

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cs₂UPd₃Se₆

George N. Oh and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA Correspondence e-mail: ibers@chem.northwestern.edu

Received 8 December 2010; accepted 22 December 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (U–Se) = 0.001 Å; R factor = 0.019; wR factor = 0.055; data-to-parameter ratio = 25.3.

Dicaesium uranium(IV) tripalladium(II) hexaselenide, $Cs_2UPd_3Se_6$, crystallizes in the space group *Fmmm* in the $Ba_2NaCu_3O_6$ structure type. The asymmetric unit comprises the following atoms with site symmetries as shown: U1 (*mm*2), Cs1 (222), Cs2 (*m*2*m*), Pd1 (*.m.*), Pd2 (2*mm*), Se1 (*m.*.), and Se2 (1). This layered structure contains six edge-sharing square-planar [PdSe₄] units that form a hexagon. These, in turn, edge-share with [USe₆] trigonal–prismatic units, forming an extended layer parallel to (010). The layers are stacked along [010]. They are staggered, and are separated by the Cs atoms. The Cs atoms are either coordinated in a square antiprism of Se atoms or are ten-coordinate, with one square face and the opposite face hexagonal.

Related literature

Ba₂NaCu₃O₆ was reported by Tams & Müller-Buschbaum (1992). For related structures, see: Daoudi & Noël (1989); Bronger *et al.* (1991); Yao & Ibers (2008); Huang *et al.* (2001); Klepp *et al.* (1996). For synthetic details, see: Bugaris & Ibers (2008); Haneveld & Jellinek (1969). For computational details, see: Gelato & Parthé (1987); Le Page (1988).

Experimental

b = 15.5046 (8) Å
c = 17.5503 (8) Å
V = 2749.2 (2) Å ³
Z = 8

Mo $K\alpha$ radiation $\mu = 36.67 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: numerical (face indexed using SADABS; Sheldrick, 2008b) $T_{\rm min} = 0.049, T_{\rm max} = 0.689$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.055$ S = 1.46963 reflections $\begin{array}{l} T=100 \ \mathrm{K} \\ 0.21 \ \times \ 0.17 \ \times \ 0.01 \ \mathrm{mm} \end{array}$

8099 measured reflections 963 independent reflections 921 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$

38 parameters $\Delta \rho_{\text{max}} = 1.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -2.21 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008*a*); molecular graphics: *CrystalMaker* (Palmer, 2009); software used to prepare material for publication: *SHELXL97*.

The research was kindly supported by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Divison of Materials Science and Engineering grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the International Institute of Nanotechnology (IIN).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2437).

References

Bronger, W., Rennau, R. & Schmitz, D. (1991). Z. Anorg. Allg. Chem. 597, 27–32.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bugaris, D. E. & Ibers, J. A. (2008). Acta Cryst. E64, i55-i56.
- Daoudi, A. & Noël, H. (1989). J. Less-Common Met. 153, 293-298.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Haneveld, A. J. K. & Jellinek, F. (1969). J. Less-Common Met. 18, 123-129.
- Huang, F. Q., Mitchell, K. & Ibers, J. A. (2001). Inorg. Chem. 40, 5123-5126.

Klepp, K. O., Sparlinek, W. & Boller, H. (1996). J. Alloys Compd, 238, 1–5. Le Page, Y. (1988). J. Appl. Cryst. 21, 983–984.

- Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.
- Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.
- Tams, G. & Müller-Buschbaum, H. (1992). Z. Anorg. Allg. Chem. 617, 19-22.
- Yao, J. & Ibers, J. A. (2008). Z. Anorg. Allg. Chem. 634, 1645–1647.

supporting information

Acta Cryst. (2011). E67, i9 [doi:10.1107/S1600536810053924]

$Cs_2UPd_3Se_6\\$

George N. Oh and James A. Ibers

S1. Comment

As part of continuing efforts to synthesize new uranium chalcogenide compounds, $Cs_2UPd_3Se_6$ was synthesized. It crystallizes in the orthorhombic space group *Fmmm* in the Ba₂NaCu₃O₆ structure type (Tams & Müller-Buschbaum, 1992). The asymmetric unit comprises the following atoms with site symmetries as shown: U1 (*mm2*); Cs1 (222); Cs2 (*m2m*); Pd1 (*.m.*); Pd2 (2*mm*); Se1 (*m.*.); and Se2 (1) (Fig. 1). This layered structure (Fig. 2) contains six edge-sharing square-planar [PdSe₄] units that form a hexagon. These, in turn, edge-share with [USe₆] trigonal-prism units to form an extended layer parallel to (010). The layers are stacked along [010] and are separated by Cs atoms. The Cs atoms are either coordinated in a square antiprism of Se atoms or are ten-coordinate, with one square face and the opposite face hexagonal (Fig. 3).

The shortest Se–Se distance is 3.3344 (9) Å, far longer than a single bond. Thus, formal oxidation states may be assigned as follows: Cs: +1; U: +4; Pd: +2; Se: -2. Pd^{2+} typically has a square-planar coordination. In contrast, trigonal-prismatic coordination is unusual for U⁴⁺, though it is known, for example in Ba₄Cr₂US₉ (Yao & Ibers, 2008).

U–Se distances are 2.8353 (5) Å and 2.8704 (7) Å, similar to those in other compounds containing six-coordinate U⁴⁺ atoms, such as in CsUCuSe₃ (Huang *et al.*, 2001), where the U–Se distances range from 2.8265 (6) Å to 2.8611 (8) Å. Pd–Se distances are typical for square-planar Pd²⁺ atoms, ranging from 2.4516 (5) Å to 2.4736 (6) Å, similar to those of 2.453 (6) Å to 2.456 (7) Å in Cs₂Pd₃Se₄ (Bronger *et al.*, 1991) and those of 2.476 (1) Å and 2.479 (1) Å found in UPdSe₃ (Daoudi & Noël, 1989). The Cs1–Se distances, which are 3.4653 (5) Å and 3.4682 (5) Å, are shorter than are typical for eight-coordinate Cs. Typical are those in CsUCuSe₃ which range from 3.5825 (16) Å to 3.8246 (11) Å. On the other hand, the ten-coordinate Cs2—Se distances are typical. They range from 3.7847 (7) Å to 3.9511 (7) Å, to be compared to 3.660 (3) Å to 3.961 (7) Å in CsFe₂Se₃ (Klepp *et al.*, 1996).

S2. Experimental

Black hexagonal plates of $Cs_2UPd_3Se_6$ were synthesized by the combination of U (0.063 mmol), Pd (Johnson Matthey 99.94%, 0.063 mmol), Se (Cerac 99.999%, 0.253 mmol), and 125 mg CsCl (Aldrich 99.9%, 0.743 mmol) as a flux. U filings (Oak Ridge National Laboratory) were powdered by hydridization and subsequent decomposition under heat and vacuum (Bugaris & Ibers, 2008), in a modification of a previous literature method (Haneveld & Jellinek, 1969). The mixture was loaded into a carbon-coated fused-silica tube in an Ar filled glove box and then sealed under 10⁻⁴ Torr vacuum. The reaction was heated to 1273 K in 48 h, held there for 6 h, cooled to 1223 K in 12 h, held there for 24 h, then cooled to 298 K at 3.2 K/h.

S3. Refinement

The structure was standardized by means of the program *STRUCTURE TIDY* (Gelato & Parthé, 1987). The highest peak in the difference Fourier map of 1.3 (3) $e/Å^3$ is 1.24 Å from atom U1 and the deepest hole of -2.2 (3) $e/Å^3$ is 0.84Å from

atom U1. The program ADDSYM (Le Page, 1988) was used to confirm that no symmetry was missed.

Figure 1

Asymmetric unit of Cs₂UPd₃Se₆ (95% probability ellipsoids).

Figure 2

Structure of Cs₂UPd₃Se₆viewed down the *b*-axis (left) and the *c*-axis (right).

Figure 3

Coordination environment of atom Cs2.

Dicaesium uranium(IV) tripalladium(II) hexaselenide

Crystal data

Cs₂UPd₃Se₆ $M_r = 1296.81$ Orthorhombic, *Fmmm* Hall symbol: -F 2 2 a = 10.1034 (5) Å b = 15.5046 (8) Å c = 17.5503 (8) Å V = 2749.2 (2) Å³ Z = 8

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: numerical (face indexed using *SADABS*; Sheldrick, 2008*b*) $T_{\min} = 0.049, T_{\max} = 0.689$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.055$ S = 1.46 F(000) = 4352 $D_x = 6.266 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5598 reflections $\theta = 2.3-28.2^{\circ}$ $\mu = 36.67 \text{ mm}^{-1}$ T = 100 KHexagonal plate, black $0.21 \times 0.17 \times 0.01 \text{ mm}$

8099 measured reflections 963 independent reflections 921 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 28.6^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -13 \rightarrow 13$ $k = -20 \rightarrow 20$ $l = -23 \rightarrow 23$

963 reflections38 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} < 0.001$
map	$\Delta \rho_{\rm max} = 1.34 \text{ e } \text{\AA}^{-3}$
$[1.00000 + 0.00000\exp(0.00(\sin\theta/\lambda)^2)] / [\sigma^2(F_o^2)]$	$\Delta \rho_{\rm min} = -2.21 \text{ e } \text{\AA}^{-3}$
$+ 0.0000 + 0.0000*P + (0.0241P)^{2} +$	Extinction correction: SHELXL97 (Sheldrick,
$0.0000\sin\theta/\lambda$]	2008 <i>a</i>), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
where $P = 1.00000 F_0^2 + 0.00000 F_c^2$	Extinction coefficient: 0.000083 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
U1	0.0000	0.0000	0.166826 (18)	0.00859 (12)	
Cs1	0.2500	0.2500	0.2500	0.00986 (14)	
Cs2	0.0000	0.30128 (4)	0.0000	0.01609 (16)	
Pd1	0.33694 (4)	0.0000	0.15828 (3)	0.00866 (14)	
Pd2	0.17351 (6)	0.0000	0.0000	0.00843 (16)	
Se1	0.0000	0.10753 (4)	0.29996 (3)	0.00912 (15)	
Se2	0.19159 (4)	0.11000 (3)	0.09981 (2)	0.00908 (13)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
U1	0.00523 (18)	0.0108 (2)	0.00978 (19)	0.000	0.000	0.000
Cs1	0.0078 (2)	0.0105 (3)	0.0113 (3)	0.000	0.000	0.000
Cs2	0.0104 (3)	0.0233 (4)	0.0146 (3)	0.000	0.000	0.000
Pd1	0.0049 (2)	0.0109 (3)	0.0102 (3)	0.000	-0.00063 (15)	0.000
Pd2	0.0067 (3)	0.0106 (4)	0.0080 (3)	0.000	0.000	0.000
Se1	0.0058 (3)	0.0107 (3)	0.0109 (3)	0.000	0.000	0.0004 (2)
Se2	0.0065 (2)	0.0105 (3)	0.0103 (2)	-0.00038 (17)	-0.00027 (15)	-0.00014 (16)

Geometric parameters (Å, °)

	2 9252 (5)	C O C Orvi	2 0 2 0 1 (5)
UI—Se2	2.8353 (5)	Cs2—Se2 ^{AVI}	3.8301 (5)
U1—Se2 ⁱ	2.8353 (5)	Cs2—Se2	3.9511 (7)
U1—Se2 ⁱⁱ	2.8353 (5)	Cs2—Se2 ^{xvii}	3.9511 (7)
U1—Se2 ⁱⁱⁱ	2.8353 (5)	Cs2—Se2 ⁱⁱ	3.9511 (7)
U1—Se1 ⁱ	2.8704 (7)	Cs2—Se2 ^{xviii}	3.9511 (7)
U1—Se1	2.8704 (7)	Cs2—Pd1 ^{ix}	4.4635 (6)
U1—Pd1 ⁱ	3.4076 (4)	Cs2—Pd1 ^{xix}	4.4635 (6)
U1—Pd1	3.4076 (4)	Pd1—Se1 ^{xi}	2.4557 (6)
U1—Pd2 ^{iv}	3.4125 (4)	Pd1—Se1 ^v	2.4557 (6)
U1—Pd2	3.4125 (4)	Pd1—Se2 ⁱⁱⁱ	2.4736 (6)
U1—Pd1 ^v	3.4836 (6)	Pd1—Se2	2.4736 (6)
U1—Pd1 ^{vi}	3.4836 (6)	Pd1—Pd2	3.2316 (6)
Cs1—Se2 ^{vii}	3.4653 (5)	Pd1—U1 ^v	3.4836 (6)
Cs1—Se2 ^{viii}	3.4653 (5)	Pd1—Cs1 ^v	4.2880 (3)
Cs1—Se2 ^{ix}	3.4653 (5)	Pd1—Cs2 ^{xx}	4.4636 (6)
Cs1—Se2	3.4653 (5)	Pd1—Cs2 ^{xv}	4.4636 (6)
Cs1—Se1	3.4682 (5)	Pd2—Se2	2.4516 (5)
Cs1—Se1 ^{ix}	3.4682 (5)	Pd2—Se2 ^{xxi}	2.4516 (5)

Cs1—Se1 ^x	3.4682 (5)	Pd2—Se2 ⁱⁱⁱ	2.4516 (5)
Cs1—Se1 ^{xi}	3.4682 (5)	Pd2—Se2 ^{xviii}	2.4516 (5)
Cs1—Pd1	4.2880 (3)	Pd2—Pd1 ^{xviii}	3.2316 (6)
Cs1—Pd1 ^{xii}	4.2881 (3)	Pd2—U1 ^{iv}	3.4125 (4)
Cs1—Pd1 ^v	4.2881 (3)	Pd2—Cs2 ^{xv}	4.5137 (6)
Cs1—Pd1 ^{ix}	4.2881 (3)	Pd2—Cs2 ^{xx}	4.5137 (6)
Cs2—Se1 ^x	3.7847 (7)	Se1—Pd1 ^{vi}	2.4557 (6)
Cs2—Se1 ^{xiii}	3.7847 (7)	Se1—Pd1 ^v	2.4557 (6)
Cs2—Se2 ^{ix}	3.8301 (5)	Se1—Cs1 ^x	3.4682 (5)
Cs2—Se2 ^{xiv}	3.8301 (5)	Se1—Cs2 ^x	3.7847 (7)
$Cs2$ — $Se2^{xv}$	3.8301 (5)	Se2—Cs2 ^{xv}	3.8301 (5)
Se2—U1—Se2 ⁱ	130.98 (2)	Se2 ^{xv} —Cs2—Se2 ⁱⁱ	150.563 (16)
Se2—U1—Se2 ⁱⁱ	86.111 (19)	Se2 ^{xvi} —Cs2—Se2 ⁱⁱ	70.624 (13)
Se2 ⁱ —U1—Se2 ⁱⁱ	73.96 (2)	Se2—Cs2—Se2 ⁱⁱ	58.670 (15)
Se2—U1—Se2 ⁱⁱⁱ	73.96 (2)	Se2 ^{xvii} —Cs2—Se2 ⁱⁱ	52.634 (14)
Se2 ⁱ —U1—Se2 ⁱⁱⁱ	86.111 (19)	Se1 ^x —Cs2—Se2 ^{xviii}	133.761 (13)
Se2 ⁱⁱ —U1—Se2 ⁱⁱⁱ	130.98 (2)	$Se1^{xiii}$ —Cs2—Se2 ^{xviii}	82.482 (12)
Se2—U1—Se1 i	133,399 (11)	Se2 ^{ix} —Cs2—Se2 ^{xviii}	94.230 (11)
$Se2^{i}$ U1— $Se1^{i}$	89.330 (14)	Se2 ^{xiv} —Cs2—Se2 ^{xviii}	117.735 (13)
$Se2^{ii}$ —U1—Se1 ⁱ	133.398 (11)	$Se2^{xv}$ —Cs2—Se2 xviii	70.624 (13)
Se2 ⁱⁱⁱ —U1—Se1 ⁱ	89.330 (14)	Se2 ^{xvi} —Cs2—Se2 ^{xviii}	150.563 (16)
Se2—U1—Se1	89.331 (14)	Se2—Cs2—Se2 ^{xviii}	52.633 (14)
Se2 ⁱ —U1—Se1	133,398 (11)	$Se2^{xvii}$ Cs2 Se2 ^{xviii}	58.670 (15)
$Se2^{ii}$ —U1—Se1	89.330 (14)	Se2 ⁱⁱ —Cs2—Se2 ^{xviii}	82.711 (18)
Se2 ⁱⁱⁱ —U1—Se1	133.398 (11)	$Se1^{x}$ —Cs2—Pd1 ^{ix}	33.369 (10)
Sel ⁱ —U1—Sel	71.02 (3)	$Se1^{xiii}$ —Cs2—Pd1 ^{ix}	108.628 (18)
Se2—U1—Pd1 ⁱ	131589(12)	Se 2^{ix} —Cs 2 —Pd 1^{ix}	33 614 (9)
$Se2^{i}$ U1 Pd1 ⁱ	45.548 (10)	$Se2^{xiv}$ —Cs2—Pd1 ^{ix}	109.694 (16)
Se 2^{ii} —U1—Pd 1^{i}	45.548 (10)	$Se2^{xv}$ —Cs2—Pd1 ^{ix}	74.720 (12)
Se 2^{iii} —U1—Pd1 ⁱ	131 589 (12)	Se 2^{xvi} —Cs 2 —Pd 1^{ix}	76 571 (12)
Sel ⁱ —U1—Pd1 ⁱ	92.053 (8)	Se2—Cs2—Pd1 ix	93.521 (9)
Se1—U1—Pd1 ⁱ	92,053 (8)	Se 2^{xvii} Cs $2^{-P}d1^{ix}$	167 125 (9)
Se2—U1—Pd1	45 549 (10)	Se2 ⁱⁱ —Cs2—Pd1 ^{ix}	115,027,(9)
$Se2^{i}$ U1—Pd1	131 590 (12)	Se2 ^{$xviii$} —Cs2—Pd1 ^{ix}	127 822 (8)
$Se2^{ii}$ —U1—Pd1	131 590 (12)	Sel ^x —Cs2—Pd1 ^{xix}	33369(10)
Se ² ⁱⁱⁱ —U1—Pd1	45 549 (10)	Sel ^{xiii} —Cs2—Pd1 ^{xix}	108 628 (18)
Sel ⁱ —U1—Pd1	92.053 (8)	Se 2^{ix} —Cs 2 —Pd 1^{xix}	76 571 (12)
Sel—U1—Pd1	92.052 (8)	Se2 ^{xiv} —Cs2—Pd1 ^{xix}	74 720 (12)
$Pd1^{i}$ —U1—Pd1	174.96 (2)	Se2 ^{xv} —Cs2—Pd1 ^{xix}	109.694 (16)
Se2—U1—Pd2 iv	89 701 (13)	Se2 ^{xvi} —Cs2—Pd1 ^{xix}	33 614 (9)
Se2 ⁱ —III—Pd2 ^{iv}	45 040 (11)	Se2—Cs2—Pd1 ^{xix}	115 028 (9)
Se 2^{ii} —U1—Pd 2^{iv}	45.040 (11)	Se 2^{xvii} —Cs 2 —Pd 1^{xix}	127.822 (8)
Se2 ⁱⁱⁱ —U1—Pd2 ^{iv}	89.702 (13)	$Se2^{ii}$ — $Cs2$ — $Pd1^{xix}$	93.520 (9)
$Se1^{i}$ —U1—Pd2 ^{iv}	134.300 (11)	Se^{xviii} Cs^2 Pd^{1xix}	167.125 (9)
Se1—U1—Pd2 ^{iv}	134.300 (11)	$Pd1^{ix}$ —Cs2—Pd1 ^{xix}	43.318 (11)
$Pd1^{i}$ — $U1$ — $Pd2^{iv}$	56.567 (13)	$se1^{xi}$ Pd1 Se1 ^v	85.52 (3)
Pd1—U1—Pd2 ^{iv}	118.389 (14)	Se1 ^{xi} —Pd1—Se2 ⁱⁱⁱ	171.97 (3)

Se2—U1—Pd2	45.038 (11)	Se1 ^v —Pd1—Se2 ⁱⁱⁱ	93.095 (17)
Se2 ⁱ —U1—Pd2	89.702 (13)	Se1 ^{xi} —Pd1—Se2	93.096 (18)
Se2 ⁱⁱ —U1—Pd2	89.702 (13)	Se1 ^v —Pd1—Se2	171.96 (3)
Se2 ⁱⁱⁱ —U1—Pd2	45.040 (11)	Se2 ⁱⁱⁱ —Pd1—Se2	87.18 (3)
Sel ⁱ —U1—Pd2	134.300 (11)	$Se1^{xi}$ —Pd1—Pd2	126.819 (19)
Se1—U1—Pd2	134.300 (11)	Se1 ^v —Pd1—Pd2	126.82 (2)
Pd1 ⁱ —U1—Pd2	118.388 (14)	Se2 ⁱⁱⁱ —Pd1—Pd2	48.701 (14)
Pd1—U1—Pd2	56.568 (13)	Se2—Pd1—Pd2	48.699 (14)
$Pd2^{iv}$ —U1—Pd2	61.821 (18)	$Se1^{xi}$ —Pd1—U1	131.077 (15)
Se2—U1—Pd1 ^v	92.446 (11)	Se1 ^v —Pd1—U1	131.077 (15)
$Se2^{i}$ —U1—Pd1 ^v	133.501 (12)	Se2 ⁱⁱⁱ —Pd1—U1	54.909 (13)
$Se2^{ii}$ —U1—Pd1 ^v	133.501 (12)	Se2—Pd1—U1	54.909 (13)
$Se2^{iii}$ —U1—Pd1 ^v	92.445 (11)	Pd2—Pd1—U1	61.793 (13)
$Se1^{i}$ —U1—Pd1 ^v	44.171 (11)	Se1 ^{xi} —Pd1—U1 ^v	54.538 (17)
Se1—U1—Pd1 ^v	44.172 (11)	Se1 ^v —Pd1—U1 ^v	54.538 (17)
$Pd1^{i}$ U1 $- Pd1^{v}$	120.746 (11)	$Se2^{iii}$ —Pd1—U1 ^v	130.265 (15)
$Pd1-U1-Pd1^{v}$	64.299 (14)	Se2—Pd1—U1 v	130.266 (15)
$Pd2^{iv}$ U1 $Pd1^{v}$	177.312 (13)	$Pd2$ — $Pd1$ — $U1^{v}$	177.495 (17)
$Pd2-U1-Pd1^{v}$	120.866 (11)	$U1$ —Pd1— $U1^{v}$	115.701 (14)
Se2—U1—Pd1 ^{vi}	133.502 (12)	$Se1^{xi}$ Pd1 Cs1	53.965 (11)
Se2 ⁱ —U1—Pd1 ^{vi}	92.445 (11)	$Sel^v - Pd1 - Cs1$	129.73 (2)
Se 2^{ii} —U1—Pd 1^{vi}	92.445 (11)	$Se2^{iii}$ —Pd1—Cs1	131,100(17)
Se2 ⁱⁱⁱ —U1—Pd1 ^{vi}	133.501 (12)	Se2—Pd1—Cs1	53.905 (11)
Sel ⁱ —U1—Pd1 ^{vi}	44.171 (11)	Pd2— $Pd1$ — $Cs1$	102.592 (7)
Se1—U1—Pd1 ^{vi}	44.172 (11)	U1—Pd1—Cs1	77.222 (7)
$Pd1^{i}$ U1 $Pd1^{vi}$	64.300 (14)	$U1^{v}$ —Pd1—Cs1	76.474 (7)
$Pd1-U1-Pd1^{vi}$	120.745 (11)	$Se1^{xi}$ Pd1 Cs1 ^v	129.73 (2)
$Pd2^{iv}$ _U1_ $Pd1^{vi}$	120.866 (11)	$Se1^v - Pd1 - Cs1^v$	53.965 (11)
$Pd2-U1-Pd1^{vi}$	177.312 (13)	$Se2^{iii}$ —Pd1—Cs1 ^v	53.904 (11)
$Pd1^{v}$ — $U1$ — $Pd1^{vi}$	56.446 (15)	Se2—Pd1—Cs1 v	131.099 (17)
Se2 ^{vii} —Cs1—Se2 ^{viii}	80.953 (16)	$Pd2 - Pd1 - Cs1^{v}$	102.592 (7)
Se2 ^{vii} —Cs1—Se2 ^{ix}	102.430 (16)	$U1$ — $Pd1$ — $Cs1^{v}$	77.222 (7)
Se2 ^{viii} —Cs1—Se2 ^{ix}	160.389 (13)	$U1^{v}$ —Pd1—Cs1 ^v	76.475 (7)
Se2 ^{vii} —Cs1—Se2	160.389 (13)	$Cs1$ —Pd1— $Cs1^{v}$	129.363 (12)
Se2 ^{viii} —Cs1—Se2	102.430 (16)	$Se1^{xi}$ Pd1—Cs2 ^{xx}	114.000 (17)
Se2 ^{ix} —Cs1—Se2	80.953 (16)	$Se1^v - Pd1 - Cs2^{xx}$	57.960 (16)
Se2 ^{vii} —Cs1—Se1	94.738 (13)	Se2 ⁱⁱⁱ —Pd1—Cs2 ^{xx}	59.002 (13)
Se2 ^{viii} —Cs1—Se1	62.144 (11)	Se2—Pd1—Cs2 ^{xx}	115.901 (19)
Se2 ^{ix} —Cs1—Se1	135.669 (11)	Pd2—Pd1—Cs2 ^{xx}	69.734 (10)
Se2—Cs1—Se1	70.690 (13)	U1—Pd1—Cs 2^{xx}	113.335 (9)
Se2 ^{vii} —Cs1—Se1 ^{ix}	62.143 (11)	$U1^{v}$ —Pd1—Cs2 ^{xx}	111.952 (8)
Se2 ^{viii} —Cs1—Se1 ^{ix}	94.738 (13)	Cs1—Pd1—Cs2 ^{xx}	158.937 (12)
Se2 ^{ix} —Cs1—Se1 ^{ix}	70.691 (13)	Cs1v—Pd1—Cs2xx	71.656 (7)
Se2—Cs1—Se1 ^{ix}	135.670 (11)	$Se1^{xi}$ —Pd1—Cs2 ^{xv}	57.960 (16)
Se1—Cs1—Se1 ^{ix}	150.71 (2)	Se1 ^v —Pd1—Cs2 ^{xv}	114.000 (17)
Se2 ^{vii} —Cs1—Se1 ^x	70.691 (13)	Se2 ⁱⁱⁱ —Pd1—Cs2 ^{xv}	115.903 (19)
Se2 ^{viii} —Cs1—Se1 ^x	135.670 (11)	Se2—Pd1—Cs2 ^{xv}	59.003 (13)
Se2 ^{ix} —Cs1—Se1 ^x	62.143 (11)	Pd2—Pd1—Cs2 ^{xv}	69.734 (10)
	· /		× /

Se2—Cs1—Se1 ^x	94.738 (13)	U1—Pd1—Cs2 ^{xv}	113.335 (9)
Se1—Cs1—Se1 ^x	86.513 (16)	$U1^v$ —Pd1—Cs2 ^{xv}	111.952 (8)
Sel ^{ix} —Cs1—Sel ^x	100.875 (18)	Cs1—Pd1—Cs2 ^{xv}	71.656 (7)
Se2 ^{vii} —Cs1—Se1 ^{xi}	135.670 (11)	$Cs1^v$ — $Pd1$ — $Cs2^{xv}$	158.937 (12)
Se2 ^{viii} —Cs1—Se1 ^{xi}	70.691 (13)	$Cs2^{xx}$ —Pd1— $Cs2^{xv}$	87.301 (15)
Se2 ^{ix} —Cs1—Se1 ^{xi}	94.738 (13)	Se2—Pd2—Se2 ^{xxi}	171.45 (3)
Se2—Cs1—Se1 ^{xi}	62.144 (11)	Se2—Pd2—Se2 ⁱⁱⁱ	88.16 (2)
Se1—Cs1—Se1 ^{xi}	100.876 (18)	Se2 ^{xxi} —Pd2—Se2 ⁱⁱⁱ	91.20 (2)
Se1 ^{ix} —Cs1—Se1 ^{xi}	86.514 (16)	Se2—Pd2—Se2 ^{xviii}	91.20 (2)
Se1 ^x —Cs1—Se1 ^{xi}	150.71 (2)	Se2 ^{xxi} —Pd2—Se2 ^{xviii}	88.16 (2)
Se2 ^{vii} —Cs1—Pd1	152.457 (10)	Se2 ⁱⁱⁱ —Pd2—Se2 ^{xviii}	171.45 (3)
Se2 ^{viii} —Cs1—Pd1	71.604 (10)	Se2—Pd2—Pd1 ^{xviii}	125.177 (18)
Se2 ^{ix} —Cs1—Pd1	104.229 (10)	Se2 ^{xxi} —Pd2—Pd1 ^{xviii}	49.289 (12)
Se2—Cs1—Pd1	35.226 (10)	Se2 ⁱⁱⁱ —Pd2—Pd1 ^{xviii}	125.176 (18)
Se1—Cs1—Pd1	70.632 (11)	Se2 ^{xviii} —Pd2—Pd1 ^{xviii}	49.289 (12)
Se1 ^{ix} —Cs1—Pd1	121.430 (10)	Se2—Pd2—Pd1	49.289 (12)
Se1 ^x —Cs1—Pd1	129.052 (12)	Se2 ^{xxi} —Pd2—Pd1	125.177 (18)
Se1 ^{xi} —Cs1—Pd1	34.930 (10)	Se2 ⁱⁱⁱ —Pd2—Pd1	49.289 (12)
Se2 ^{vii} —Cs1—Pd1 ^{xii}	35.225 (10)	Se2 ^{xviii} —Pd2—Pd1	125.177 (18)
Se2 ^{viii} —Cs1—Pd1 ^{xii}	104.228 (10)	Pd1 ^{xviii} —Pd2—Pd1	118.54 (2)
Se2 ^{ix} —Cs1—Pd1 ^{xii}	71.605 (10)	$Se2-Pd2-U1^{iv}$	130.638 (16)
Se2—Cs1—Pd1 ^{xii}	152.458 (10)	$Se2^{xxi}$ —Pd2—U1 ^{iv}	54.919 (11)
Se1—Cs1—Pd1 ^{xii}	129.051 (12)	Se2 ⁱⁱⁱ —Pd2—U1 ^{iv}	130.639 (16)
Se1 ^{ix} —Cs1—Pd1 ^{xii}	34.930 (10)	Se2 ^{xviii} —Pd2—U1 ^{iv}	54.919 (11)
Se1 ^x —Cs1—Pd1 ^{xii}	70.633 (11)	$Pd1^{xviii}$ — $Pd2$ — $U1^{iv}$	61.640 (9)
Se1 ^{xi} —Cs1—Pd1 ^{xii}	121.430 (10)	$Pd1$ — $Pd2$ — $U1^{iv}$	179.818 (19)
Pd1—Cs1—Pd1 ^{xii}	156.358 (11)	Se2—Pd2—U1	54.919 (11)
$Se2^{vii}$ —Cs1—Pd1 ^v	104.228 (10)	Se2 ^{xxi} —Pd2—U1	130.639 (16)
Se2 ^{viii} —Cs1—Pd1 ^v	35.225 (10)	Se2 ⁱⁱⁱ —Pd2—U1	54.919 (11)
$Se2^{ix}$ —Cs1—Pd1 ^v	152.458 (10)	Se2 ^{xviii} —Pd2—U1	130.639 (16)
Se2—Cs1—Pd1 ^v	71.605 (10)	Pd1 ^{xviii} —Pd2—U1	179.818 (19)
Se1—Cs1—Pd1 ^v	34.931 (10)	Pd1—Pd2—U1	61.639 (9)
$Se1^{ix}$ —Cs1—Pd1 ^v	129.051 (12)	$U1^{iv}$ —Pd2—U1	118.178 (18)
Se1 ^x —Cs1—Pd1 ^v	121.430 (10)	Se2—Pd2—Cs2 ^{xv}	58.042 (13)
$Se1^{xi}$ —Cs1—Pd1 ^v	70.632 (11)	Se2 ^{xxi} —Pd2—Cs2 ^{xv}	114.859 (18)
Pd1—Cs1—Pd1 ^v	50.637 (12)	$Se2^{iii}$ —Pd2—Cs2 ^{xv}	114.859 (18)
$Pd1^{xii}$ —Cs1—Pd1 ^v	135.902 (12)	$Se2^{xviii}$ —Pd2—Cs 2^{xv}	58.041 (13)
Se2 ^{vii} —Cs1—Pd1 ^{ix}	71.605 (10)	Pd1 ^{xviii} —Pd2—Cs2 ^{xv}	68.073 (10)
Se2 ^{viii} —Cs1—Pd1 ^{ix}	152.458 (10)	Pd1—Pd2—Cs2 ^{xv}	68.073 (10)
Se2 ^{ix} —Cs1—Pd1 ^{ix}	35.225 (10)	$U1^{iv}$ —Pd2—Cs2 ^{xv}	112.050 (5)
Se2—Cs1—Pd1 ^{ix}	104.228 (10)	U1—Pd2—Cs 2^{xv}	112.050 (5)
Se1—Cs1—Pd1 ^{ix}	121.430 (10)	Se2—Pd2—Cs2 ^{xx}	114.860 (18)
Se1 ^{ix} —Cs1—Pd1 ^{ix}	70.632 (11)	Se2 ^{xxi} —Pd2—Cs2 ^{xx}	58.041 (13)
Se1 ^x —Cs1—Pd1 ^{ix}	34.930 (10)	Se2 ⁱⁱⁱ —Pd2—Cs2 ^{xx}	58.041 (13)
$Se1^{xi}$ Cs1 Pd1 ^{ix}	129.051 (12)	Se2 ^{xviii} —Pd2—Cs2 ^{xx}	114.859 (18)
Pd1—Cs1—Pd1 ^{ix}	135.903 (12)	Pd1 ^{xviii} —Pd2—Cs2 ^{xx}	68.073 (10)
Pd1 ^{xii} —Cs1—Pd1 ^{ix}	50.638 (12)	Pd1—Pd2—Cs2 ^{xx}	68.073 (10)
Pd1 ^v —Cs1—Pd1 ^{ix}	156.358 (11)	$U1^{iv}$ —Pd2—Cs2 ^{xx}	112.050 (5)

Se1 ^x —Cs2—Se1 ^{xiii}	136.13 (3)	U1—Pd2—Cs2 ^{xx}	112.050 (5)
Se1 ^x —Cs2—Se2 ^{ix}	56.056 (8)	$Cs2^{xv}$ —Pd2— $Cs2^{xx}$	86.091 (16)
Se1 ^{xiii} —Cs2—Se2 ^{ix}	106.862 (13)	$Pd1^{vi}$ —Se1—Pd1 ^v	84.26 (3)
Se1 ^x —Cs2—Se2 ^{xiv}	106.862 (13)	Pd1 ^{vi} —Se1—U1	81.29 (2)
Se1 ^{xiii} —Cs2—Se2 ^{xiv}	56.056 (8)	Pd1 ^v —Se1—U1	81.29 (2)
Se2 ^{ix} —Cs2—Se2 ^{xiv}	137.91 (2)	Pd1 ^{vi} —Se1—Cs1	175.16 (2)
Se1 ^x —Cs2—Se2 ^{xv}	106.862 (13)	Pd1 ^v —Se1—Cs1	91.105 (9)
Se1 ^{xiii} —Cs2—Se2 ^{xv}	56.056 (8)	U1—Se1—Cs1	99.446 (14)
Se2 ^{ix} —Cs2—Se2 ^{xv}	54.431 (13)	Pd1 ^{vi} —Se1—Cs1 ^x	91.105 (9)
Se2 ^{xiv} —Cs2—Se2 ^{xv}	108.889 (16)	$Pd1^v$ —Se1—Cs1 ^x	175.16 (2)
Se1 ^x —Cs2—Se2 ^{xvi}	56.056 (8)	U1—Se1—Cs1 ^x	99.446 (14)
Se1 ^{xiii} —Cs2—Se2 ^{xvi}	106.862 (13)	Cs1—Se1—Cs1 ^x	93.487 (16)
Se2 ^{ix} —Cs2—Se2 ^{xvi}	108.889 (16)	$Pd1^{vi}$ —Se1—Cs2 ^x	88.67 (2)
Se2 ^{xiv} —Cs2—Se2 ^{xvi}	54.431 (13)	$Pd1^{v}$ —Se1—Cs2 ^x	88.67 (2)
Se2 ^{xv} —Cs2—Se2 ^{xvi}	137.91 (2)	U1—Se1—Cs 2^x	166.43 (3)
Se1 ^x —Cs2—Se2	82.483 (12)	Cs1—Se1—Cs2 ^x	89.806 (14)
Se1 ^{xiii} —Cs2—Se2	133.760 (13)	$Cs1^{x}$ — $Se1$ — $Cs2^{x}$	89.806 (14)
Se2 ^{ix} —Cs2—Se2	70.625 (13)	Pd2—Se2—Pd1	82.01 (2)
Se2 ^{xiv} —Cs2—Se2	150.562 (16)	Pd2—Se2—U1	80.043 (17)
Se2 ^{xv} —Cs2—Se2	94.230 (11)	Pd1—Se2—U1	79.542 (17)
Se2 ^{xvi} —Cs2—Se2	117.736 (13)	Pd2—Se2—Cs1	172.72 (2)
Se1 ^x —Cs2—Se2 ^{xvii}	133.761 (13)	Pd1—Se2—Cs1	90.869 (15)
Se1 ^{xiii} —Cs2—Se2 ^{xvii}	82.482 (12)	U1—Se2—Cs1	100.224 (13)
Se2 ^{ix} —Cs2—Se2 ^{xvii}	150.563 (16)	Pd2—Se2—Cs2 ^{xv}	89.066 (18)
Se2 ^{xiv} —Cs2—Se2 ^{xvii}	70.624 (13)	Pd1—Se2—Cs2 ^{xv}	87.383 (16)
Se2 ^{xv} —Cs2—Se2 ^{xvii}	117.735 (13)	U1—Se2—Cs2 ^{xv}	163.979 (19)
Se2 ^{xvi} —Cs2—Se2 ^{xvii}	94.230 (11)	Cs1—Se2—Cs2 ^{xv}	89.104 (12)
Se2—Cs2—Se2 ^{xvii}	82.710 (18)	Pd2—Se2—Cs2	99.726 (15)
Se1 ^x —Cs2—Se2 ⁱⁱ	82.482 (12)	Pd1—Se2—Cs2	172.903 (19)
Se1 ^{xiii} —Cs2—Se2 ⁱⁱ	133.761 (13)	U1—Se2—Cs2	107.516 (12)
Se2 ^{ix} —Cs2—Se2 ⁱⁱ	117.735 (13)	Cs1—Se2—Cs2	87.161 (12)
Se2 ^{xiv} —Cs2—Se2 ⁱⁱ	94.229 (11)	Cs2 ^{xv} —Se2—Cs2	85.771 (11)

Symmetry codes: (i) -x, -y, z; (ii) -x, y, z; (iii) x, -y, z; (iv) -x, -y, -z; (v) -x+1/2, -y, -z+1/2; (vi) x-1/2, y, -z+1/2; (vii) x, -y+1/2, -z+1/2; (viii) -x+1/2, y, -z+1/2; (ix) x-1/2, y, -z+1/2; (vii) x, -y+1/2, -z+1/2; (viii) -x+1/2, -z+1/2; (viii