Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[bis(2-aminoethanesulfonato- $\kappa^2 N$,O)nickel(II)]- μ -1,4bis(1*H*-imidazol-1-yl)benzene- $\kappa^2 N^3$: $N^{3'}$]

Jin-Biao Liu

Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China Correspondence e-mail: liujinbiao07@126.com

Received 18 February 2011; accepted 10 March 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.049; wR factor = 0.097; data-to-parameter ratio = 17.1.

In the hydrothermally prepared title coordination polymer, $[Ni(C_2H_6NO_3S)_2(C_{12}H_{10}N_4)]_n$, the Ni^{II} ion and the 1,4-bis(1*H*-imidazol-1-yl)benzene ligand occupy special positions on inversion centers. The metal ion shows a slightly distorted octahedral coordination geometry, being linked to two N atoms of two 1,4-bis(imidazol-1-yl)benzene ligands and to two O and two N atoms of two chelating 2-aminoethanesulfonate ligands. The 1,4-bis(imidazol-1-yl)benzene ligands bridge symmetry-related Ni^{II} ions forming polymeric chains along the [110] direction.

Related literature

For some examples of transition metal complexes of 2aminoethanesulfonic acid (taurine), see: Cai *et al.* (2004, 2006); Jiang *et al.* (2006, 2005).

Experimental

Crystal data

 $\begin{bmatrix} \text{Ni}(\text{C}_2\text{H}_6\text{NO}_3\text{S})_2(\text{C}_{12}\text{H}_{10}\text{N}_4) \end{bmatrix} & V = 1063.4 \text{ (4)} \text{ Å}^3 \\ M_r = 517.23 & Z = 2 \\ \text{Monoclinic, } P2_1/c & \text{Mo } K\alpha \text{ radiation} \\ a = 7.4559 \text{ (15) Å} & \mu = 1.16 \text{ mm}^{-1} \\ b = 11.494 \text{ (2) Å} & T = 295 \text{ K} \\ c = 12.481 \text{ (3) Å} & 0.15 \times 0.13 \times 0.10 \text{ mm} \\ \beta = 96.19 \text{ (3)}^\circ \end{array}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*_{min} = 0.841, *T*_{max} = 0.891

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	142 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
2426 reflections	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

10967 measured reflections

 $R_{\rm int} = 0.056$

2426 independent reflections

1974 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

N1-Ni1	2.079 (2)	Ni1-N2	2.126 (2)
Ni1-O1	2.1070 (18)		

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of Tian Jin.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2349).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059-m3061.
- Cai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659–m1661.
- Jiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878– m880.
- Jiang, Y.-M., Wang, X.-J., Ying, X.-J., Zhong, F., Cai, J.-H. & He, K.-H. (2006). *Inorg. Chem. Commun.* 9, 1063–1066.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m452 [doi:10.1107/S1600536811009238]

catena-Poly[[bis(2-aminoethanesulfonato- $\kappa^2 N$,O)nickel(II)]- μ -1,4-bis(1*H*-imidazol-1-yl)benzene- $\kappa^2 N^3$: $N^{3'}$]

Jin-Biao Liu

S1. Comment

Taurine, an amino acid containing sulfur, has important physiological functions. In fact, taurine is one of the most abundant free amino-acid-like compounds found in the heart, the skeletal muscles and the nervous system. As part of our research on taurine complexes we report here the synthesis and crystal structure of the title nikel(II) complex with taurine and 1,4-bis(imidazol-1-yl)benzene.

The crystal structure shows that two taurine anions chelate to the Ni^{II} ion *via* terminal N and O atoms. In addition the Ni^{II} ion is coordinated to two bridging 1,4-bis(imidazol-1-yl)benzene ligands to form one-dimensional polymer. The Ni^{II} ion and 1,4-bis(imidazol-1-yl)benzene ligand are located on inversion center. The coordination environment around nickel(II) is shown in Fig. 1. The Ni^{II} atom is six-coordinated in a distorted octahedral geometry. N-H…O and C-H…O hydrogen bonds assemble the coordination polymers into a three-dimensional supramolecular network (Fig. 2). One of the taurine N–H groups is not involved in hydrogen bonding.

S2. Experimental

Reagents and solvents used were of commercially available quality. A water solution (10 ml) of 2-aminoethanesulfonic acid (2.0 mmol) and KOH(2.0 mmol) was mixed with water solution (10 ml) of Ni(NO₃)₂.2H₂O (1.0 mmol). 1,4-Bis(imidazol-1-yl)benzene (1 mmol) was added to the mixture, then dropped into a 23 ml Teflon-stainless steel reactor and heated at 423 K for 4 d. After cooling to room temperature, single crystals of the title compound were obtained (yield 30%). Analysis found (%): C37.27, H 4.36, N 16.32; calculated (%): C 37.14, H 4.19, N 16.24, IR (KBr, cm⁻¹): 1031, 1166, 1233 (–SO₃), 3256.6, 3300.8 (N—H).

S3. Refinement

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, N—H = 0.90 Å) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$.

Figure 1

The structure of the title compound with displacement ellipsoids shown at the 30% probability level. Symmetry code for the atoms with the B label: 2-x, -y, 2-z.

Figure 2

The crystal packing viewed down the *a* axis. Hydrogen bonds and short contacts are shown with dashed lines.

catena-Poly[[bis(2-aminoethanesulfonato- $\kappa^2 N$,O)nickel(II)]- μ -1,4-bis(1H-imidazol-1-yl)benzene- $\kappa^2 N^3$: N^3]

F(000) = 536

 $\theta = 3.0-27.5^{\circ}$ $\mu = 1.16 \text{ mm}^{-1}$

T = 295 K

Block, blue

 $D_{\rm x} = 1.615 {\rm Mg} {\rm m}^{-3}$

 $0.15 \times 0.13 \times 0.10 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9767 reflections

Crystal data

[Ni(C₂H₆NO₃S)₂(C₁₂H₁₀N₄)] $M_r = 517.23$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.4559 (15) Å b = 11.494 (2) Å c = 12.481 (3) Å $\beta = 96.19$ (3)° V = 1063.4 (4) Å³ Z = 2

Data collection

Bruker SMART APEX CCD	10967 measured reflections
diffractometer	2426 independent reflections
Radiation source: fine-focus sealed tube	1974 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.056$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$k = -14 \rightarrow 14$
$T_{\min} = 0.841, \ T_{\max} = 0.891$	$l = -16 \rightarrow 16$
D ()	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
<i>S</i> = 1.14	H-atom parameters constrained
2426 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0348P)^2 + 0.7272P]$
142 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.28 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.8455 (3)	-0.0438 (2)	0.85704 (19)	0.0309 (6)	
0.8967	-0.1070	0.8304	0.037*	
0.7365	-0.0661	0.8744	0.037*	
0.8139 (5)	0.0411 (3)	0.7680 (3)	0.0441 (9)	
	x 0.8455 (3) 0.8967 0.7365 0.8139 (5)	x y 0.8455 (3) -0.0438 (2) 0.8967 -0.1070 0.7365 -0.0661 0.8139 (5) 0.0411 (3)	xyz 0.8455 (3) -0.0438 (2) 0.85704 (19) 0.8967 -0.1070 0.8304 0.7365 -0.0661 0.8744 0.8139 (5) 0.0411 (3) 0.7680 (3)	xyz $U_{iso}*/U_{eq}$ 0.8455 (3)-0.0438 (2)0.85704 (19)0.0309 (6)0.8967-0.10700.83040.037*0.7365-0.06610.87440.037*0.8139 (5)0.0411 (3)0.7680 (3)0.0441 (9)

H1C	0.7468	0.1069	0.7916	0.053*
H1D	0.7420	0.0050	0.7076	0.053*
Ni1	1.0000	0.0000	1.0000	0.01926 (15)
S1	1.10651 (11)	0.18961 (6)	0.81832 (6)	0.0343 (2)
N2	0.7881 (3)	0.11099 (19)	1.03850 (19)	0.0270 (5)
01	1.1241 (3)	0.14000 (16)	0.92774 (15)	0.0286 (5)
N3	0.6253 (3)	0.27144 (19)	1.04500 (18)	0.0252 (5)
C7	0.5608 (4)	0.3874 (2)	1.0207 (2)	0.0233 (6)
O3	0.9938 (3)	0.29267 (19)	0.8110 (2)	0.0523 (7)
O2	1.2806 (3)	0.2066 (2)	0.7786 (2)	0.0556 (7)
C3	0.7630 (4)	0.2182 (2)	1.0020 (2)	0.0310 (7)
H3	0.8314	0.2529	0.9527	0.037*
C5	0.6610 (4)	0.0958 (3)	1.1103 (3)	0.0363 (8)
Н5	0.6455	0.0278	1.1486	0.044*
C4	0.5626 (4)	0.1936 (3)	1.1170 (3)	0.0352 (8)
H4	0.4714	0.2061	1.1609	0.042*
C6	0.6539 (5)	0.4610 (3)	0.9619 (3)	0.0551 (11)
H6	0.7584	0.4353	0.9349	0.066*
C2	0.9901 (5)	0.0834 (3)	0.7320 (3)	0.0456 (9)
H2A	0.9659	0.1163	0.6604	0.055*
H2B	1.0690	0.0169	0.7270	0.055*
C8	0.4054 (5)	0.4257 (3)	1.0584 (3)	0.0551 (11)
H8	0.3393	0.3757	1.0977	0.066*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0350 (14)	0.0287 (13)	0.0289 (14)	-0.0018 (11)	0.0032 (11)	-0.0013 (11)
C1	0.051 (2)	0.046 (2)	0.0330 (19)	0.0049 (17)	-0.0058 (16)	0.0065 (15)
Ni1	0.0240 (3)	0.0133 (2)	0.0217 (3)	0.0050 (2)	0.00797 (19)	0.00226 (19)
S 1	0.0476 (5)	0.0250 (4)	0.0340 (4)	0.0060 (3)	0.0211 (4)	0.0105 (3)
N2	0.0303 (13)	0.0198 (12)	0.0326 (14)	0.0079 (10)	0.0114 (11)	0.0040 (10)
01	0.0359 (12)	0.0209 (10)	0.0307 (11)	-0.0019 (9)	0.0104 (9)	0.0061 (8)
N3	0.0255 (13)	0.0181 (12)	0.0339 (13)	0.0077 (10)	0.0114 (11)	0.0028 (10)
C7	0.0245 (14)	0.0172 (13)	0.0289 (15)	0.0076 (11)	0.0061 (12)	0.0001 (11)
O3	0.0687 (18)	0.0327 (13)	0.0596 (16)	0.0189 (12)	0.0253 (13)	0.0237 (11)
O2	0.0602 (17)	0.0518 (16)	0.0625 (17)	-0.0040 (12)	0.0420 (14)	0.0083 (13)
C3	0.0374 (17)	0.0217 (15)	0.0375 (17)	0.0116 (12)	0.0199 (14)	0.0063 (12)
C5	0.0379 (18)	0.0232 (16)	0.051 (2)	0.0074 (13)	0.0217 (16)	0.0092 (14)
C4	0.0314 (17)	0.0276 (16)	0.050 (2)	0.0064 (13)	0.0205 (15)	0.0082 (14)
C6	0.050(2)	0.0357 (18)	0.088 (3)	0.0263 (17)	0.050 (2)	0.0252 (19)
C2	0.070 (3)	0.044 (2)	0.0235 (17)	0.0024 (18)	0.0096 (16)	0.0078 (14)
C8	0.052 (2)	0.0331 (19)	0.089 (3)	0.0228 (17)	0.048 (2)	0.0285 (19)

Geometric parameters (Å, °)

N1-C1	1.479 (4)	N3—C3	1.355 (3)
N1—Ni1	2.079 (2)	N3—C4	1.384 (4)

N1—H1A	0.9000	N3—C7	1.438 (3)
N1—H1B	0.9000	C7—C6	1.359 (4)
C1 $C2$	1 513 (5)	C7 $C8$	1 369 (4)
	0.0700	$C_1 = C_0$	1.507 (4)
CI-HIC	0.9700	С3—Н3	0.9300
C1—H1D	0.9700	C5—C4	1.349 (4)
Nil—O1	2.1070 (18)	С5—Н5	0.9300
Ni1—N2	2.126 (2)	C4—H4	0.9300
81-03	1.450 (2)	С6—Н6	0.9300
S1 02	1.150(2) 1.452(2)	$C_2 H_2 \Lambda$	0.9700
S1_02	1.432(2)		0.9700
51-01	1.4/3 (2)		0.9700
S1—C2	1.790 (4)	$C8-C6^{i}$	1.390 (4)
N2—C3	1.320 (3)	C8—H8	0.9300
N2—C5	1.384 (4)		
CI NI NJI	120.0(2)	O1 $S1$ $C2$	106 43 (13)
	120.9 (2)	01 - 31 - 02	100.43 (13)
CI—NI—HIA	10/.1	C3—N2—C5	105.1 (2)
Nil—Nl—HlA	107.1	C3—N2—Ni1	124.28 (19)
C1—N1—H1B	107.1	C5—N2—Ni1	130.42 (18)
Ni1—N1—H1B	107.1	S1—O1—Ni1	133.89 (13)
H1A—N1—H1B	106.8	C3—N3—C4	106.8 (2)
N1 - C1 - C2	111.2 (3)	C3—N3—C7	125.9 (2)
N1-C1-H1C	109.4	C4—N3—C7	127 4 (2)
$C_2 C_1 H_1 C_2$	109.1	C6 $C7$ $C8$	12,.1(2) 1101(3)
	109.4	$C_{0} = C_{1} = C_{8}$	119.1(3)
NI-CI-HID	109.4	$C_0 - C_1 - N_3$	120.8 (2)
C2—C1—H1D	109.4	C8—C7—N3	120.1 (3)
H1C—C1—H1D	108.0	N2—C3—N3	111.7 (2)
N1 ⁱⁱ —Ni1—N1	180.0	N2—C3—H3	124.1
N1 ⁱⁱ —Ni1—O1 ⁱⁱ	92.64 (9)	N3—C3—H3	124.1
N1—Ni1—O1 ⁱⁱ	87.36 (9)	C4—C5—N2	110.5 (3)
N1 ⁱⁱ —Ni1—O1	87.36 (9)	С4—С5—Н5	124.8
N1N1101	92 64 (9)	N2_C5_H5	124.8
	12.04 ()	$C_{5} = C_{4} = N_{2}^{2}$	124.0
	180.0	C_{3} C_{4} N_{3}	103.9 (3)
NI^{n} NII NII^{n} NII^{n}	89.01 (10)	C5—C4—H4	127.0
N1—Ni1—N2 ⁿ	90.99 (10)	N3—C4—H4	127.0
O1 ⁱⁱ —Ni1—N2 ⁱⁱ	90.57 (8)	$C7-C6-C8^{i}$	120.8 (3)
O1—Ni1—N2 ⁱⁱ	89.43 (8)	С7—С6—Н6	119.6
N1 ⁱⁱ —Ni1—N2	90.99 (10)	C8 ⁱ —C6—H6	119.6
N1—Ni1—N2	89.01 (10)	C1 - C2 - S1	114.9 (2)
01^{ii} Ni1 N2	89.43 (8)	$C1 - C2 - H2\Delta$	108 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.45(0)	C1 - C2 - H2A	108.5
	90.37 (8)	$SI = C_2 = H_2 R$	108.5
$N2^{n}$ —N11—N2	180.000 (1)	С1—С2—Н2В	108.5
O3—S1—O2	113.74 (15)	S1—C2—H2B	108.5
O3—S1—O1	111.58 (13)	H2A—C2—H2B	107.5
O2—S1—O1	112.03 (14)	C7—C8—C6 ⁱ	120.1 (3)
O3—S1—C2	106.22 (17)	С7—С8—Н8	119.9
02 - 81 - C2	106.24 (16)	C6 ⁱ —C8—H8	119.9
	100.21(10)		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*+2, -*y*, -*z*+2.

D—H···A	<i>D</i> —Н	$H \cdots A$	D···· A	D—H···A	
N1—H1a····O3 ⁱⁱⁱ	0.90	2.33	3.148 (3)	151	
С3—Н3…О1	0.93	2.59	3.075 (4)	113	
С3—Н3…О3	0.93	2.29	3.203 (4)	165	
C4—H4 \cdots O2 ^{iv}	0.93	2.37	3.274 (4)	163	
C8—H8····O2 ^{iv}	0.93	2.53	3.359 (4)	149	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (iii) -x+2, y-1/2, -z+3/2; (iv) x-1, -y+1/2, z+1/2.