

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(2-Fluorophenoxy)propanoic acid

Yao-Yuan Zhou,* Xiao-Bo Gu, Meng-Jun Jiang and Gang-Ming Cai

Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China

Correspondence e-mail: rambo1265@sina.com

Received 22 November 2010; accepted 30 November 2010

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.007 Å; R factor = 0.080; wR factor = 0.189; data-to-parameter ratio = 12.4.

In the title compound, $C_9H_9FO_3$, the dihedral angle between the carboxyl group and the benzene ring is $79.4 (3)^{\circ}$. In the crystal, molecules form centrosymmetric dimers through pairs of classical $O-H \cdots O$ hydrogen bonds. These are further linked by weaker C-H···O interactions, forming a threedimensional network.

Related literature

For a related structure, see: Potrzebowski & Chruszcz (2007). For the synthesis, see: Bäurle et al. (2006).

Experimental

Crystal data C₉H₉FO₃

 $M_{\rm r} = 184.16$

organic compounds

Monoclinic, $P2_1/c$ a = 13.934 (16) Å b = 4.974 (5) Å c = 13.098 (14) Å $\beta = 110.546$ (12)° V = 850.0 (16) Å ³	Z = 4 Mo K α radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 153 K $0.45 \times 0.30 \times 0.08 \text{ mm}$
Data collection	
Discharge A EC10/8 - traine 724	5001

Rigaku AFC10/Saturn/24+	5881 measured reflections
diffractometer	1518 independent reflections
Absorption correction: multi-scan	1034 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku, 2008)	$R_{\rm int} = 0.070$
$T_{\min} = 0.947, \ T_{\max} = 0.990$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.080$	H atoms treated by a mixture of
$wR(F^2) = 0.189$	independent and constrained
S = 0.98	refinement
1518 reflections	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
122 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{matrix} \hline O3-H4O\cdotsO2^{i} \\ C4-H4\cdotsO1 \end{matrix}$	0.91 (7)	1.77 (7)	2.671 (6)	177 (7)
	0.95	2.57	3.519 (7)	176

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported financially by the Key Medical Talents Program of Jiangsu Province (No. RC2007097).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5066).

References

Bäurle, S., Berger, M. & Jaroch, S. (2006). WO Patent 2006/027236. Potrzebowski, W. & Chruszcz, M. (2007). Acta Cryst. E63, o2754. Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o121 [https://doi.org/10.1107/S1600536810049974]

3-(2-Fluorophenoxy)propanoic acid

Yao-Yuan Zhou, Xiao-Bo Gu, Meng-Jun Jiang and Gang-Ming Cai

S1. Comment

The title compound,(I), is an important intermediate in the synthesis of 8-fluorochroman-4-one (Bäurle *et al.*, 2006). We report herein its structure (Fig.1).

The bond lengths and angles in (I) are within normal ranges (Potrzebowski & Chruszcz, 2007). The dihedral angle between the C1—C6 benzene ring and the C9/O2/O3 plane is 79.4 (3) °. In the crystal, molecules form centrosymmetric dimers through classical O3—H4O···O2 hydrogen bonds (Table 1). These are further linked by weaker C4—H4···O1 contacts forming a three-dimensional network.

S2. Experimental

The title compound was crystallized from dichloromethane and hexane (1:1); colorless block-shaped crystals were obtained after several days.

S3. Refinement

The crystals were not of good quality resulting in uncertainties in unit cell dimensions and other metrical data being somewhat higher than normal. Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they were bonded, with C—H distances of 0.95Å (CH), 0.99Å (CH₂), and with Uiso(H) =1.2Ueq of the parent atoms. The H-atom of the OH group was located in a difference map and allowed to refine freely with an isotropic displacement parameter.

Figure 1

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3-(2-Fluorophenoxy)propanoic acid

Crystal data

C₉H₉FO₃ $M_r = 184.16$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.934 (16) Å b = 4.974 (5) Å c = 13.098 (14) Å $\beta = 110.546$ (12)° V = 850.0 (16) Å³ Z = 4

Data collection

Rigaku AFC10/Saturn724+
diffractometer
Radiation source: Rotating Anode
Graphite monochromator
Detector resolution: 28.5714 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
$T_{\min} = 0.947, T_{\max} = 0.990$

Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.080$	Hydrogen site location: inferred from
$wR(F^2) = 0.189$	neighbouring sites
S = 0.98	H atoms treated by a mixture of independent
1518 reflections	and constrained refinement
122 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0106P)^2 + 5.690P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.42$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 384

 $\theta = 3.1 - 27.5^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$

Block, colorless

 $0.45 \times 0.30 \times 0.08 \text{ mm}$

5881 measured reflections 1518 independent reflections 1034 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$

T = 153 K

 $R_{\rm int} = 0.070$

 $h = -16 \rightarrow 16$ $k = -6 \rightarrow 6$ $l = -15 \rightarrow 15$

 $D_{\rm x} = 1.439 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2182 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F1	0.1148 (2)	0.0797 (6)	0.0408 (2)	0.0401 (7)
01	0.2551 (2)	0.4195 (6)	0.1573 (2)	0.0279 (7)
O2	0.4656 (2)	0.4357 (6)	0.1091 (3)	0.0358 (8)

03	0.4220 (2)	0.7887 (6)	-0.0035 (3)	0.0350 (8)
C8	0.3591 (3)	0.7823 (8)	0.1414 (4)	0.0279 (10)
H8A	0.2946	0.8508	0.0873	0.034*
H8B	0.3981	0.9392	0.1815	0.034*
C6	0.2124 (3)	0.2528 (8)	0.2131 (4)	0.0239 (9)
C5	0.2368 (3)	0.2465 (8)	0.3253 (3)	0.0264 (9)
Н5	0.2869	0.3663	0.3705	0.032*
C1	0.1372 (3)	0.0743 (9)	0.1491 (4)	0.0281 (10)
C3	0.1149 (3)	-0.1099 (9)	0.3076 (4)	0.0339 (11)
H3	0.0820	-0.2334	0.3399	0.041*
C9	0.4201 (3)	0.6507 (8)	0.0816 (4)	0.0279 (10)
C7	0.3327 (3)	0.6037 (8)	0.2214 (4)	0.0288 (10)
H7A	0.3941	0.5042	0.2677	0.035*
H7B	0.3064	0.7129	0.2691	0.035*
C4	0.1878 (3)	0.0641 (9)	0.3721 (4)	0.0301 (10)
H4	0.2050	0.0603	0.4490	0.036*
C2	0.0898 (3)	-0.1050 (9)	0.1967 (4)	0.0304 (10)
H2	0.0395	-0.2255	0.1523	0.036*
H4O	0.462 (5)	0.712 (14)	-0.037 (5)	0.08 (2)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0365 (15)	0.0424 (16)	0.0402 (16)	-0.0105 (12)	0.0121 (12)	0.0004 (13)
01	0.0313 (15)	0.0225 (15)	0.0344 (17)	-0.0050 (12)	0.0170 (13)	0.0010 (13)
02	0.0391 (18)	0.0272 (16)	0.052 (2)	0.0124 (14)	0.0289 (16)	0.0122 (15)
03	0.0405 (18)	0.0250 (16)	0.050(2)	0.0084 (14)	0.0291 (16)	0.0076 (15)
C8	0.029 (2)	0.0163 (19)	0.044 (3)	-0.0018 (17)	0.0197 (19)	-0.0018 (18)
C6	0.024 (2)	0.0166 (19)	0.036 (2)	0.0033 (15)	0.0168 (17)	0.0019 (17)
C5	0.032 (2)	0.019 (2)	0.030(2)	0.0035 (16)	0.0134 (18)	-0.0005 (17)
C1	0.024 (2)	0.025 (2)	0.037 (3)	0.0029 (17)	0.0131 (18)	0.0024 (19)
C3	0.033 (2)	0.025 (2)	0.057 (3)	0.0042 (18)	0.031 (2)	0.009 (2)
C9	0.027 (2)	0.020 (2)	0.041 (3)	-0.0025 (17)	0.0175 (19)	0.0010 (19)
C7	0.034 (2)	0.017 (2)	0.043 (3)	0.0003 (17)	0.023 (2)	-0.0049 (19)
C4	0.033 (2)	0.026 (2)	0.035 (2)	0.0088 (18)	0.0168 (19)	0.0066 (19)
C2	0.022 (2)	0.025 (2)	0.045 (3)	0.0006 (17)	0.0131 (19)	0.006 (2)

Geometric parameters (Å, °)

F1-C1	1.342 (5)	C6—C1	1.405 (6)	_
O1—C6	1.372 (5)	C5—C4	1.399 (6)	
O1—C7	1.441 (5)	С5—Н5	0.9500	
O2—C9	1.231 (5)	C1—C2	1.381 (6)	
O3—C9	1.317 (5)	C3—C2	1.370 (7)	
O3—H4O	0.90 (7)	C3—C4	1.376 (7)	
С8—С9	1.494 (6)	С3—Н3	0.9500	
C8—C7	1.515 (6)	C7—H7A	0.9900	
C8—H8A	0.9900	C7—H7B	0.9900	

supporting information

C8—H8B	0.9900	C4—H4	0.9500
C6—C5	1.387 (6)	С2—Н2	0.9500
C6—O1—C7	116.8 (3)	С2—С3—Н3	120.0
С9—О3—Н4О	113 (4)	С4—С3—Н3	120.0
C9—C8—C7	115.3 (3)	O2—C9—O3	122.7 (4)
С9—С8—Н8А	108.4	O2—C9—C8	123.8 (4)
С7—С8—Н8А	108.4	O3—C9—C8	113.5 (4)
С9—С8—Н8В	108.4	O1—C7—C8	106.5 (4)
C7—C8—H8B	108.4	O1—C7—H7A	110.4
H8A—C8—H8B	107.5	С8—С7—Н7А	110.4
O1—C6—C5	126.0 (4)	O1—C7—H7B	110.4
O1—C6—C1	115.9 (4)	С8—С7—Н7В	110.4
C5—C6—C1	118.2 (4)	H7A—C7—H7B	108.6
C6—C5—C4	120.2 (4)	C3—C4—C5	120.5 (4)
С6—С5—Н5	119.9	C3—C4—H4	119.8
С4—С5—Н5	119.9	С5—С4—Н4	119.8
F1—C1—C2	121.3 (4)	C3—C2—C1	120.3 (4)
F1—C1—C6	117.8 (4)	C3—C2—H2	119.8
C2—C1—C6	120.9 (4)	C1—C2—H2	119.8
C2—C3—C4	119.9 (4)		
C7—O1—C6—C5	0.3 (6)	C7—C8—C9—O3	165.5 (4)
C7—O1—C6—C1	-179.8 (3)	C6—O1—C7—C8	-174.2 (3)
O1—C6—C5—C4	-179.4 (4)	C9—C8—C7—O1	-72.7 (5)
C1—C6—C5—C4	0.7 (6)	C2—C3—C4—C5	-0.1 (6)
O1-C6-C1-F1	0.8 (5)	C6—C5—C4—C3	-0.2 (6)
C5-C6-C1-F1	-179.3 (3)	C4—C3—C2—C1	-0.1 (6)
O1—C6—C1—C2	179.2 (4)	F1—C1—C2—C3	179.0 (4)
C5-C6-C1-C2	-0.9 (6)	C6—C1—C2—C3	0.6 (6)
С7—С8—С9—О2	-15.4 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O3—H4 <i>O</i> …O2 ⁱ	0.91 (7)	1.77 (7)	2.671 (6)	177 (7)
C4—H4…O1	0.95	2.57	3.519 (7)	176

Symmetry code: (i) -x+1, -y+1, -z.