

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(ethane-1,2-diamine- $\kappa^2 N, N'$)nickel(II) 5-hydroxyisophthalate monohydrate

Shu-Hong Wang,^{a,b} Bin Zhang,^{a,c} Cheng Wang,^b* Guo-Qiang Xu^b and Yang Xie^b

^aCollege of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China, ^bKey Laboratory of Polymer Functional Materials, College of Chemical Engineering and Material, Heilongjiang University, Harbin 150080, People's Republic of China, and ^cInstitute of Petrochemistry, HLJ Academy of Sciences, Harbin 150040, People's Republic of China

Correspondence e-mail: wangc_93@yahoo.com

Received 8 December 2010; accepted 20 January 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.092; data-to-parameter ratio = 14.2.

The asymmetric unit of the title compound, $[Ni(C_2H_8N_2)_3]$ - $(C_8H_4O_5)\cdot H_2O$, contains one $[Ni(en)_3]^{2+}$ cation (en is ethane-1,2-diamine), one 5-hydroxyisophthalate dianion and one water molecule. In the cation, the Ni²⁺ ion is coordinated by six N atoms from three ethylenediamine ligands in a distorted octahedral geometry. The complex ions and water molecules are linked by weak N $-H \cdots N/O$ and O $-H \cdots N/O$ hydrogen bonds into a three-demensional structure.

Related literature

For the construction of supramolecular networks, see: Colacio *et al.* (2002); Guilera & Steed (1999); Roesky & Andruh (2003). For the structures of compounds with 5-hydroxy-isophthalic acid, see: Braverman & LaDuca (2007); Feller & Cheetham (2009); Li *et al.* (2005); Shao *et al.* (2009); Wang *et al.* (2007); Xu & Li (2004).

Experimental

Crystal data [Ni(C₂H₈N₂)₃](C₈H₄O₅)·H₂O

 $M_r = 437.13$

Mo $K\alpha$ radiation

 $0.10 \times 0.08 \times 0.06 \; \mathrm{mm}$

 $\mu = 1.03 \text{ mm}^-$

T = 293 K

Z = 4

Monoclinic, $P2_1/c$ a = 8.208 (5) Å b = 14.590 (5) Å c = 16.581 (5) Å $\beta = 97.747$ (5)° V = 1967.5 (15) Å³

Data collection

Bruker APEX CCD area-detector	8306 measured reflections
diffractometer	3656 independent reflections
Absorption correction: multi-scan	2997 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.026$
$T_{\min} = 0.906, \ T_{\max} = 0.940$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.092$	independent and constrained
S = 1.00	refinement
3656 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
258 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
4 restraints	

Table 1			
Selected	bond	lengths	(Å)

Ni1-N5	2.112 (2)	Ni1-N3	2.129 (2)
Ni1-N4	2.120 (2)	Ni1-N6	2.135 (2)
Ni1-N2	2.123 (2)	Ni1-N1	2.139 (2)

Table 2	2	

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O5−H4···O2 ⁱ	0.82	1.80	2.618 (2)	174
$N5-H14\cdots O4^{ii}$	0.90	2.09	2.958 (3)	161
N5-H13···O4 ⁱⁱⁱ	0.90	2.38	3.238 (3)	159
N5-H13···O3 ⁱⁱⁱ	0.90	2.50	3.266 (3)	143
N4-H19···O6 ^{iv}	0.90	2.30	3.173 (3)	162
N4-H20···O3 ⁱⁱⁱ	0.90	2.11	2.924 (3)	150
N3-H31···O4 ⁱⁱ	0.90	2.14	3.011 (3)	162
$N3-H32\cdots O2^{v}$	0.90	2.41	3.214 (3)	148
$N2-H27\cdots O6^{iv}$	0.90	2.27	3.097 (3)	152
$N2-H28\cdots O1^{v}$	0.90	2.34	3.190 (3)	157
N6−H16···O5 ^{vi}	0.90	2.42	3.292 (3)	164
$N6-H15\cdotsO1^{v}$	0.90	2.49	3.285 (3)	148
$O6-H5\cdots O1^{v}$	0.82(2)	2.28 (2)	3.076 (4)	165 (3)
$O6-H6\cdots O1^{vi}$	0.83 (2)	1.94 (2)	2.749 (3)	167 (3)
$N1 - H26 \cdots O3^{iii}$	0.92 (2)	2.08 (2)	2.953 (3)	158 (2)

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$, (iii) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z + 2; (vi) x, y - 1, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The present study has been supported in part by the Abroad Person with Ability Foundation of Heilongjiang Province (Nos. 11551339, 2010td03), the NSFC (No. 20872030), the China Postdoctoral Foundation and the Elitist Foundation of Heilongjiang University (No. Hdtd2010-11).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2388).

References

- Braverman, M. A. & LaDuca, R. L. (2007). Acta Cryst. E63, o3167.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Colacio, E., Lloret, F., Kivekäs, F., Ruiz, R. J., Suárez-Varela, J. & Sundberg, M. R. (2002). Chem. Commun. pp. 592–593.

Feller, R. K. & Cheetham, A. K. (2009). CrystEngComm, 11, 980-985.

- Guilera, G. & Steed, J. W. (1999). Chem. Commun. pp. 1563-1564.
- Li, X. J., Cao, R., Bi, W. H., Wang, Y. Q., Wang, Y. L. & Li, X. (2005). Polyhedron, 24, 2955–2962.
- Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.
- Shao, K. Z., Zhao, Y. H., Wang, X. L., Lan, Y. Q., Wang, D. J., Su, Z. M. & Wang, R. S. (2009). *Inorg. Chem.* 48, 10–12.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, M.-H., Wu, J.-G. & Luan, G.-Y. (2007). Acta Cryst. E63, m1039–m1041. Xu, H. T. & Li, Y. D. (2004). J. Mol. Struct. 690, 137–143.

m258 Wang et al. • [Ni(C₂H₈N₂)₃](C₈H₄O₅)·H₂O

supporting information

Acta Cryst. (2011). E67, m257-m258 [doi:10.1107/S1600536811001449]

Tris(ethane-1,2-diamine- $\kappa^2 N, N'$)nickel(II) 5-hydroxyisophthalate monohydrate

Shu-Hong Wang, Bin Zhang, Cheng Wang, Guo-Qiang Xu and Yang Xie

S1. Comment

There has been considerable interest in the crystal engineering of supramolecular architectures organized and sustained by means of coordinate covalent supramolecular contacts (such as hydrogen bonds), aurophilicity interactions, and so on (Colacio *et al.*, 2002; Roesky & Andruh, 2003; Guilera & Steed, 1999). As a multidentate ligand, 5-hydroxyisophthalic acid has two rigid carboxyl groups but also one exible hydroxyl group. Therefore, 5-hydroxyisophthalic acid has been widely reported as a good candidate not only in the construction of various coordination polymers but also in the construction of supramolecular networks (Braverman & LaDuca, 2007; Feller & Cheetham, 2009; Li *et al.*, 2005; Shao *et al.*, 2009; Wang *et al.*, 2007; Xu & Li, 2004).

The molecular structure of the title compound is illustrated in Fig. 1, and selected geometric parameters are listed in Table 1. The asymmetric unit of the title compound, $[Ni(C_2H_8N_2)_3]$ $[C_8H_4O_5]$. H₂O, contains one $[Ni(en)_3]^{2+}$ cation, one 5-hydroxyisophthalatedianion and one water molecules. In the title compound, the Ni²⁺ ion is coordinated by six N atoms from three ethylenediamine ligands in a distorted octahedral geometry. Note that a three-dimensional supramolecular hydrogen-bonding network is observed in the crystal structure of the title compound; details are given in Table 2.

S2. Experimental

All chemicals were purchased from commercial sources and used without further purification. A mixture of nickel nitrate $(Ni(NO_3)_2, 3H_2O (0.5 \text{ mmol}), 5\text{-hydroxyisophthalic acid (0.5 mmol)})$ and ethylenediamine (0.1 mL) were dissolved in methanol (20 mL). The reaction mixture was stirred for 2 h at 313 K. The filtrate was kept at room temperature and brown block like single crystals were obtained after 3 months.

S3. Refinement

H atoms are treated by a mixture of independent and constrained refinement.

Figure 1

Molecular structure of $[Ni(C_2H_8N_2)_3]$ $[C_8H_4O_5]$. H₂O, with the atom labeling, showing displacement at the 30% ellipsoids probability level.

Figure 2

View of three-dimensional supramolecule framework of $[Ni(C_2H_8N_2)_3]$ $[C_8H_4O_5]$. H₂O, with hydrogen bonds indicated by dashed lines.

Tris(ethane-1,2-diamine- $\kappa^2 N, N'$)nickel(II) 5-hydroxyisophthalate monohydrate

 $D_{\rm x} = 1.476 {\rm ~Mg} {\rm ~m}^{-3}$

 $\theta = 2.0 - 51.0^{\circ}$

 $\mu = 1.03 \text{ mm}^{-1}$

Block, brown

 $R_{\rm int} = 0.026$

 $h = -8 \rightarrow 9$

 $l = -20 \rightarrow 9$

 $k = -16 \rightarrow 17$

T = 293 K

 $D_{\rm m} = 1.476 {\rm ~Mg} {\rm ~m}^{-3}$

 $0.10 \times 0.08 \times 0.06 \text{ mm}$

8306 measured reflections

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

3656 independent reflections

2997 reflections with $I > 2\sigma(I)$

 $D_{\rm m}$ measured by not measured

Cell parameters from 3656 reflections

Mo *K* α radiation, $\lambda = 0.71069$ Å

Crystal data

 $[Ni(C_{2}H_{8}N_{2})_{3}](C_{8}H_{4}O_{5})\cdot H_{2}O$ $M_{r} = 437.13$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 8.208 (5) Å b = 14.590 (5) Å c = 16.581 (5) Å $\beta = 97.747 (5)^{\circ}$ $V = 1967.5 (15) \text{ Å}^{3}$ Z = 4F(000) = 928

Data collection

Bruker APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.906, T_{\max} = 0.940$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
3656 reflections	and constrained refinement
258 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0592P)^2 + 0.2444P]$
4 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.004$
direct methods	$\Delta ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.91637 (3)	0.259626 (17)	0.974252 (16)	0.02383 (11)	
05	0.4795 (2)	1.20853 (10)	0.77712 (10)	0.0387 (4)	
H4	0.5319	1.2412	0.7497	0.058*	

C4	1.2188 (3)	0.3041 (2)	1.08329 (16)	0.0453 (6)
H17	1.1993	0.3693	1.0888	0.054*
H18	1.3343	0.2922	1.1010	0.054*
С9	0.4722 (3)	0.96063 (13)	0.79873 (13)	0.0247 (5)
02	0.3689 (2)	0.81120 (11)	0.81877 (12)	0.0564 (6)
03	0.8221(2)	0 88664 (12)	0.64932(12)	0.0527(5)
04	0.8221(2) 0.8811(2)	1.03211(12)	0.62789(11)	0.0527(5)
N5	0.8745(2)	0.40180(13)	0.95883(12)	0.0338(4)
H14	0.8949	0.4308	1 0071	0.041*
H13	0.9411	0.4252	0.9251	0.041*
C13	0.5152 (3)	1 11865 (13)	0.76445(13)	0.0263(5)
C11	0.5152(3) 0.6694(2)	0.99956 (13)	0.70445(15) 0.70870(12)	0.0203(3)
01	0.3348(3)	0.99990(13) 0.01643(12)	0.70870(12) 0.00027(12)	0.0232(4)
N/	1.1751(2)	0.91043(12) 0.27507(14)	0.90927(12) 0.90752(13)	0.0014(0)
L10	1.1751 (2)	0.27397 (14)	0.99752 (15)	0.0332 (3)
H119 H20	1.2234	0.2228	0.9885	0.042*
H20 N2	1.2000	0.3109	0.9042	0.042°
IN 3 11 2 1	0.9414 (5)	0.20085 (14)	1.10300 (12)	0.0309 (3)
ПЭТ 1122	0.9101	0.3224	1.1195	0.044*
H32	0.8770	0.2242	1.1230	0.044*
C8	0.8013(3)	0.9/061(15)	0.65/82 (13)	0.0300(5)
	0.5897 (3)	0.93413 (14)	0.74970 (13)	0.0254 (5)
H2	0.6146	0.8724	0.7446	0.030*
C12	0.6296 (3)	1.09163 (13)	0.71495 (12)	0.0248 (4)
H3	0.6800	1.1353	0.6858	0.030*
C14	0.4373 (3)	1.05317 (14)	0.80625 (13)	0.0283 (5)
H1	0.3609	1.0714	0.8397	0.034*
N2	0.9402 (2)	0.11470 (13)	0.97466 (11)	0.0359 (5)
H27	1.0404	0.0985	0.9995	0.043*
H28	0.8642	0.0894	1.0021	0.043*
N1	0.9271 (3)	0.24104 (13)	0.84709 (13)	0.0346 (5)
N6	0.6543 (3)	0.25611 (13)	0.96287 (14)	0.0384 (5)
H16	0.6125	0.2314	0.9148	0.046*
H15	0.6214	0.2221	1.0030	0.046*
C7	0.3851 (3)	0.89121 (15)	0.84474 (15)	0.0338 (5)
C1	0.9958 (3)	0.14870 (17)	0.83782 (15)	0.0386 (6)
H21	1.1139	0.1497	0.8540	0.046*
H24	0.9747	0.1298	0.7813	0.046*
C2	0.9176 (3)	0.08176 (16)	0.89022 (15)	0.0436 (6)
H22	0.8012	0.0761	0.8707	0.052*
H23	0.9679	0.0219	0.8875	0.052*
C5	0.5970 (3)	0.35214 (19)	0.96839 (17)	0.0465 (7)
H11	0.6052	0.3705	1.0250	0.056*
H10	0.4828	0.3569	0.9445	0.056*
C6	0.7013 (3)	0.41394 (18)	0.92398 (18)	0.0464 (7)
H12	0.6869	0.3987	0.8665	0.056*
Н9	0.6686	0.4773	0.9296	0.056*
C3	1.1144 (3)	0.25055 (18)	1.13507 (16)	0.0436 (6)
H30	1.1393	0.1857	1.1327	0.052*

H29	1.1369	0.2704	1.1913	0.052*
O6	0.3136 (3)	0.07283 (15)	0.99974 (13)	0.0559 (5)
Н5	0.399 (3)	0.074 (2)	1.0317 (17)	0.067*
H6	0.335 (4)	0.0285 (17)	0.9720 (17)	0.067*
H26	1.001 (3)	0.2840 (15)	0.8337 (15)	0.041 (7)*
H25	0.827 (3)	0.2482 (17)	0.8153 (16)	0.046 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Ni1	0.02321 (18)	0.02431 (16)	0.02524 (17)	-0.00172 (10)	0.00789 (12)	0.00261 (10)
O5	0.0551 (11)	0.0185 (7)	0.0477 (10)	0.0084 (7)	0.0258 (9)	0.0027 (7)
C4	0.0298 (14)	0.0588 (17)	0.0457 (15)	-0.0068 (12)	-0.0003 (12)	-0.0092 (13)
C9	0.0259 (11)	0.0224 (10)	0.0270 (11)	-0.0007 (8)	0.0086 (9)	-0.0007 (8)
O2	0.0734 (14)	0.0239 (9)	0.0829 (14)	-0.0119 (8)	0.0509 (12)	-0.0092 (9)
O3	0.0599 (12)	0.0319 (9)	0.0750 (13)	0.0058 (8)	0.0414 (11)	-0.0119 (9)
O4	0.0528 (11)	0.0409 (10)	0.0549 (11)	0.0008 (8)	0.0363 (9)	0.0066 (8)
N5	0.0342 (11)	0.0324 (10)	0.0368 (11)	-0.0025 (8)	0.0123 (9)	0.0024 (8)
C13	0.0324 (12)	0.0182 (10)	0.0293 (11)	0.0053 (8)	0.0079 (9)	0.0007 (8)
C11	0.0242 (11)	0.0236 (10)	0.0226 (10)	0.0003 (8)	0.0058 (9)	-0.0014 (8)
01	0.1002 (16)	0.0370 (10)	0.0593 (13)	-0.0193 (10)	0.0558 (12)	-0.0076 (8)
N4	0.0284 (11)	0.0381 (11)	0.0407 (12)	-0.0017 (8)	0.0106 (9)	0.0031 (9)
N3	0.0388 (12)	0.0384 (11)	0.0358 (11)	-0.0020 (9)	0.0136 (10)	0.0022 (8)
C8	0.0323 (12)	0.0306 (12)	0.0291 (12)	0.0021 (9)	0.0116 (10)	-0.0044 (9)
C10	0.0318 (12)	0.0174 (10)	0.0280 (11)	0.0004 (8)	0.0075 (9)	-0.0021 (8)
C12	0.0301 (11)	0.0200 (10)	0.0258 (11)	-0.0008 (8)	0.0092 (9)	0.0030 (8)
C14	0.0308 (12)	0.0258 (11)	0.0314 (12)	0.0034 (9)	0.0154 (10)	-0.0008 (9)
N2	0.0401 (12)	0.0328 (10)	0.0352 (11)	-0.0043 (9)	0.0064 (9)	0.0054 (8)
N1	0.0383 (13)	0.0343 (11)	0.0322 (11)	-0.0027 (9)	0.0086 (10)	0.0030 (8)
N6	0.0320 (12)	0.0428 (12)	0.0414 (12)	-0.0073 (8)	0.0088 (10)	0.0039 (9)
C7	0.0383 (13)	0.0235 (11)	0.0427 (14)	-0.0020 (9)	0.0174 (11)	0.0015 (9)
C1	0.0428 (14)	0.0403 (13)	0.0333 (13)	0.0041 (11)	0.0077 (11)	-0.0063 (10)
C2	0.0599 (17)	0.0281 (12)	0.0408 (14)	-0.0025 (11)	-0.0001 (13)	-0.0019 (10)
C5	0.0266 (13)	0.0508 (16)	0.0636 (18)	0.0047 (11)	0.0113 (13)	0.0016 (13)
C6	0.0364 (14)	0.0396 (14)	0.0620 (18)	0.0084 (11)	0.0016 (13)	0.0115 (12)
C3	0.0438 (16)	0.0565 (17)	0.0294 (13)	0.0077 (12)	0.0016 (12)	-0.0015 (11)
06	0.0534 (13)	0.0568 (13)	0.0561 (14)	0.0171 (10)	0.0023 (10)	-0.0102 (10)

Geometric parameters (Å, °)

Ni1—N5	2.112 (2)	N3—C3	1.464 (4)
Ni1—N4	2.120 (2)	N3—H31	0.9000
Ni1—N2	2.123 (2)	N3—H32	0.9000
Ni1—N3	2.129 (2)	C10—H2	0.9300
Nil—N6	2.135 (2)	С12—Н3	0.9300
Nil—N1	2.139 (2)	C14—H1	0.9300
O5—C13	1.366 (2)	N2—C2	1.468 (3)
O5—H4	0.8200	N2—H27	0.9000

C4—N4	1.477 (3)	N2—H28	0.9000
C4—C3	1.510 (4)	N1—C1	1.476 (3)
C4—H17	0.9700	N1—H26	0.922 (17)
C4—H18	0.9700	N1—H25	0.922 (18)
C9—C14	1.389 (3)	N6—C5	1.485 (3)
C9—C10	1.397 (3)	N6—H16	0.9000
С9—С7	1.505 (3)	N6—H15	0.9000
O2—C7	1.245 (3)	C1—C2	1.507 (3)
O3—C8	1.248 (3)	C1—H21	0.9700
O4—C8	1.252 (3)	C1—H24	0.9700
N5—C6	1.472 (3)	C2—H22	0.9700
N5—H14	0.9000	C2—H23	0.9700
N5—H13	0.9000	C5—C6	1.502 (4)
C13—C12	1.385 (3)	C5—H11	0.9700
C13—C14	1.386 (3)	C5—H10	0.9700
C11—C10	1.386 (3)	C6—H12	0.9700
C_{11} C_{12}	1 390 (3)	C6—H9	0.9700
C11-C8	1.520 (3)	C3—H30	0.9700
01-C7	1 253 (3)	C3_H29	0.9700
N4—H19	0.9000	06—H5	0.9700
N4H20	0.9000	06—H6	0.816(10) 0.826(17)
117 1120	0.9000	00 110	0.020 (17)
N5—Ni1—N4	93 10 (8)	С11—С12—Н3	119 9
N5—Ni1—N2	172 57 (8)	C13 - C14 - C9	120 70 (18)
N4—Ni1—N2	91 25 (8)	C13—C14—H1	119.6
N5—Ni1—N3	93 76 (8)	C9-C14-H1	119.6
N4_Ni1_N3	81 53 (8)	$C_2 = N_2 = N_1 I_1$	108 85 (14)
N2Ni1N3	92 84 (7)	$C_2 = N_2 = H_27$	100.05 (14)
N5—Ni1—N6	82 39 (7)	$N_{1} = N_{2} = H_{2}$	109.9
N4Ni1N6	17257(8)	$C_2 N_2 H_2 8$	109.9
N2 Ni1 N6	03.80 (8)	Ni1 N2 H28	109.9
N3Ni1N6	92.85 (8)	$H_{2} = H_{2}$	109.9
N5 Ni1 N1	92.05 (0)	C1 N1 Ni1	106.58 (15)
NA N;1 N1	91.00(0)	C1 = N1 = H26	100.38(13) 108.8(17)
$N_2 = N_1 = N_1$	91.15 (8) 82.00 (7)	N;1 N1 H26	105.5(17)
$\frac{1}{1}$	32.00(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103.3(10)
NG N:1 N1	1/0.33(8)	N:1 N1 H25	111.0(10) 112.4(10)
$\Gamma_{12} = \Gamma_{11} = \Gamma_{12}$	100 5	$\frac{1123}{124}$	113.4(19)
$C_{13} = 03 = 14$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111(2) 107 10(14)
N4 - C4 - C3	108.7 (2)	$C_5 = N_6 = U_1 f_6$	107.19 (14)
$\mathbf{N} = \mathbf{C} \mathbf{A} = \mathbf{H} \mathbf{I} \mathbf{A}$	109.9	C_{3} NO-HIO	110.3
$C_3 - C_4 - H_1$	109.9	$\frac{1}{10} = \frac{10}{10}$	110.3
N4-C4-H18	109.9	C5—N0—H15	110.3
	109.9	$\frac{1}{10} - \frac{1}{10} - \frac{1}{10}$	110.3
$H_1/-U_4-H_1\delta$	108.3	H10-N0-H13	108.5
C14 - C9 - C10	119.18 (18)	02 - 07 - 01	122.6 (2)
C14 - C9 - C7	119.40 (18)	02-07-09	119.42 (19)
C10-C9-C/	121.40 (18)	01-07-09	118.0 (2)
C6—N5—N11	107.36 (14)	N1-C1-C2	109.4 (2)

C6—N5—H14	110.2	N1—C1—H21	109.8
Ni1—N5—H14	110.2	C2—C1—H21	109.8
C6—N5—H13	110.2	N1—C1—H24	109.8
Ni1—N5—H13	110.2	C2C1H24	109.8
H14—N5—H13	108.5	H21—C1—H24	108.2
O5—C13—C12	122.75 (18)	N2—C2—C1	109.18 (19)
O5-C13-C14	117.49 (18)	N2—C2—H22	109.8
C12-C13-C14	119 70 (18)	C1—C2—H22	109.8
C10-C11-C12	119.87 (18)	N2_C2_H23	109.8
C10 C11 C8	110.07 (18)	$C_1 = C_2 = H_{23}$	109.8
$C_{10} = C_{11} = C_{8}$	119.97(10) 120.15(18)	1123 1123 1123	109.8
C_{12} C_{11} C_{0}	120.13(18)	H22 - C2 - H23	108.5
C4—N4—N11	108.26 (14)	N6-C5-C6	109.3 (2)
C4—N4—H19	110.0	N6—C5—H11	109.8
N11—N4—H19	110.0	C6—C5—H11	109.8
C4—N4—H20	110.0	N6—C5—H10	109.8
Ni1—N4—H20	110.0	C6—C5—H10	109.8
H19—N4—H20	108.4	H11—C5—H10	108.3
C3—N3—Ni1	107.96 (15)	N5—C6—C5	108.6 (2)
C3—N3—H31	110.1	N5—C6—H12	110.0
Ni1—N3—H31	110.1	C5—C6—H12	110.0
C3—N3—H32	110.1	N5—C6—H9	110.0
Ni1—N3—H32	110.1	С5—С6—Н9	110.0
H31—N3—H32	108.4	Н12—С6—Н9	108.3
O3—C8—O4	124.9 (2)	N3—C3—C4	108.1 (2)
03—C8—C11	117.01 (19)	N3—C3—H30	110.1
04-C8-C11	118.07 (19)	C4-C3-H30	110.1
$C_{11} - C_{10} - C_{9}$	120.22(18)	N3_C3_H29	110.1
C_{11} C_{10} H_2	110.0	C_{4} C_{3} H_{29}	110.1
C_{10} C_{10} H_{2}	110.0	$H_{30} = C_3 = H_{20}$	108.4
$C_{12} = C_{10} = 112$	119.9	H5 06 H6	100.4
$C_{13} = C_{12} = C_{11}$	120.20 (10)	нэ—00—но	99 (3)
С13—С12—Н3	119.9		
	1(0, 22, (1))	C10 C0 C14 C12	1 4 (2)
N4—N11—N5—C6	168.22 (16)	C10 - C9 - C14 - C13	1.4 (3)
N2—N11—N5—C6	42.5 (6)	C/C9C14C13	-179.8 (2)
N3—N11—N5—C6	-110.08 (16)	N5—N11—N2—C2	23.7 (6)
N6—Ni1—N5—C6	-17.70 (16)	N4—Ni1—N2—C2	-102.10 (16)
N1—Ni1—N5—C6	76.96 (16)	N3—Ni1—N2—C2	176.32 (16)
C3—C4—N4—Ni1	40.3 (2)	N6—Ni1—N2—C2	83.27 (16)
N5—Ni1—N4—C4	80.33 (17)	N1—Ni1—N2—C2	-11.11 (16)
N2—Ni1—N4—C4	-105.70 (17)	N5—Ni1—N1—C1	166.69 (16)
N3—Ni1—N4—C4	-13.01 (16)	N4—Ni1—N1—C1	73.56 (16)
N6—Ni1—N4—C4	28.1 (7)	N2—Ni1—N1—C1	-17.54 (16)
N1-Ni1-N4-C4	172.28 (17)	N3—Ni1—N1—C1	38.0 (6)
N5—Ni1—N3—C3	-109.45 (16)	N6—Ni1—N1—C1	-110.79 (16)
N4—Ni1—N3—C3	-16.88 (15)	N5—Ni1—N6—C5	-11.55 (16)
N2—Ni1—N3—C3	73.96 (16)	N4—Ni1—N6—C5	41.3 (7)
N6—Ni1—N3—C3	168.00 (16)	N2—Ni1—N6—C5	174.91 (16)
N1—Ni1—N3—C3	19.1 (6)	N3—Ni1—N6—C5	81.87 (17)
	× /		

C10-C11-C8-O3 $C12-C11-C8-O3$ $C12-C11-C8-O4$ $C12-C11-C8-O4$ $C12-C11-C10-C9$ $C8-C11-C10-C9$ $C14-C9-C10-C11$ $C7-C9-C10-C11$ $C7-C9-C10-C11$ $C14-C13-C12-C11$ $C14-C13-C12-C11$ $C10-C11-C12-C13$ $C8-C11-C12-C13$ $C8-C11-C12-C13$ $C5-C13-C14-C9$	$\begin{array}{c} 6.3 (3) \\ -174.4 (2) \\ -173.5 (2) \\ 5.8 (3) \\ -1.4 (3) \\ 177.87 (19) \\ -0.5 (3) \\ -179.3 (2) \\ 175.5 (2) \\ -1.6 (3) \\ 2.5 (3) \\ -176.8 (2) \\ -177.6 (2) \end{array}$	N1—Ni1—N6—C5 C14—C9—C7—O2 C10—C9—C7—O2 C14—C9—C7—O1 C10—C9—C7—O1 Ni1—N1—C1—C2 Ni1—N2—C2—C1 N1—C1—C2—N2 Ni1—N6—C5—C6 Ni1—N5—C6—C5 N6—C5—C6—N5 Ni1—N3—C3—C4 N4—C4—C3—N3	$\begin{array}{c} -102.80 (17) \\ 155.0 (2) \\ -26.2 (4) \\ -26.6 (4) \\ 152.2 (2) \\ 43.2 (2) \\ 37.7 (2) \\ -55.4 (3) \\ 38.8 (2) \\ 44.1 (2) \\ -56.6 (3) \\ 43.4 (2) \\ -56.7 (3) \end{array}$
C8-C11-C12-C13 O5-C13-C14-C9 C12-C13-C14-C9	-176.8(2) -177.6(2) -0.3(4)	N11—N3—C3—C4 N4—C4—C3—N3	43.4 (2) -56.7 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	D—H…A
05—H4…O2 ⁱ	0.82	1.80	2.618 (2)	174
N5—H14····O4 ⁱⁱ	0.90	2.09	2.958 (3)	161
N5—H13…O4 ⁱⁱⁱ	0.90	2.38	3.238 (3)	159
N5—H13…O3 ⁱⁱⁱ	0.90	2.50	3.266 (3)	143
N4—H19…O6 ^{iv}	0.90	2.30	3.173 (3)	162
N4—H20···O3 ⁱⁱⁱ	0.90	2.11	2.924 (3)	150
N3—H31····O4 ⁱⁱ	0.90	2.14	3.011 (3)	162
N3—H32···O2 ^v	0.90	2.41	3.214 (3)	148
N2—H27…O6 ^{iv}	0.90	2.27	3.097 (3)	152
N2—H28···O1 ^v	0.90	2.34	3.190 (3)	157
N6—H16····O5 ^{vi}	0.90	2.42	3.292 (3)	164
N6—H15···O1 ^v	0.90	2.49	3.285 (3)	148
O6—H5…O1 ^v	0.82 (2)	2.28 (2)	3.076 (4)	165 (3)
O6—H6…O1 ^{vi}	0.83 (2)	1.94 (2)	2.749 (3)	167 (3)
N1—H26…O3 ⁱⁱⁱ	0.92 (2)	2.08 (2)	2.953 (3)	158 (2)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) *x*, -*y*+3/2, *z*+1/2; (iii) -*x*+2, *y*-1/2, -*z*+3/2; (iv) *x*+1, *y*, *z*; (v) -*x*+1, -*y*+1, -*z*+2; (vi) *x*, *y*-1, *z*.