metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[μ_2 -aqua- μ_3 -(4-carboxy-2-propyl-1*H*-imidazole-5-carboxylato- $\kappa^4 N^3, O^4: O^4: O^5$)-sodium] hemihydrate]

Zhong-Jing Huang,* Jin-Niu Tang, Zhi-Rong Luo, Dai-Yin Wang and Huan Wei

Department of Chemistry, Guangxi University for Nationalities, Nanning 530006, People's Republic of China

Correspondence e-mail: huangzhongjing1@yahoo.com.cn

Received 17 January 2011; accepted 1 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.106; data-to-parameter ratio = 13.1.

In the title compound, $\{[Na(C_8H_9N_2O_4)(H_2O)]\cdot 0.5H_2O\}_n$, the Na⁺ ion is coordinated by two bridging water molecules, one N atom and three O atoms from three 4-carboxy-2-propyl-1*H*-imidazole-5-carboxylate (H₂pimdc) ligands. Adjacent Na⁺ ions are linked alternately by two water O atoms and two carboxy O atoms into a chain along [001]. These chains are connected through the coordination of the carboxylate O atoms to the Na⁺ ions, forming a three-dimensional structure. An intramolecular $O-H\cdots O$ hydrogen bond and intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds are present in the crystal structure.

Related literature

For the properties and biological activity of imidazole-4,5dicarboxylic acid and its derivatives, see: Baures (1999); Bogdanova *et al.* (1992); Borodkin *et al.* (1984); Reichardt *et al.* (1992); Su *et al.* (2001).

Experimental

Crystal data $[Na(C_8H_9N_2O_4)(H_2O)] \cdot 0.5H_2O$ $M_r = 247.18$ Monoclinic, C2/ca = 15.406 (4) Å

b = 15.478 (4) Å c = 10.734 (3) Å $\beta = 118.364 (3)^{\circ}$ $V = 2252.4 (9) \text{ Å}^{3}$ Z = 8Mo $K\alpha$ radiation $\mu = 0.15 \text{ mm}^{-1}$

Data collection

Bruker APEX CCD diffractometer	5971 measur
Absorption correction: multi-scan	1986 indepe
(SADABS; Sheldrick, 1996)	1669 reflecti
$T_{\min} = 0.528, \ T_{\max} = 0.562$	$R_{\rm int}=0.020$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.106$ S = 1.101986 reflections 5971 measured reflections 1986 independent reflections 1669 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$

T = 296 K

 $0.52 \times 0.47 \times 0.44 \text{ mm}$

 $\begin{array}{l} 152 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1 Selected bond lengths (Å).

Na1-O1	2.3658 (15)	Na1-O5	2.4011 (15)
Na1-O1 ⁱ	2.3644 (14)	Na1-O5 ⁱⁱⁱ	2.3818 (16)
Na1-O3 ⁱⁱ	2.5550 (15)	Na1-N1	2.4848 (16)

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) -x, -y, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2 - H2A \cdots O3^{iv}$ $O2 - H2 \cdots O4$ $O5 - H5B \cdots O2^{i}$ $O5 - H5A \cdots O6$ $O6 - H6C \cdots O4^{ii}$	0.86	2.00	2.8384 (18)	164
	0.82	1.64	2.4603 (18)	178
	0.91	2.07	2.9493 (18)	164
	0.86	1.97	2.8234 (19)	169
	0.88	2.03	2.8835 (16)	163

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iv) $-x + 1, y, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

This work was supported by the Innovation Project of Guangxi University for Nationalities (gxun-chx2010083).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2402).

References

- Baures, P. W. (1999). Org. Lett. 1, 249-252.
- Bogdanova, N. A., Kulikova, O. G. & Borodkin, Y. S. (1992). Bull. Exp. Biol. Med. 111, 159–161.
- Borodkin, Y. S., Shabanov, P. D., Lapina, I. A. & Yaitchnikov, I. K. (1984). Act. Nerv. Sup. 26, 97–102.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2007). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Reichardt, B. A., Belyavtseva, L. M. & Kulikova, O. G. (1992). Bull. Exp. Biol. Med. 113, 506–508.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Su, C.-Y., Cai, Y.-P., Chen, C.-L. & Kang, B.-S. (2001). Inorg. Chem. 40, 2210– 2211.

supporting information

Acta Cryst. (2011). E67, m408 [doi:10.1107/S1600536811007732]

Poly[[μ_2 -aqua- μ_3 -(4-carboxy-2-propyl-1*H*-imidazole-5-carboxylato- $\kappa^4 N^3$, O^4 : O^5)-sodium] hemihydrate]

Zhong-Jing Huang, Jin-Niu Tang, Zhi-Rong Luo, Dai-Yin Wang and Huan Wei

S1. Comment

1*H*-Imidazole and its derivatives are a kind of excellent supramolecular synthons. The N atoms of imidazole can coordinate to metal ions in monodentate or bidentate mode (Su *et al.*, 2001). Imidazole-4,5-dicarboxylic acid and derivatives have been studied in terms of their physical properties as well as for their diverse biological activities (Bogdanova *et al.*, 1992; Borodkin *et al.*, 1984; Reichardt *et al.*, 1992), including the use of imidazole-4,5-dicarboxylic acid amides in the development of human immunodeficiency virus (HIV-1) protease inhibitors (Baures, 1999). Here we present the synthesis and structure of the title complex derived from 2-propyl-1*H*-imidazole-4,5-dicarboxylic acid. The distinct binding modes of the ligands as well as the coordination preferences of the metal ion are discussed.

In the title compound, the 2-propyl-4-carboxy-1*H*-imidazole-5-carboxylate (H₂pimdc) ligand is bonded to Na ions in a μ_3 -mode. The coordination of Na ion is achieved by two water molecules, one N atom and three O atoms from three H₂pimdc ligands (Fig .1, Table 1). Two O1 atoms of the H₂pimdc ligand bridge two Na atoms, forming a parallelogram and two O5 atoms of the water molecules form another parallelogram with two Na atoms, leading to a chain along [0 0 1]. The chains are connected through the coordination of the carboxylate O3 atoms to the Na ions, forming a three-dimensional structure (Fig. 2). The propyl group becomes an ornament in the coordination network. The crystal structure is stabilized by intramolecular O—H…O hydrogen bond and intermolecular N—H…O and O—H…O hydrogen bonds (Table 2).

S2. Experimental

An ethanol solution (5 ml) containing 2-propyl-1H-imidazole-4,5-dicarboxylic acid (1 mmol, 0.198 g) was added dropwise to a water solution (10 ml) containing NaOH (0.5 mmol, 0.040 g). After stirring for 6 h, the solution was filtered. The filtered solution were evaporated for several days in air and colorless block-shaped crystals suitable for single-crystal X-ray diffraction were obtained (yield: 80% based on the ligand).

S3. Refinement

H atoms except those of water molecules were positioned geometrically and refined using a riding model, with C—H = 0.97 (CH₂) and 0.96 (CH₃), N—H = 0.86 and O—H = 0.82 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C,N,O)$. H atoms of water molecules were located in a difference Fourier map and refined as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines denote hydrogen bonds. [Symmetry codes: (i) -x, y, 1/2-z; (ii) 1/2-x, 1/2-y, 1-z; (iii) -x, -y, 1-z.]

Figure 2

Crystal packing of the title compound viewed along the c axis.

Poly[[μ_2 -aqua- μ_3 -(4-carboxy-2-propyl-1*H*-imidazole-5-carboxylato- $\kappa^4 N^3$, O^4 : O^5)-sodium] hemihydrate]

Crystal data	
[Na(C ₈ H ₉ N ₂ O ₄)(H ₂ O)]·0.5H ₂ O $M_r = 247.18$ Monoclinic, C2/c Hall symbol: -C 2yc a = 15.406 (4) Å b = 15.478 (4) Å c = 10.734 (3) Å $\beta = 118.364$ (3)° V = 2252.4 (9) Å ³ Z = 8	F(000) = 1032 $D_x = 1.458 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2142 reflections $\theta = 2.4-26.8^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$ T = 296 K Block, colorless $0.52 \times 0.47 \times 0.44 \text{ mm}$
Data collection	
Bruker APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.528$, $T_{max} = 0.562$ 5971 measured reflections 1986 independent reflections 1669 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.020$	$k = -18 \rightarrow 17$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.0^{\circ}$	$l = -11 \rightarrow 12$
$h = -18 \rightarrow 17$	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.034$ Hydrogen site location: inferred from $wR(F^2) = 0.106$ neighbouring sites S = 1.10H-atom parameters constrained 1986 reflections $w = 1/[\sigma^2(F_o^2) + (0.0609P)^2 + 0.6897P]$ 152 parameters where $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O3	0.48386 (8)	0.25613 (8)	0.57288 (12)	0.0379 (3)	
C5	0.41043 (11)	0.21569 (11)	0.48692 (17)	0.0310 (4)	
Na1	0.04274 (5)	0.08063 (4)	0.43441 (7)	0.0385 (2)	
01	0.10965 (9)	0.08373 (8)	0.27653 (13)	0.0411 (3)	
O2	0.22662 (9)	0.13103 (9)	0.23128 (12)	0.0416 (3)	
H2	0.2806	0.1544	0.2746	0.062*	
O4	0.38682 (9)	0.20490 (9)	0.35643 (12)	0.0417 (3)	
N2	0.36555 (10)	0.18188 (9)	0.67516 (14)	0.0321 (3)	
H2A	0.4177	0.2046	0.7425	0.039*	
O5	-0.06348 (10)	0.07199 (8)	0.54055 (14)	0.0437 (3)	
H5A	-0.0517	0.1150	0.5978	0.052*	
H5B	-0.1209	0.0894	0.4662	0.052*	
N1	0.22111 (10)	0.11704 (9)	0.56488 (14)	0.0329 (3)	
C2	0.34437 (11)	0.17694 (10)	0.53667 (16)	0.0290 (4)	
C4	0.19168 (12)	0.11485 (11)	0.31776 (17)	0.0313 (4)	
C1	0.25389 (11)	0.13611 (10)	0.46930 (16)	0.0292 (4)	
C3	0.29110 (12)	0.14524 (11)	0.68890 (18)	0.0338 (4)	
C6	0.29259 (14)	0.13640 (14)	0.82798 (19)	0.0454 (5)	
H6A	0.2276	0.1191	0.8121	0.054*	
H6B	0.3074	0.1922	0.8748	0.054*	
C7	0.36813 (17)	0.07062 (14)	0.9247 (2)	0.0525 (5)	
H7A	0.3512	0.0141	0.8804	0.063*	
H7B	0.4327	0.0861	0.9367	0.063*	
C8	0.3727 (2)	0.06594 (17)	1.0677 (2)	0.0757 (8)	
H8A	0.3924	0.1210	1.1138	0.113*	
H8B	0.4198	0.0228	1.1242	0.113*	
H8C	0.3089	0.0510	1.0564	0.113*	
06	0.0000	0.20200 (12)	0.7500	0.0512 (5)	
H6C	0.0310	0.2400	0.7245	0.061*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
03	0.0294 (6)	0.0443 (7)	0.0345 (7)	-0.0048 (5)	0.0108 (5)	0.0028 (5)
C5	0.0256 (8)	0.0338 (9)	0.0317 (9)	0.0040 (7)	0.0121 (7)	0.0032 (7)
Nal	0.0328 (4)	0.0462 (4)	0.0354 (4)	-0.0046 (3)	0.0154 (3)	0.0024 (3)
O1	0.0309 (7)	0.0564 (8)	0.0319 (7)	-0.0082 (6)	0.0115 (5)	-0.0032 (5)
O2	0.0347 (7)	0.0600 (8)	0.0289 (6)	-0.0111 (6)	0.0142 (5)	-0.0073 (6)
O4	0.0391 (7)	0.0574 (8)	0.0332 (7)	-0.0083 (6)	0.0209 (6)	-0.0025 (5)
N2	0.0269 (7)	0.0400 (8)	0.0254 (7)	-0.0013 (6)	0.0091 (5)	-0.0007 (6)
05	0.0472 (8)	0.0453 (8)	0.0372 (7)	0.0025 (6)	0.0190 (6)	0.0020 (5)
N1	0.0298 (7)	0.0401 (8)	0.0291 (7)	-0.0001 (6)	0.0142 (6)	0.0024 (6)
C2	0.0288 (8)	0.0305 (8)	0.0266 (8)	0.0032 (7)	0.0122 (7)	0.0004 (6)
C4	0.0299 (9)	0.0346 (9)	0.0280 (9)	0.0012 (7)	0.0126 (7)	0.0000 (7)
C1	0.0270 (8)	0.0319 (9)	0.0282 (9)	0.0030 (6)	0.0127 (7)	0.0017 (6)
C3	0.0299 (9)	0.0408 (10)	0.0294 (9)	0.0031 (7)	0.0131 (7)	0.0034 (7)
C6	0.0457 (11)	0.0611 (12)	0.0319 (10)	-0.0014 (9)	0.0205 (8)	0.0018 (9)
C7	0.0587 (13)	0.0574 (13)	0.0383 (11)	-0.0110 (10)	0.0205 (9)	0.0054 (9)
C8	0.104 (2)	0.0765 (17)	0.0368 (12)	-0.0225 (15)	0.0254 (13)	0.0041 (11)
06	0.0693 (13)	0.0439 (11)	0.0553 (12)	0.000	0.0417 (11)	0.000

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

03—C5	1.237 (2)	O5—H5A	0.8645	
C5—O4	1.280 (2)	O5—H5B	0.9066	
C5—C2	1.482 (2)	N1—C3	1.327 (2)	
Na1—O1	2.3658 (15)	N1—C1	1.374 (2)	
Na1—O1 ⁱ	2.3644 (14)	C2—C1	1.381 (2)	
Na1—O3 ⁱⁱ	2.5550 (15)	C4—C1	1.480 (2)	
Na1—O5	2.4011 (15)	C3—C6	1.488 (2)	
Na1—O5 ⁱⁱⁱ	2.3818 (16)	C6—C7	1.524 (3)	
Na1—N1	2.4848 (16)	C6—H6A	0.9700	
Na1—Na1 ⁱⁱⁱ	3.4217 (14)	C6—H6B	0.9700	
Na1—Na1 ⁱ	3.5291 (16)	C7—C8	1.504 (3)	
O1—C4	1.222 (2)	C7—H7A	0.9700	
O2—C4	1.300 (2)	С7—Н7В	0.9700	
O2—H2	0.8200	C8—H8A	0.9600	
N2—C3	1.349 (2)	C8—H8B	0.9600	
N2—C2	1.364 (2)	C8—H8C	0.9600	
N2—H2A	0.8600	O6—H6C	0.8790	
C5—O3—Na1 ⁱⁱ	113.64 (10)	Na1 ⁱⁱⁱ —O5—Na1	91.35 (5)	
O3—C5—O4	124.46 (15)	Na1 ⁱⁱⁱ —O5—H5A	135.4	
O3—C5—C2	118.49 (15)	Na1—O5—H5A	109.5	
O4—C5—C2	117.05 (14)	Na1 ⁱⁱⁱ —O5—H5B	114.6	
O1 ⁱ —Na1—O1	83.45 (5)	Na1—O5—H5B	99.5	
O1 ⁱ —Na1—O5 ⁱⁱⁱ	98.46 (5)	H5A—O5—H5B	100.6	
O1—Na1—O5 ⁱⁱⁱ	91.16 (5)	C3—N1—C1	105.47 (14)	

Ol ⁱ —Nal—O5	82.24 (5)	C3—N1—Na1	142.55 (12)
O1—Na1—O5	165.50 (5)	C1—N1—Na1	109.17 (10)
O5 ⁱⁱⁱ —Na1—O5	88.65 (5)	N2—C2—C1	104.80 (14)
O1 ⁱ —Na1—N1	149.80 (6)	N2—C2—C5	121.35 (14)
O1—Na1—N1	69.97 (5)	C1—C2—C5	133.75 (15)
O5 ⁱⁱⁱ —Na1—N1	96.21 (5)	O1—C4—O2	121.69 (15)
O5—Na1—N1	124.46 (6)	O1—C4—C1	120.25 (15)
O1 ⁱ —Na1—O3 ⁱⁱ	83.03 (5)	O2—C4—C1	118.06 (14)
O1—Na1—O3 ⁱⁱ	94.36 (5)	N1—C1—C2	110.18 (14)
O5 ⁱⁱⁱ —Na1—O3 ⁱⁱ	174.41 (5)	N1—C1—C4	119.81 (14)
O5—Na1—O3 ⁱⁱ	86.22 (5)	C2—C1—C4	129.97 (15)
N1—Na1—O3 ⁱⁱ	84.91 (5)	N1—C3—N2	110.88 (15)
O1 ⁱ —Na1—Na1 ⁱⁱⁱ	90.44 (4)	N1—C3—C6	126.43 (16)
O1—Na1—Na1 ⁱⁱⁱ	133.90 (5)	N2—C3—C6	122.65 (15)
O5 ⁱⁱⁱ —Na1—Na1 ⁱⁱⁱ	44.55 (4)	C3—C6—C7	112.82 (16)
O5—Na1—Na1 ⁱⁱⁱ	44.10 (4)	С3—С6—Н6А	109.0
N1—Na1—Na1 ⁱⁱⁱ	118.18 (5)	С7—С6—Н6А	109.0
O3 ⁱⁱ —Na1—Na1 ⁱⁱⁱ	130.28 (5)	С3—С6—Н6В	109.0
O1 ⁱ —Na1—Na1 ⁱ	41.76 (4)	С7—С6—Н6В	109.0
O1—Na1—Na1 ⁱ	41.73 (3)	H6A—C6—H6B	107.8
O5 ⁱⁱⁱ —Na1—Na1 ⁱ	94.88 (4)	C8—C7—C6	112.2 (2)
O5—Na1—Na1 ⁱ	123.85 (5)	С8—С7—Н7А	109.2
N1—Na1—Na1 ⁱ	110.83 (4)	С6—С7—Н7А	109.2
O3 ⁱⁱ —Na1—Na1 ⁱ	89.81 (3)	С8—С7—Н7В	109.2
Na1 ⁱⁱⁱ —Na1—Na1 ⁱ	116.76 (3)	С6—С7—Н7В	109.2
C4—O1—Na1 ⁱ	137.76 (11)	H7A—C7—H7B	107.9
C4—O1—Na1	118.44 (11)	С7—С8—Н8А	109.5
Nal ⁱ —O1—Nal	96.50 (5)	С7—С8—Н8В	109.5
C4—O2—H2	109.5	H8A—C8—H8B	109.5
C3—N2—C2	108.66 (14)	С7—С8—Н8С	109.5
C3—N2—H2A	125.7	H8A—C8—H8C	109.5
C2—N2—H2A	125.7	H8B—C8—H8C	109.5
Na1 ⁱⁱ —O3—C5—O4	83.19 (17)	Na1 ⁱⁱⁱ —Na1—N1—C1	142.32 (10)
Na1 ⁱⁱ —O3—C5—C2	-96.58 (14)	Na1 ⁱ —Na1—N1—C1	3.70 (11)
O1 ⁱ —Na1—O1—C4	153.03 (11)	C3—N2—C2—C1	0.27 (17)
O5 ⁱⁱⁱ —Na1—O1—C4	-108.59 (13)	C3—N2—C2—C5	177.03 (14)
O5—Na1—O1—C4	162.3 (2)	O3—C5—C2—N2	-3.0 (2)
N1—Na1—O1—C4	-12.40 (12)	O4—C5—C2—N2	177.24 (15)
O3 ⁱⁱ —Na1—O1—C4	70.56 (13)	O3—C5—C2—C1	172.70 (17)
Na1 ⁱⁱⁱ —Na1—O1—C4	-122.69 (12)	O4—C5—C2—C1	-7.1 (3)
Na1 ⁱ —Na1—O1—C4	155.37 (15)	Na1 ⁱ —O1—C4—O2	-27.1 (3)
O1 ⁱ —Na1—O1—Na1 ⁱ	-2.35 (7)	Na1—O1—C4—O2	-169.10 (12)
O5 ⁱⁱⁱ —Na1—O1—Na1 ⁱ	96.04 (5)	Na1 ⁱ —O1—C4—C1	152.23 (13)
O5—Na1—O1—Na1 ⁱ	7.0 (2)	Nal—O1—C4—C1	10.2 (2)
N1—Na1—O1—Na1 ⁱ	-167.77 (6)	C3—N1—C1—C2	-0.50 (19)
O3 ⁱⁱ —Na1—O1—Na1 ⁱ	-84.81 (5)	Na1—N1—C1—C2	165.02 (11)
Na1 ⁱⁱⁱ —Na1—O1—Na1 ⁱ	81.93 (7)	C3—N1—C1—C4	-178.63 (15)

O1 ⁱ —Na1—O5—Na1 ⁱⁱⁱ	98.73 (5)	Na1—N1—C1—C4	-13.10 (18)
O1—Na1—O5—Na1 ⁱⁱⁱ	89.4 (2)	N2-C2-C1-N1	0.15 (18)
O5 ⁱⁱⁱ —Na1—O5—Na1 ⁱⁱⁱ	0.0	C5-C2-C1-N1	-176.03 (16)
N1—Na1—O5—Na1 ⁱⁱⁱ	-96.60 (7)	N2-C2-C1-C4	178.02 (16)
O3 ⁱⁱ —Na1—O5—Na1 ⁱⁱⁱ	-177.79 (5)	C5—C2—C1—C4	1.8 (3)
Na1 ⁱ —Na1—O5—Na1 ⁱⁱⁱ	94.97 (4)	O1—C4—C1—N1	3.0 (2)
O1 ⁱ —Na1—N1—C3	139.23 (18)	O2—C4—C1—N1	-177.59 (15)
O1—Na1—N1—C3	169.0 (2)	O1—C4—C1—C2	-174.66 (17)
O5 ⁱⁱⁱ —Na1—N1—C3	-102.0 (2)	O2—C4—C1—C2	4.7 (3)
O5—Na1—N1—C3	-9.4 (2)	C1—N1—C3—N2	0.68 (19)
O3 ⁱⁱ —Na1—N1—C3	72.5 (2)	Na1—N1—C3—N2	-156.48 (14)
Na1 ⁱⁱⁱ —Na1—N1—C3	-61.0(2)	C1—N1—C3—C6	-177.21 (17)
Na1 ⁱ —Na1—N1—C3	160.36 (18)	Na1—N1—C3—C6	25.6 (3)
O1 ⁱ —Na1—N1—C1	-17.43 (17)	C2—N2—C3—N1	-0.61 (19)
O1—Na1—N1—C1	12.38 (10)	C2—N2—C3—C6	177.38 (16)
O5 ⁱⁱⁱ —Na1—N1—C1	101.34 (11)	N1—C3—C6—C7	107.8 (2)
O5—Na1—N1—C1	-166.03 (10)	N2—C3—C6—C7	-69.8 (2)
O3 ⁱⁱ —Na1—N1—C1	-84.16 (11)	C3—C6—C7—C8	176.85 (18)

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x+1/2, -y+1/2, -z+1; (iii) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N2—H2A···O3 ^{iv}	0.86	2.00	2.8384 (18)	164
O2—H2…O4	0.82	1.64	2.4603 (18)	178
O5— $H5B$ ···O2 ⁱ	0.91	2.07	2.9493 (18)	164
O5—H5A···O6	0.86	1.97	2.8234 (19)	169
O6—H6 <i>C</i> ⋯O4 ⁱⁱ	0.88	2.03	2.8835 (16)	163

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x+1/2, -y+1/2, -z+1; (iv) -x+1, y, -z+3/2.