4—C21	118.7 (3)
H6A—C6—H6B	107.4	C10—N4—Cd1	125.7(2)
04	124.8 (4)	C_{21} N4—Cd1	115.45 (19)
04	119.2 (3)	C19 - N5 - C20	118.0 (3)
03-07-06	1160(3)	C19 - N5 - Cd1	125.7(2)
C9-C8-S3	113.0(3)	C_{20} N5 C_{d1}	1160(2)
C9—C8—H8A	109.0	$C_{20} - C_{10} - C_{11}$	101.51(19)
S3-C8-H8A	109.0	$C_{2} = O_{1} = C_{1}$	124 8 (2)
C9-C8-H8B	109.0	$Cd1^{i}$ $O1$ $Cd1$	121.0(2) 108 35 (9)
S3-C8-H8B	109.0	C7-O3-H3	100.35 (5)
	107.8	$C7 - O4 - Cd1^{i}$	136.9(2)
05-09-06	126.1 (3)	$C9-O5-Cd1^{ii}$	130.9(2) 143 1(2)
05 - 05 - 00	120.1(3) 118.0(3)	$C_1 = S_1 = C_4$	143.1(2) 101 33 (16)
06-09-08	115.0(3)	C_{2}	101.53(10) 101.51(17)
N4 C10 C11	113.9(3) 122.2(3)	$C_2 = S_2 = C_0$	101.51(17) 103.00(16)
N4 C10 H10	122.2 (3)	$H_{71} = 07 H_{72}$	103.00 (10)
N4—C10—III0	110.9	11/1 - 0/-11/2	110(0)
S1-C4-C5-O2	-179.5(3)	N5-Cd1-N4-C10	178.2 (3)
S1-C4-C5-O1	0.1 (4)	O1-Cd1-N4-C10	-41.9(3)
S2-C6-C7-O4	165.6 (3)	$O4^{i}$ —Cd1—N4—C10	121 1 (3)
<u>82</u> — <u>C6</u> — <u>C7</u> — <u>O3</u>	-15.3(4)	$O1^{i}$ Cd1 N4 C21	-150.7(2)
<u>S3-C8-C9-O5</u>	139.6 (3)	$O5^{ii}$ —Cd1—N4—C21	76.5 (2)
S3-C8-C9-O6	-42.5(4)	N5-Cd1-N4-C21	2.5(2)
N4-C10-C11-C12	-0.2(6)	Ω_1 —Cd1—N4—C21	1424(2)
C10-C11-C12-C13	-0.2(6)	$O4^{i}$ Cd1 N4 C21	-547(3)
$C_{11} - C_{12} - C_{13} - C_{21}$	0.2(0)	C18 - C19 - N5 - C20	-0.4(5)
$C_{11} - C_{12} - C_{13} - C_{14}$	178 1 (4)	C18 - C19 - N5 - Cd1	1741(2)
C_{12} C_{13} C_{14} C_{15}	-1764(4)	$C_{16} - C_{20} - N_{5} - C_{19}$	-0.2(5)
$C_{12} = C_{13} = C_{14} = C_{15}$	0.9 (6)	C_{21} C_{20} N_{5} C_{19}	178.8(3)
C_{13} C_{14} C_{15} C_{16}	-0.5(6)	C_{16} C_{20} N_{5} C_{11}	-1752(2)
C_{14} C_{15} C_{16} C_{20}	-0.4(5)	C_{21} C_{20} N_{5} C_{41}	38(4)
C14 - C15 - C16 - C17	1784(4)	$O1^{i}$ $Cd1$ $N5$ $C19$	-85.7(3)
$C_{14} = C_{15} = C_{16} = C_{17}$	-1.4(5)	O_{1}^{ii} Cd1 N5 C19	484(3)
$C_{10} = C_{10} = C_{17} = C_{18}$	1.7(3)	$N_{4} Cd1 N_{5} C19$	-177.9(3)
$C_{15} = C_{10} = C_{17} = C_{18}$	1/9.7(3)	$\Omega_1 Cd1 N5 C19$	177.9(3)
$C_{10} = C_{17} = C_{10} = C_{19}$	0.9(5)	O_1 C_1 O_2 O_1 O_2 O_3 O_4 O_1 O_2 O_1 O_2 O_2 O_3 O_4 O_1 O_2 O_3 O_4 O_1 O_2 O_3 O_4 O_1 O_2 O_3 O_4 O_1 O_2 O_1 O_2 O_1 O_2 O_3 O_4 O_1 O_2 O_3 O_4 O_1 O_2 O_1 O_2 O_3 O_4 O_1 O_2 O_2 O_3 O_4 O_2 O_3 O_4 O_4 O_4 O_2 O_4	-362(3)
C17 = C16 = C19 = N5	0.0(5)	O_1^{i} Cd1 N5 C20	30.2 (3)
$C_{1} = C_{10} = C_{20} = N_5$	-1800(3)	$O_1 = Cu_1 = N_2 = C_2 O_1$	-137.0(2)
$C_{13} = C_{10} = C_{20} = C_{31}$	-177.0(3)	$N_4 = Cd1 = N_5 = C20$	137.0(2)
$C_{1} = C_{10} = C_{20} = C_{21}$	1/7.9(3)	n4— $cd1$ — $n5$ — $c20$	-60.7(2)
$C_{13} = C_{10} = C_{20} = C_{21}$	1.0(3)	$O_1 = C_1 = N_2 = C_2 O_1$	-00.7(2)
C12 - C13 - C21 - N4	-0.9(3)	04 $-Cal - N3$ $-C20$	138.4(2)
C12 - C12 - C21 - N4	-1/8.4(3)	02-05-01-01	4.0(4)
C_{12} C_{13} C_{21} C_{20}	1/1.2(3) -0.2(5)	$C_{+} - C_{3} - C_{1} - C_{41}$	-1182(2)
14-13-21-20	-0.5(3)	02 - 03 - 01 - 01	-118.2(3)
$N_{3} = 0.20 = 0.21 = N_{4}$	-1.5(4)		02.2 (4)
$U_{10} - U_{20} - U_{21} - N_{4}$	1/7.5 (3)		119.1 (3)
103 - 0.20 - 0.21 - 0.13	-1/9./(3)		7.1 (2)
C10-C20-C21-C13	-0.6 (3)	ND-Cal-Ol-CD	-/4.2(3)

N3-C1-N1-C2	-2.2 (5)	N4—Cd1—O1—C5	-128.6 (3)
\$1—C1—N1—C2	176.4 (2)	O4 ⁱ —Cd1—O1—C5	72.6 (3)
N2-C2-N1-C1	1.0 (5)	O5 ⁱⁱ —Cd1—O1—Cd1 ⁱ	-112.05 (11)
S2—C2—N1—C1	-176.7 (2)	N5—Cd1—O1—Cd1 ⁱ	166.69 (9)
N1-C2-N2-C3	0.3 (5)	N4—Cd1—O1—Cd1 ⁱ	112.23 (11)
S2—C2—N2—C3	178.2 (2)	$O4^{i}$ —Cd1—O1—Cd1 ⁱ	-46.50 (17)
N3—C3—N2—C2	-0.8 (5)	O3—C7—O4—Cd1 ⁱ	54.0 (5)
S3—C3—N2—C2	177.1 (2)	C6-C7-O4-Cd1 ⁱ	-127.0 (3)
N2—C3—N3—C1	-0.2 (5)	O6—C9—O5—Cd1 ⁱⁱ	48.3 (6)
S3—C3—N3—C1	-177.8 (2)	C8—C9—O5—Cd1 ⁱⁱ	-134.1 (3)
N1—C1—N3—C3	1.8 (5)	N1-C1-S1-C4	-7.9 (3)
S1—C1—N3—C3	-176.8 (2)	N3—C1—S1—C4	170.9 (2)
C11-C10-N4-C21	0.0 (6)	C5—C4—S1—C1	80.6 (3)
C11-C10-N4-Cd1	-175.6 (3)	N2-C2-S2-C6	167.5 (3)
C13—C21—N4—C10	0.5 (5)	N1-C2-S2-C6	-14.5 (3)
C20-C21-N4-C10	-177.6 (3)	C7—C6—S2—C2	-71.7 (3)
C13-C21-N4-Cd1	176.6 (2)	N3—C3—S3—C8	-11.5 (3)
C20-C21-N4-Cd1	-1.5 (4)	N2—C3—S3—C8	170.4 (3)
O1 ⁱ -Cd1-N4-C10	25.0 (3)	C9—C8—S3—C3	-95.0 (3)
O5 ⁱⁱ —Cd1—N4—C10	-107.7 (3)		

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…O6 ⁱⁱⁱ	0.82	1.68	2.439 (4)	154
O7—H71···O2 ^{iv}	0.75 (2)	2.35 (12)	2.984 (11)	142 (18)
C15—H15···O2 ^v	0.93	2.50	3.294 (6)	143
C17—H17····O2 ^v	0.93	2.57	3.353 (6)	142

Symmetry codes: (iii) *x*, *y*+1, *z*; (iv) –*x*+2, –*y*+2, –*z*+2; (v) *x*-1, *y*-1, *z*.