

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Bis[1-(2-anilino-2-oxoethyl)-3benzyl-1*H*-imidazol-2-yl]palladium(II) methanol disolvate

Hon Man Lee* and Yu-Chuan Chang

National Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058 Correspondence e-mail: leehm@cc.ncue.edu.tw

Received 17 February 2011; accepted 1 March 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.032; *wR* factor = 0.084; data-to-parameter ratio = 19.9.

In the title compound, $[Pd(C_{18}H_{16}N_3O)_2] \cdot 2CH_3OH$, the Pd^{II} atom is located on a crystallographic inversion center. It has a square-planar coordination geometry, with the two bidentate ligands coordinated in a *trans* fashion *via* the carbene C atom and the amido N atoms. The methanol solvent molecules form $O-H \cdot \cdot \cdot O$ hydrogen bonds with the complex. Additional non-classical intermolecular $C-H \cdot \cdot \cdot O$ hydrogen bonds link the complexes into a two-dimensional network parallel to (001).

Related literature

Palladium complexes with multidentate ligands containing *N*heterocyclic carbene and anionic amidate functionalities attract interest because of their effectiveness in catalysing C-C coupling reactions, see: Liao *et al.* (2007); Sakaguchi *et al.* (2008).

V = 3467.8 (7) Å³

Mo $K\alpha$ radiation $\mu = 0.59 \text{ mm}^{-1}$

 $0.39 \times 0.09 \times 0.08 \text{ mm}$

Z = 4

T = 150 K

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{Pd}(\mathrm{C}_{18}\mathrm{H}_{16}\mathrm{N}_{3}\mathrm{O})_{2}]\cdot\mathrm{2CH}_{4}\mathrm{O}\\ M_{r}=751.16\\ \mathrm{Orthorhombic},\ Pbca\\ a=17.822\ (2)\ \mathrm{\mathring{A}}\\ b=9.0616\ (11)\ \mathrm{\mathring{A}}\\ c=21.473\ (3)\ \mathrm{\mathring{A}} \end{array}$

Data collection

Bruker SMART APEXII45827 measured reflectionsdiffractometer4451 independent reflectionsAbsorption correction: multi-scan
(SADABS; Sheldrick, 2003)2695 reflections with $I > 2\sigma$ $T_{min} = 0.804$, $T_{max} = 0.955$ $R_{int} = 0.080$

Refinement

224 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H1···O1 ⁱ	0.92	1.81	2.727 (3)	172
C2−H2···O1 ⁱⁱ	0.95	2.36	3.232 (3)	152
C18−H18···O1	0.95	2.32	2.842 (3)	114

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *DIAMOND* (Brandenburg, 2006).

We are grateful to the National Science Council of Taiwan for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2398).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Liao, C.-Y., Chan, K.-T., Zeng, J.-Y., Hu, C.-H., Tu, C.-Y. & Lee, H. M. (2007). Organometallics, **26**, 1692–1702.

Sakaguchi, S., Yoo, K., O'Neill, J., Lee, J., Stewart, T. & Jung, K. (2008). Angew. Chem. Int. Ed. 47, 9326–9329.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2011). E67, m467 [doi:10.1107/S1600536811007768]

trans-Bis[1-(2-anilino-2-oxoethyl)-3-benzyl-1*H*-imidazol-2-yl]palladium(II) methanol disolvate

Hon Man Lee and Yu-Chuan Chang

S1. Comment

Palladium complexes with multidentate ligands containing *N*-heterocyclic carbene and anionic amidate functionalities attract interest because of their effectiveness in catalyzing C—C coupling reactions (Liao *et al.*, 2007 and Sakaguchi *et al.*, 2008). The crystal structure of the title compound consists of such palladium carbene complex with two solvated methanol molecules incorporated. The structure of a DMSO solvate of the same *trans* compound, $C_{36}H_{32}N_6O_2Pd.4C_2H_6SO$, was reported by us previously (Liao *et al.*, 2007)

The palladium atom adopts square coordination geometry with two *trans* coordinated bidentate ligands. The structure of the *cis* isomer, $C_{36}H_{32}N_6O_2Pd.2CH_3OH$, was also reported earlier (Liao *et al.*, 2007). A comparison of the geometric parameters of the *trans* and *cis* isomers shows that the Pd—C bond distance in the *trans* isomer is longer than that in the *cis* isomer [2.014 (2) *vs*. 1.966 (2) Å]. Contrastingly, the Pd—N bond distance is shorter in the *trans* isomer [2.051 (2) *vs*. 2.087 (1) Å].

S2. Experimental

The title compound was prepared according to the literature procedure (Liao *et al.*, 2007). Colorless crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a methanol solution containing the compound.

S3. Refinement

All the H atoms were positioned geometrically and refined as riding atoms, with C_{aryl} —H = 0.95, $C_{methylene}$ —H = 0.99, and C_{methyl} —H = 0.98 Å while $U_{iso}(H) = 1.2U_{eq}(C_{methine})$, $U_{iso}(H) = 1.2U_{eq}(C_{methylene})$, and $U_{iso}(H) = 1.5 U_{eq}(C_{methyl})$. H1 bound to oxygen was found in the difference Fourier map, not refined and with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

The structure of the title complex, showing 50% displacement ellipsoids. H atoms are excluded for clarity. [Symmetry code: (i) 1 - x, 1 - y, 2 - z. (ii) x, 1/2 - y, 1/2 + z.]

Figure 2

A view of the crystal packing along the c axis, displaying the hydrogen bonds as dashed lines.

trans-Bis[1-(2-anilino-2-oxoethyl)-3-benzyl-1H- imidazol-2-yl]palladium(II) methanol disolvate

Crystal data	
$[Pd(C_{18}H_{16}N_{3}O)_{2}] \cdot 2CH_{4}O$	a = 17.822 (2) Å b = 0.0616 (11) Å
$M_r = /51.16$ Orthorhombic, <i>Pbca</i>	b = 9.0616 (11) A c = 21.473 (3) Å
Hall symbol: -P 2ac 2ab	V = 3467.8 (7) Å ³

Z = 4 F(000) = 1552 $D_x = 1.439 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3616 reflections

Data collection

Refinement

Dura concerion	
Bruker SMART APEXII	45827 measured reflections
diffractometer	4451 independent reflections
Radiation source: fine-focus sealed tube	2695 reflections with $I > 2\sigma$
Graphite monochromator	$R_{\rm int} = 0.080$
ω scans	$\theta_{\rm max} = 28.7^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -21 \rightarrow 23$
(SADABS; Sheldrick, 2003)	$k = -12 \rightarrow 12$
$T_{\min} = 0.804, \ T_{\max} = 0.955$	$l = -28 \rightarrow 28$

 $\theta = 2.7 - 22.4^{\circ}$

 $\mu = 0.59 \text{ mm}^{-1}$

Parallelpiped, white

 $0.39 \times 0.09 \times 0.08$ mm

T = 150 K

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.084$	neighbouring sites
S = 1.00	H-atom parameters constrained
4451 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0273P)^2 + 3.0876P]$
224 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.67 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.46400 (13)	0.2896 (2)	0.99551 (11)	0.0171 (5)	
C2	0.38152 (15)	0.1075 (3)	1.01712 (12)	0.0228 (6)	
H2	0.3418	0.0545	1.0363	0.027*	
C3	0.42383 (14)	0.0630(3)	0.96912 (13)	0.0226 (6)	
H3	0.4198	-0.0284	0.9477	0.027*	
C4	0.52739 (16)	0.1767 (3)	0.90363 (11)	0.0219 (5)	
H4A	0.5339	0.0748	0.8879	0.026*	
H4B	0.5769	0.2124	0.9181	0.026*	
C5	0.49996 (16)	0.2745 (3)	0.85115 (11)	0.0217 (5)	
C6	0.42429 (16)	0.2778 (3)	0.83425 (12)	0.0280 (6)	
H6	0.3890	0.2191	0.8563	0.034*	

C7	0.40060 (18)	0.3664 (3)	0.78546 (13)	0.0350 (7)
H7	0.3491	0.3676	0.7740	0.042*
C8	0.45124 (19)	0.4528 (3)	0.75345 (14)	0.0385 (8)
H8	0.4347	0.5133	0.7200	0.046*
C9	0.5260 (2)	0.4511 (4)	0.77007 (14)	0.0389 (8)
Н9	0.5609	0.5111	0.7482	0.047*
C10	0.55057 (17)	0.3619 (3)	0.81869 (13)	0.0300 (6)
H10	0.6022	0.3608	0.8297	0.036*
C11	0.37610 (15)	0.3458 (3)	1.07994 (11)	0.0211 (6)
H11A	0.4153	0.3697	1.1110	0.025*
H11B	0.3347	0.2947	1.1019	0.025*
C12	0.34608 (14)	0.4900 (3)	1.05140 (11)	0.0181 (5)
C13	0.35913 (13)	0.6589 (2)	0.96519 (11)	0.0165 (5)
C14	0.39053 (15)	0.6620 (3)	0.90513 (12)	0.0222 (6)
H14	0.4311	0.5979	0.8955	0.027*
C15	0.36355 (16)	0.7567 (3)	0.85971 (12)	0.0286 (6)
H15	0.3859	0.7576	0.8195	0.034*
C16	0.30402 (16)	0.8504 (3)	0.87279 (13)	0.0296 (6)
H16	0.2846	0.9140	0.8415	0.036*
C17	0.27323 (16)	0.8499 (3)	0.93189 (13)	0.0279 (6)
H17	0.2327	0.9145	0.9411	0.033*
C18	0.30045 (14)	0.7565 (3)	0.97816 (13)	0.0229 (5)
H18	0.2791	0.7592	1.0187	0.027*
C19	0.2385 (2)	0.1346 (5)	0.70995 (15)	0.0574 (10)
H19A	0.2522	0.2332	0.6950	0.086*
H19B	0.2842	0.0770	0.7175	0.086*
H19C	0.2100	0.1434	0.7488	0.086*
N1	0.40758 (11)	0.2469 (2)	1.03309 (9)	0.0182 (4)
N2	0.47490 (12)	0.1753 (2)	0.95629 (9)	0.0184 (4)
N3	0.38849 (11)	0.5529 (2)	1.00742 (9)	0.0174 (4)
01	0.28388 (10)	0.5348 (2)	1.07073 (8)	0.0254 (4)
Pd1	0.5000	0.5000	1.0000	0.01396 (7)
O2	0.19462 (14)	0.0636 (3)	0.66513 (12)	0.0650 (8)
H1	0.2245	0.0384	0.6316	0.078*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0130 (12)	0.0172 (11)	0.0210 (11)	0.0014 (9)	0.0003 (11)	0.0020 (10)
C2	0.0202 (13)	0.0146 (12)	0.0335 (14)	-0.0036 (11)	0.0002 (11)	0.0052 (10)
C3	0.0199 (14)	0.0127 (11)	0.0351 (15)	-0.0028 (11)	-0.0030 (12)	-0.0006 (11)
C4	0.0214 (13)	0.0206 (12)	0.0236 (13)	0.0043 (11)	0.0040 (11)	-0.0034 (11)
C5	0.0279 (14)	0.0172 (11)	0.0200 (11)	0.0047 (12)	0.0003 (12)	-0.0033 (9)
C6	0.0303 (16)	0.0269 (15)	0.0268 (14)	-0.0002 (12)	-0.0007 (12)	-0.0009 (12)
C7	0.0358 (18)	0.0377 (17)	0.0314 (15)	0.0086 (14)	-0.0057 (13)	0.0001 (13)
C8	0.051 (2)	0.0376 (16)	0.0266 (15)	0.0098 (16)	-0.0003 (14)	0.0056 (13)
C9	0.049 (2)	0.0359 (16)	0.0319 (16)	0.0023 (15)	0.0117 (15)	0.0086 (14)
C10	0.0300 (16)	0.0317 (15)	0.0282 (14)	-0.0001 (13)	0.0055 (12)	0.0008 (12)

supporting information

C11	0.0200 (14)	0.0221 (13)	0.0212 (12)	0.0009 (11)	0.0073 (11)	0.0041 (10)
C12	0.0157 (12)	0.0183 (12)	0.0203 (11)	-0.0023 (11)	-0.0004 (9)	-0.0031 (11)
C13	0.0125 (12)	0.0133 (11)	0.0237 (13)	-0.0028 (9)	-0.0009 (10)	-0.0022 (10)
C14	0.0209 (14)	0.0197 (13)	0.0258 (13)	0.0026 (11)	-0.0010 (11)	-0.0041 (11)
C15	0.0343 (17)	0.0304 (15)	0.0212 (13)	0.0010 (13)	-0.0057 (12)	-0.0004 (11)
C16	0.0339 (17)	0.0219 (14)	0.0331 (15)	0.0031 (12)	-0.0119 (13)	0.0043 (12)
C17	0.0205 (15)	0.0213 (13)	0.0418 (16)	0.0038 (11)	-0.0023 (12)	0.0013 (12)
C18	0.0191 (13)	0.0178 (12)	0.0317 (13)	0.0013 (11)	0.0025 (11)	0.0006 (11)
C19	0.053 (2)	0.082 (3)	0.0367 (18)	-0.011 (2)	0.0133 (17)	-0.0195 (19)
N1	0.0152 (10)	0.0156 (10)	0.0238 (11)	-0.0014 (9)	0.0028 (9)	0.0021 (8)
N2	0.0186 (11)	0.0153 (10)	0.0213 (10)	-0.0001 (8)	0.0011 (9)	0.0023 (9)
N3	0.0112 (10)	0.0166 (8)	0.0245 (11)	-0.0006 (8)	0.0019 (8)	0.0005 (8)
01	0.0169 (10)	0.0312 (10)	0.0279 (9)	0.0047 (8)	0.0069 (8)	0.0044 (8)
Pd1	0.01066 (11)	0.01262 (11)	0.01860 (11)	-0.00022 (11)	0.00200 (11)	0.00015 (11)
O2	0.0374 (15)	0.104 (2)	0.0534 (15)	-0.0128 (15)	0.0180 (12)	-0.0321 (15)

Geometric parameters (Å, °)

C1—N1	1.346 (3)	C11—H11A	0.9900	
C1—N2	1.349 (3)	C11—H11B	0.9900	
C1—Pd1	2.014 (2)	C12—O1	1.252 (3)	
С2—С3	1.339 (4)	C12—N3	1.337 (3)	
C2—N1	1.388 (3)	C13—C18	1.398 (3)	
С2—Н2	0.9500	C13—C14	1.406 (3)	
C3—N2	1.393 (3)	C13—N3	1.421 (3)	
С3—Н3	0.9500	C14—C15	1.385 (4)	
C4—N2	1.468 (3)	C14—H14	0.9500	
C4—C5	1.515 (3)	C15—C16	1.387 (4)	
C4—H4A	0.9900	C15—H15	0.9500	
C4—H4B	0.9900	C16—C17	1.383 (4)	
C5—C10	1.388 (4)	C16—H16	0.9500	
C5—C6	1.397 (4)	C17—C18	1.392 (4)	
C6—C7	1.386 (4)	C17—H17	0.9500	
С6—Н6	0.9500	C18—H18	0.9500	
С7—С8	1.378 (4)	C19—O2	1.397 (4)	
С7—Н7	0.9500	C19—H19A	0.9800	
С8—С9	1.379 (5)	C19—H19B	0.9800	
С8—Н8	0.9500	C19—H19C	0.9800	
C9—C10	1.391 (4)	N3—Pd1	2.050 (2)	
С9—Н9	0.9500	Pd1—C1 ⁱ	2.014 (2)	
C10—H10	0.9500	Pd1—N3 ⁱ	2.051 (2)	
C11—N1	1.460 (3)	O2—H1	0.9244	
C11—C12	1.540 (3)			
N1—C1—N2	105.1 (2)	N3—C12—C11	116.5 (2)	
N1—C1—Pd1	118.80 (17)	C18—C13—C14	117.9 (2)	
N2-C1-Pd1	135.30 (18)	C18—C13—N3	125.2 (2)	
C3—C2—N1	106.0 (2)	C14—C13—N3	116.9 (2)	

С3—С2—Н2	127.0	C15—C14—C13	121.3 (2)
N1—C2—H2	127.0	C15—C14—H14	119.3
C2—C3—N2	107.5 (2)	C13—C14—H14	119.3
С2—С3—Н3	126.3	C14—C15—C16	120.1 (3)
N2—C3—H3	126.3	C14—C15—H15	119.9
N2—C4—C5	111.9 (2)	С16—С15—Н15	119.9
N2-C4-H4A	109.2	C17—C16—C15	119.2 (3)
C5—C4—H4A	109.2	C17—C16—H16	120.4
N2-C4-H4B	109.2	C_{15} C_{16} H_{16}	120.1
$C_5 - C_4 - H_{4B}$	109.2	C_{16} C_{17} C_{18}	120.4 121.2(3)
	107.0	$C_{16} = C_{17} = C_{18}$	121.2(3)
	107.9	$C_{10} = C_{17} = H_{17}$	119.4
$C_{10} = C_{5} = C_{0}$	119.0(2)	$C_{10} - C_{17} - C_{12}$	119.4
$C_{10} = C_{3} = C_{4}$	119.9 (3)	C17 - C18 - U18	120.2 (5)
$C_{0} - C_{3} - C_{4}$	121.1(2)	C12_C18_H18	119.9
C/C6C5	120.2 (3)	C13-C18-H18	119.9
С/—С6—Н6	119.9	02—C19—H19A	109.5
С5—С6—Н6	119.9	O2—C19—H19B	109.5
C8—C7—C6	120.4 (3)	H19A—C19—H19B	109.5
С8—С7—Н7	119.8	O2—C19—H19C	109.5
С6—С7—Н7	119.8	H19A—C19—H19C	109.5
C7—C8—C9	119.8 (3)	H19B—C19—H19C	109.5
С7—С8—Н8	120.1	C1—N1—C2	111.3 (2)
С9—С8—Н8	120.1	C1—N1—C11	121.6 (2)
C8—C9—C10	120.3 (3)	C2—N1—C11	126.9 (2)
С8—С9—Н9	119.8	C1—N2—C3	110.1 (2)
С10—С9—Н9	119.8	C1—N2—C4	124.5 (2)
C5—C10—C9	120.2 (3)	C3—N2—C4	125.1 (2)
C5-C10-H10	119.9	C12—N3—C13	122.0 (2)
C9—C10—H10	119.9	C12 - N3 - Pd1	120.21 (16)
N1-C11-C12	112 36 (19)	C13 - N3 - Pd1	117 74 (15)
N1—C11—H11A	109.1	$C1^{i}$ Pd1 $-C1$	179 999 (1)
C12— $C11$ — $H11A$	109.1	$C1^{i}$ Pd1 N3	94.81 (9)
N1 C11 H11P	100.1	C1 Pd1 N2	85 10 (0)
$N_{1} = C_{11} = H_{11}$	109.1	$C_1 = 1 u_1 = N_2$	85.19 (9)
	109.1	C1 - Ful - N3	03.19(9)
HIIA—CII—HIIB	107.9	$CI = POI = NS^{1}$	94.81 (9)
01 - C12 - N3	120.0 (2)	$N_3 - P_0 I - N_3$	1/9.999 (1)
01	116.8 (2)	С19—02—Н1	109.1
N1—C2—C3—N2	-0.1 (3)	C12—C11—N1—C1	57.6 (3)
N2-C4-C5-C10	140.4 (2)	C12—C11—N1—C2	-116.4 (3)
N2—C4—C5—C6	-40.1 (3)	N1—C1—N2—C3	1.2 (3)
C10—C5—C6—C7	0.5 (4)	Pd1—C1—N2—C3	-168.1 (2)
C4—C5—C6—C7	-179.0 (2)	N1—C1—N2—C4	175.0 (2)
C5—C6—C7—C8	-0.4 (4)	Pd1-C1-N2-C4	5.7 (4)
C6—C7—C8—C9	0.0 (5)	C2-C3-N2-C1	-0.7 (3)
C7—C8—C9—C10	0.4 (5)	C2—C3—N2—C4	-174.4 (2)
C6—C5—C10—C9	-0.1 (4)	C5-C4-N2-C1	-71.5 (3)
C4—C5—C10—C9	179.4 (2)	C5—C4—N2—C3	101.4 (3)
	× /		

C8—C9—C10—C5	-0.4 (4)	O1—C12—N3—C13	-16.9 (4)
N1-C11-C12-O1	136.3 (2)	C11—C12—N3—C13	161.5 (2)
N1-C11-C12-N3	-42.3 (3)	O1—C12—N3—Pd1	162.1 (2)
C18—C13—C14—C15	-1.1 (4)	C11—C12—N3—Pd1	-19.5 (3)
N3—C13—C14—C15	177.1 (2)	C18—C13—N3—C12	30.0 (4)
C13—C14—C15—C16	-0.5 (4)	C14—C13—N3—C12	-148.0 (2)
C14—C15—C16—C17	1.3 (4)	C18—C13—N3—Pd1	-149.0 (2)
C15—C16—C17—C18	-0.5 (4)	C14—C13—N3—Pd1	32.9 (3)
C16—C17—C18—C13	-1.1 (4)	N1—C1—Pd1—N3	-40.62 (19)
C14—C13—C18—C17	1.9 (4)	N2-C1-Pd1-N3	127.6 (3)
N3—C13—C18—C17	-176.1 (2)	N1—C1—Pd1—N3 ⁱ	139.37 (19)
N2-C1-N1-C2	-1.3 (3)	N2-C1-Pd1-N3 ⁱ	-52.4 (3)
Pd1-C1-N1-C2	170.12 (17)	$C12$ — $N3$ — $Pd1$ — $C1^i$	-126.10 (19)
N2-C1-N1-C11	-176.1 (2)	$C13$ — $N3$ — $Pd1$ — $C1^{i}$	52.97 (18)
Pd1-C1-N1-C11	-4.7 (3)	C12—N3—Pd1—C1	53.90 (19)
C3—C2—N1—C1	0.9 (3)	C13—N3—Pd1—C1	-127.03 (18)
C3—C2—N1—C11	175.4 (2)		

Symmetry code: (i) -x+1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
O2—H1···O1 ⁱⁱ	0.92	1.81	2.727 (3)	172	
С2—Н2…О1 ^{ііі}	0.95	2.36	3.232 (3)	152	
C18—H18…O1	0.95	2.32	2.842 (3)	114	

Symmetry codes: (ii) *x*, -*y*+1/2, *z*-1/2; (iii) -*x*+1/2, *y*-1/2, *z*.