Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368

 Poly[tetraaqua-di- μ_{4}-malonato

 Poly[tetraaqua-di- μ_{4}-malonatobarium(II)cadmium(II)]

barium(II)cadmium(II)]}Ming-Lin Guo,* Wen-Jun Gao, Cong-Cong Luo and Long Liu

School of Environment and Chemical Engineering and, Key Laboratory of Hollow Fiber Membrane Materials \& Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
Correspondence e-mail: guomlin@yahoo.com
Received 21 November 2010; accepted 29 November 2010
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.019 \AA$; R factor $=0.060 ; w R$ factor $=0.161$; data-to-parameter ratio $=11.7$.

In the title complex, $\left[\mathrm{BaCd}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$, the $\mathrm{Ba}^{\text {II }}$ atoms, located on crystallographic twofold axes, adopt slightly distorted square-antiprismatic coordination geometries, while the $\mathrm{Cd}^{\mathrm{II}}$ atoms, which lie on crystallographic centres of symmetry, have a distorted octahedral coordination. Each malonate dianion binds two different $\mathrm{Cd}^{\mathrm{II}}$ atoms and two different $\mathrm{Ba}^{\mathrm{II}}$ atoms. This connectivity generates alternating layers along [100] in the structure, with one type containing $\mathrm{Cd}^{\text {II }}$ cations and malonate dianions, while the other is primarily composed of $\mathrm{Ba}^{\mathrm{II}}$ ions and coordinated water molecules. The water molecules also participate in extensive $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Related literature

For structural studies on the malonate dianion with its versatile coordination patterns, see: Delgado et al. (2004). For related structures, see Djeghri et al. (2005); Guo \& Guo (2006).

Experimental

Crystal data

$\left[\mathrm{BaCd}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$V=1261.0(4) \AA^{3}$
$M_{r}=525.90$
Orthorhombic, Pccn
$a=18.809$ (4) A
$Z=4$
Mo $K \alpha$ radiation
$\mu=4.85 \mathrm{~mm}^{-1}$
$b=6.9224$ (14) A
$T=294 \mathrm{~K}$
$0.24 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.370, T_{\text {max }}=0.662$
5716 measured reflections 1103 independent reflections 978 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.059$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060 \quad 94$ parameters
$w R\left(F^{2}\right)=0.161$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.94 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.24 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Ba} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.794(9)$	$\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{ii}}$	$2.227(10)$
$\mathrm{Ba} 1-\mathrm{O} 6$	$2.809(10)$	$\mathrm{Cd} 1-\mathrm{O} 3$	$2.227(9)$
$\mathrm{Ba} 1-\mathrm{O} 4$	$2.854(9)$	$\mathrm{Cd} 1-\mathrm{O} 1^{\text {iii }}$	$2.364(8)$
$\mathrm{Ba} 1-\mathrm{O} 5$	$2.877(10)$		
Symmetry codes:	(i)	$x,-y+\frac{1}{2}, z+\frac{1}{2} ;$	(ii)
$-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.			

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O} 5^{\text {iii }}$	0.87	2.08	2.893 (14)	157
O6-H6A \cdots O1 ${ }^{\text {iv }}$	0.85	1.99	2.781 (13)	156
O5-H5B $\cdots \mathrm{O}^{\text {i }}$	0.87	2.19	2.919 (15)	141
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {ii }}$	0.84	2.01	2.810 (14)	159

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y-1, z$; (iv)
$-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank Tianjin Polytechnic University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5064)

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Delgado, F. S., Sanchiz, J., Ruis-Perez, C., Lloret, F. \& Julve, M. (2004). CrystEngComm, 6, 443-450.

metal-organic compounds

Djeghri, A., Balegroune, F., Guehria-Laidoudi, A. \& Toupet, L. (2005). J. Chem. Crystallogr. 35, 603-607.
Guo, M.-L. \& Guo, C.-H. (2006). Acta Cryst. C62, m7-m9.

Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m23-m24 [https://doi.org/10.1107/S1600536810049780]

Poly[tetraaqua-di- μ_{4}-malonato-barium(II)cadmium(II)]

Ming-Lin Guo, Wen-Jun Gao, Cong-Cong Luo and Long Liu

S1. Comment

The malonate dianion, with two neighboring carboxylate groups, is a very flexible ligand. Its basic coordination mode is as a chelate via two distal carboxylate oxygen atoms to form a six-membered ring and the coordinating ability of the nonchelating oxygen atoms makes the formation of polymeric networks possible (Djeghri et al., 2005; Guo \& Guo, 2006). On the other hand, malonate can also coordinate in monodentate, chelated bidentate and bridging modes to create various molecular architectures (Delgado et al., 2004). Herein, we report the structure of the title heterobimetallic malonate complex, (I). It and the chemically similar complex poly[tetraaqua-di-mu4-malonato-barium(II)zinc(II)] (Guo \& Guo, 2006) are isotypic.
The asymmetric unit in the structure of (I) comprises half a $\mathrm{Ba}^{\text {II }}$ cation, half a $\mathrm{Cd}^{\text {II }}$ cation, a complete malonate dianion defined by $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{O} 1-\mathrm{O} 4$ and two independent water molecules involving O 5 and O 6 . Fig. 1 shows a symmetryexpanded view which displays the full coordination of the Ba^{2+} and Cd^{2+} centers. Selected geometric parameters are given in Table 1.
The Ba^{2+} cation, lying on a crystallographic twofold axis, is eight-coordinate, bonded to oxygen atoms of four different malonate groups and four water molecules with $\mathrm{Ba}-\mathrm{O}$ distances ranging from 2.793 (9) to 2.878 (10) \AA. The Ba polyhedra may be described as slightly distorted square antiprisms. They share edges to form chains propagating along c.

The Cd^{2+} cations, lie on crystallographic centres of symmetry, and have distorted octahedral coordination, with O 2 and O 3 of two bidentate malonate anions at the equatorial sites and two O 1 atoms from two other malonate anions at the apical sites.
Also evident in Fig. 1 is the variability of the coordination modes of the malonate dianion with monodentate (O1), bidentate chelating (O 2 and O 3) and bridging (O 4) bonding modes all present.
The structure as a whole consists of two distinct types of layer, both parallel to (100) and stacked alternately in the direction of a. The first of these (Fig. 2) is composed entirely of $\mathrm{Cd}^{\mathrm{II}}$ ions and malonate dianions and occurs at $x=0$ and $1 / 2$. The other type of layer, type 2 , alternating with the first and centred on $x=1 / 4$ and $3 / 4$ contains, primarily, the Ba ions and the water molecules. Two forms of connectivity occur within the type 2 layers. First of all O 4 atoms on the surfaces of the type 1 layers create chains of edge sharing Ba polyhedra propagating along c and at the same time link the two types of layer and complete the three-dimensional connectivity of the structure. The interlayer connectivity is further enhanced by the hydrogen bonds of the form $\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{iv}}$ and $\mathrm{O} 6-\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{O} 1^{\text {vi }}$ given in Table 2.

S2. Experimental

The title complex was prepared under continuous stirring with successive addition of malonic acid ($0.43 \mathrm{~g}, 4 \mathrm{mmol}$), cadmium(II) chloride $(0.37 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}(0.63 \mathrm{~g}, 2 \mathrm{mmol})$ to distilled water $(40 \mathrm{ml})$ at room temperature. After filtration, slow evaporation over a period of a week at room temperature provided colorless plate-like crystals of (I).

S3. Refinement

The H atoms of the water molecule were found in difference Fourier maps and during refinement were fixed at an $\mathrm{O}-\mathrm{H}$ distance of $0.85 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. The H atoms of $\mathrm{C}-\mathrm{H}$ groups were placed geometrically and during refinement were treated using a riding model, with $\mathrm{C}-\mathrm{H}=0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The coordination of the metal ions in (I). Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes (i) $x,-y+1 / 2, z+1 / 2$; (ii) $-x+1 / 2, y, z+1 / 2$; (iii) $-x+1 / 2,-y+1 / 2, z$; (iv) $-x+1,-y+1,-z+1$; (v) $-x+1, y+1 / 2$, $z+1 / 2$.

Figure 2
A view, approximately along the b axis, showing the alternation of type 1 and type 2 layers along the a axis.

Poly[tetraaqua-di- μ_{4}-malonato-barium(II)cadmium(II)]

Crystal data

$\left[\mathrm{BaCd}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=525.90$
Orthorhombic, Pccn
Hall symbol: -P 2ab 2ac
$a=18.809$ (4) \AA
$b=6.9224$ (14) \AA
$c=9.6849(19) \AA$
$V=1261.0(4) \AA^{3}$
$Z=4$
$F(000)=992$
$D_{\mathrm{x}}=2.770 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3576 reflections
$\theta=3.1-26.4^{\circ}$
$\mu=4.85 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Prism, colorless
$0.24 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\min }=0.370, T_{\text {max }}=0.662$

> 5716 measured reflections
> 1103 independent reflections
> 978 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.059$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.2^{\circ}$
> $h=-22 \rightarrow 10$
> $k=-8 \rightarrow 8$
> $l=-10 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.161$
$S=1.06$
1103 reflections
94 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0364 P)^{2}+63.5907 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=1.94 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-1.24 \mathrm{e} \AA^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0147 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Ba1	0.2500	0.2500	$0.50669(11)$	$0.0320(5)$
Cd1	0.5000	0.5000	0.5000	$0.0320(6)$
O1	$0.5419(5)$	$0.2940(12)$	$0.0939(9)$	$0.030(2)$
O2	$0.5475(5)$	$0.4394(15)$	$0.2939(10)$	$0.035(2)$
O3	$0.4014(5)$	$0.3657(15)$	$0.4162(9)$	$0.034(2)$
O4	$0.3196(5)$	$0.3410(17)$	$0.2530(9)$	$0.035(2)$
O5	$0.3078(5)$	$0.5890(15)$	$0.6370(11)$	$0.041(3)$
H5B	0.2892	0.6078	0.7177	0.061^{*}
H5A	0.3517	0.5665	0.6370	0.061^{*}
O6	$0.3163(5)$	$-0.1005(15)$	$0.4378(11)$	$0.041(2)$
H6A	0.3571	-0.1227	0.4039	0.062^{*}
H6B	0.3010	-0.1850	0.4966	0.062^{*}
C1	$0.5135(7)$	$0.3835(18)$	$0.1916(14)$	$0.029(3)$
C2	$0.4344(7)$	$0.4323(19)$	$0.1784(13)$	$0.028(3)$
H2A	0.4307	0.5714	0.1686	0.033^{*}

H2B	0.4178	0.3763	0.0924	0.033^{*}
C3	$0.3825(7)$	$0.3720(19)$	$0.2905(15)$	$0.030(3)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba 1	$0.0311(8)$	$0.0367(8)$	$0.0281(7)$	$0.0015(5)$	0.000	0.000
Cd 1	$0.0341(9)$	$0.0357(9)$	$0.0261(8)$	$-0.0001(6)$	$-0.0021(6)$	$-0.0004(6)$
O 1	$0.035(5)$	$0.018(4)$	$0.037(5)$	$-0.003(4)$	$0.005(4)$	$-0.005(4)$
O 2	$0.028(5)$	$0.045(6)$	$0.033(5)$	$0.004(5)$	$-0.006(4)$	$-0.007(5)$
O 3	$0.031(5)$	$0.046(6)$	$0.026(5)$	$-0.009(4)$	$-0.002(4)$	$0.003(4)$
O 4	$0.020(5)$	$0.052(6)$	$0.032(5)$	$-0.010(5)$	$-0.001(4)$	$0.001(4)$
O 5	$0.030(5)$	$0.041(6)$	$0.052(6)$	$0.001(5)$	$-0.006(5)$	$-0.001(5)$
O6	$0.031(5)$	$0.044(6)$	$0.049(6)$	$0.004(5)$	$0.011(5)$	$0.006(5)$
C1	$0.031(7)$	$0.021(6)$	$0.034(7)$	$0.001(5)$	$0.000(6)$	$0.001(5)$
C2	$0.029(7)$	$0.029(7)$	$0.025(6)$	$-0.003(6)$	$0.001(6)$	$0.000(5)$
C3	$0.032(7)$	$0.023(7)$	$0.036(7)$	$0.001(6)$	$-0.002(6)$	$-0.003(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ba} 1-\mathrm{O} 4^{\text {i }}$	2.794 (9)	Cd1-O1 ${ }^{\text {v }}$	2.364 (8)
$\mathrm{Ba}-\mathrm{O} 4{ }^{\text {ii }}$	2.794 (9)	$\mathrm{Cd} 1-\mathrm{Ol}^{1}$	2.364 (8)
$\mathrm{Ba} 1-\mathrm{O} 6^{\text {iii }}$	2.809 (10)	$\mathrm{O} 1-\mathrm{C} 1$	1.252 (16)
$\mathrm{Ba} 1-\mathrm{O} 6$	2.809 (10)	O1- $\mathrm{Cd1}^{\text {vi }}$	2.364 (8)
$\mathrm{Ba} 1-\mathrm{O} 4{ }^{\text {iii }}$	2.854 (9)	$\mathrm{O} 2-\mathrm{C} 1$	1.241 (16)
$\mathrm{Ba} 1-\mathrm{O} 4$	2.854 (9)	$\mathrm{O} 3-\mathrm{C} 3$	1.269 (17)
$\mathrm{Ba} 1-\mathrm{O} 5$	2.877 (10)	O4-C3	1.255 (16)
$\mathrm{Ba} 1-\mathrm{O} 5^{\text {iii }}$	2.877 (10)	O4-Ba1 ${ }^{\text {vii }}$	2.794 (9)
$\mathrm{Ba} 1-\mathrm{O} 3{ }^{\text {iii }}$	3.086 (9)	O5-H5B	0.8658
$\mathrm{Ba}-\mathrm{O} 3$	3.086 (9)	O5-H5A	0.8410
$\mathrm{Ba} 1-\mathrm{C} 3{ }^{\text {iii }}$	3.363 (14)	O6-H6A	0.8479
$\mathrm{Ba}-\mathrm{C} 3$	3.363 (14)	O6-H6B	0.8659
$\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {iv }}$	2.227 (10)	$\mathrm{C} 1-\mathrm{C} 2$	1.531 (18)
$\mathrm{Cd} 1-\mathrm{O} 2$	2.227 (10)	C2-C3	1.518 (19)
$\mathrm{Cd} 1-\mathrm{O}^{\text {iv }}$	2.227 (9)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{Cd} 1-\mathrm{O} 3$	2.227 (9)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Ba}-\mathrm{O} 4^{\mathrm{ii}}$	62.7 (4)	$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{C} 3$	103.9 (3)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	127.3 (3)	$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3$	145.4 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 6^{\text {iii }}$	78.5 (3)	O6 ${ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3$	88.0 (3)
O4- ${ }^{\text {i }}$ - ${ }^{\text {a }}$-O6	78.5 (3)	O6-Ba1-C3	74.9 (3)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 6$	127.3 (3)	$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3$	81.9 (3)
O6 ${ }^{\text {iii }}$ - $\mathrm{Ba} 1-\mathrm{O} 6$	152.5 (4)	$\mathrm{O} 4-\mathrm{Ba}-\mathrm{C} 3$	21.3 (3)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 4^{\text {iii }}$	154.2 (5)	O5-Ba1-C3	77.8 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 4^{\text {iii }}$	124.7 (4)	$\mathrm{O} 5 \mathrm{iii}-\mathrm{Ba} 1-\mathrm{C} 3$	139.3 (3)
$\mathrm{O} 6^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 4^{\text {iii }}$	77.4 (3)	O3iii- ${ }^{\text {iid }} 1-\mathrm{C} 3$	124.9 (3)
O6- $\mathrm{Ba} 1-\mathrm{O} 4{ }^{\text {iii }}$	79.0 (3)	$\mathrm{O} 3-\mathrm{Ba}-\mathrm{C} 3$	22.2 (3)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 4$	124.7 (4)	$\mathrm{C} 3{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3$	103.0 (5)

$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 4$	154.2 (5)
O6 ${ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 4$	79.0 (3)
O6-Ba1-O4	77.4 (3)
$\mathrm{O} 4{ }^{\text {iii- }} \mathrm{Ba} 1-\mathrm{O} 4$	61.2 (4)
$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{O} 5$	68.4 (3)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 5$	67.6 (3)
O6 $6^{\text {iiii }} \mathrm{Ba} 1-\mathrm{O} 5$	64.4 (3)
O6-Ba1-O5	129.8 (3)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 5$	136.9 (3)
O4-Ba1-O5	91.4 (3)
$\mathrm{O} 4-\mathrm{Ba} 1-\mathrm{O} 5^{\text {iii }}$	67.6 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 5^{\text {iii }}$	68.4 (3)
O6 $6^{\text {iiil-Bal- }}$ - $5^{\text {iii }}$	129.8 (3)
O6- $\mathrm{Ba} 1-\mathrm{O} 5{ }^{\text {iii }}$	64.4 (3)
$\mathrm{O} 4{ }^{\text {iiil- }}$ - ${ }^{\text {a }}$ - $5^{\text {iiii }}$	91.4 (3)
O4-Bal-O5 ${ }^{\text {iii }}$	136.9 (3)
O5- $\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	128.0 (4)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 3^{\text {iii }}$	128.1 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	82.4 (3)
O6 $6^{\text {iiil-Ba1-O3 }}{ }^{\text {iii }}$	75.3 (3)
$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	96.8 (3)
$\mathrm{O} 4{ }^{\text {iiil- }}$ - ${ }^{\text {a }}$ - $3^{\text {iiii }}$	43.5 (3)
$\mathrm{O} 4-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	103.7 (3)
$\mathrm{O} 5-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	133.2 (3)
$\mathrm{O} 5{ }^{\text {iiil-Bal- }}$ - $3^{\text {iii }}$	64.2 (3)
O4i-Ba1-O3	82.4 (3)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 3$	128.1 (3)
O6 $6^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 3$	96.8 (3)
O6-Ba1-O3	75.3 (3)
$\mathrm{O} 4{ }^{\text {iiii- }} \mathrm{Ba} 1-\mathrm{O} 3$	103.7 (3)
O4-Ba1-O3	43.5 (3)
O5-Ba1-O3	64.2 (3)
$\mathrm{O} 5{ }^{\text {iiii- }} \mathrm{Ba} 1-\mathrm{O} 3$	133.2 (3)
$\mathrm{O} 3{ }^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{O} 3$	147.0 (3)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{C} 3^{\text {iii }}$	145.3 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{C} 3^{\text {iii }}$	103.9 (3)
O6 $6^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{C} 3^{\text {iii }}$	74.9 (3)
O6- $\mathrm{Ba} 1-\mathrm{C}^{\text {iii }}$	88.0 (3)
$\mathrm{O} 4{ }^{\text {iiil-Bal- }}$ - ${ }^{\text {iii }}$	21.3 (3)
$\mathrm{O} 4-\mathrm{Ba} 1-\mathrm{C} 3{ }^{\text {iii }}$	81.9 (3)
O5- $\mathrm{Ba} 1-\mathrm{C} 3{ }^{\text {iii }}$	139.3 (3)
$\mathrm{O} 5{ }^{\text {iiil-Bal- }}$ - $3^{\text {iii }}$	77.8 (3)
$\mathrm{O} 3{ }^{\text {iiil-Bal- }}$ - $3^{\text {iii }}$	22.2 (3)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{C}^{\text {iii }}$	124.9 (3)
$\mathrm{O}^{\text {iv }}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1$	-170.4 (11)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1$	9.6 (11)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1$	-77.2 (11)

$\mathrm{O} 2{ }^{\text {iv}}-\mathrm{Cd} 1-\mathrm{O} 2$	180.000 (1)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {iv }}$	85.9 (3)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O}^{3 \text { iv }}$	94.1 (3)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Cd} 1-\mathrm{O} 3$	94.1 (3)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 3$	85.9 (3)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Cd} 1-\mathrm{O} 3$	180.0 (3)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Cd} 1-\mathrm{O}^{\text {v }}$	92.8 (3)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O}^{\text {v }}$	87.2 (3)
$\mathrm{O} 3^{\text {iv }}-\mathrm{Cd} 1-\mathrm{O}^{\text {v }}$	93.3 (3)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O}^{\text {v }}$	86.7 (3)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Cd} 1-\mathrm{O} 1^{\text {i }}$	87.2 (3)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{Ol}^{\mathrm{i}}$	92.8 (3)
$\mathrm{O}^{\text {iv }}-\mathrm{Cd} 1-\mathrm{Ol}^{\text {i }}$	86.7 (3)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{Ol}^{\mathrm{i}}$	93.3 (3)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Cd} 1-\mathrm{O} 1^{\text {i }}$	180.0 (4)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cd} 1^{\text {vi }}$	125.1 (8)
C1-O2-Cd1	124.6 (9)
C3-O3-Cd1	124.7 (9)
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{Ba} 1$	91.3 (8)
$\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{Ba} 1$	140.6 (4)
$\mathrm{C} 3-\mathrm{O} 4-\mathrm{Ba} 1^{\text {vii }}$	136.6 (9)
C3-O4-Bal	102.8 (8)
$\mathrm{Ba} 1^{\text {vii }}-\mathrm{O} 4-\mathrm{Ba} 1$	118.0 (3)
Ba1-O5-H5B	111.5
Bal-O5-H5A	102.7
H5B-O5-H5A	115.1
Ba1-O6-H6A	130.6
Ba1-O6-H6B	106.2
H6A-O6-H6B	115.7
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	122.6 (12)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	119.9 (12)
O1-C1-C2	117.4 (12)
C3-C2-C1	120.2 (11)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	107.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	107.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.3
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	106.9
O4-C3-O3	122.4 (13)
O4-C3-C2	116.4 (12)
O3-C3-C2	121.0 (12)
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{Ba} 1$	55.9 (7)
O3-C3-Ba1	66.6 (7)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Ba} 1$	172.1 (9)
O6- $\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{Ba} 1^{\text {vii }}$	84.2 (4)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{Ba} 1^{\text {vii }}$	0.0
$\mathrm{O} 5-\mathrm{Ba}-\mathrm{O} 4-\mathrm{Ba}^{\text {vii }}$	-145.1 (4)

$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1$	102.8 (11)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 3$	148.6 (11)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 3$	-31.4 (11)
$\mathrm{O} 1{ }^{\mathrm{v}}-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 3$	56.0 (11)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 3$	-124.0 (11)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{Ba} 1$	-3.7 (7)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{Ba} 1$	176.3 (7)
$\mathrm{O} 12{ }^{-} \mathrm{Cd} 1-\mathrm{O} 3-\mathrm{Ba} 1$	-96.3 (6)
O1- ${ }^{\text {i }}$ - $1-\mathrm{O} 3-\mathrm{Ba} 1$	83.7 (6)
$\mathrm{O} 4-\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3$	166.0 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3$	-147.8 (8)
O6 ${ }^{\text {iiii- }}$ - ${ }^{\text {a }} 1-\mathrm{O} 3-\mathrm{C} 3$	-67.2 (8)
$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3$	86.0 (8)
$\mathrm{O} 4{ }^{\text {iiii}}-\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3$	11.5 (8)
$\mathrm{O} 4-\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3$	-1.1 (7)
$\mathrm{O} 5-\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3$	-124.4 (9)
$\mathrm{O} 5{ }^{\text {iiii- }} \mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3$	116.7 (8)
$\mathrm{O} 3{ }^{\text {iii] }}$ - $\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3$	6.3 (7)
C3 ${ }^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3$	9.2 (11)
$\mathrm{O} 4-\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{Cd} 1$	-36.5 (7)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{Cd} 1$	9.7 (8)
O6 $6^{\text {iii- }} \mathrm{Ba} 1-\mathrm{O} 3-\mathrm{Cd} 1$	90.4 (7)
O6-Ba1-O3-Cd1	-116.5 (7)
$\mathrm{O} 4{ }^{\text {iiii }}$ - $\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{Cd} 1$	169.0 (6)
O4-Ba1-O3-Cd1	156.5 (9)
O5-Ba1-O3-Cd1	33.2 (6)
$\mathrm{O} 5{ }^{\text {iiii-}} \mathrm{Ba} 1-\mathrm{O} 3-\mathrm{Cd} 1$	-85.7 (7)
O3iii-Ba1-O3-Cd1	163.8 (7)
C3 $3^{\text {iii }}$ - $\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{Cd} 1$	166.7 (6)
$\mathrm{C} 3-\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{Cd} 1$	157.5 (13)
$\mathrm{O} 4-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{C} 3$	-14.5 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{C} 3$	84.2 (9)
O6iii- ${ }^{\text {iii }}$ - ${ }^{\text {a }}-\mathrm{O} 4-\mathrm{C} 3$	113.5 (9)
$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{C} 3$	-80.7 (9)
O4 ${ }^{\text {iiii- }} \mathrm{Ba} 1-\mathrm{O} 4-\mathrm{C} 3$	-164.9 (12)
$\mathrm{O} 5-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{C} 3$	49.9 (9)
$\mathrm{O} 5^{\text {iiii- }} \mathrm{Ba} 1-\mathrm{O} 4-\mathrm{C} 3$	-108.1 (9)
O3 ${ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{C} 3$	-174.8 (9)
$\mathrm{O} 3-\mathrm{Ba}-\mathrm{O} 4-\mathrm{C} 3$	1.1 (8)
$\mathrm{C} 3{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{C} 3$	-170.4 (8)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{Ba} 1^{\text {vii }}$	150.4 (5)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{Ba} 1^{\text {vii }}$	-110.9 (6)
O6 ${ }^{\text {iiii }}$ - $\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{Ba} 1^{\text {vii }}$	-81.6 (4)

O 5 iii- $\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{Ba} 1^{\text {vii }}$	56.8 (6)
$\mathrm{O} 3^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{Ba}^{\text {vii }}$	-9.8 (5)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{Ba} 1^{\text {vii }}$	166.0 (7)
$\mathrm{C} 3{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{Ba} 1^{\text {vii }}$	-5.5 (4)
$\mathrm{C} 3-\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{Ba} 1^{\text {vii }}$	164.9 (12)
$\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	-156.7 (9)
$\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	26.4 (17)
$\mathrm{Cd1} 1^{\text {vi}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	129.4 (11)
$\mathrm{Cd} 1{ }^{\text {vi}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	-53.6 (14)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-57.2 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	125.7 (13)
$\mathrm{Ba}{ }^{\text {vii }}-\mathrm{O} 4-\mathrm{C} 3-\mathrm{O} 3$	-162.7 (10)
$\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{C} 3-\mathrm{O} 3$	-2.2 (15)
$\mathrm{Ba} 1^{\text {vii }}-\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$	22 (2)
$\mathrm{Ba} 1-\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$	-177.9 (9)
$\mathrm{Ba} 1{ }^{\text {vii }}-\mathrm{O} 4-\mathrm{C} 3-\mathrm{Ba} 1$	-160.5 (15)
Cd1-O3-C3-O4	-160.9 (10)
$\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 4$	2.0 (14)
$\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	14.7 (18)
$\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	177.5 (11)
$\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{C} 3-\mathrm{Ba} 1$	-162.9 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$	-151.1 (13)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	33.1 (19)
$\mathrm{O} 4-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 4$	167.7 (7)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 4$	-130.5 (10)
$\mathrm{O} 6^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 4$	-64.3 (9)
O6-Ba1-C3-O4	94.0 (9)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 4$	13.3 (10)
O5-Ba1-C3-O4	-128.5 (9)
O5iii- ${ }^{\text {iii }}$ - $-\mathrm{C} 3-\mathrm{O} 4$	96.0 (9)
O3 ${ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 4$	6.2 (10)
$\mathrm{O} 3-\mathrm{Ba}-\mathrm{C} 3-\mathrm{O} 4$	-178.0 (14)
$\mathrm{C} 3{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 4$	9.7 (8)
$\mathrm{O} 4-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 3$	-14.3 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 3$	47.5 (10)
$\mathrm{O} 6^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 3$	113.7 (8)
O6-Bal-C3-O3	-88.0 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 3$	-168.7 (8)
$\mathrm{O} 4-\mathrm{Ba}-\mathrm{C} 3-\mathrm{O} 3$	178.0 (14)
O5-Bal-C3-O3	49.5 (8)
$\mathrm{O} 5^{\text {iii }}-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 3$	-86.0 (9)
O 3 iii- $\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 3$	-175.8 (5)
$\mathrm{C} 3 \mathrm{iii}-\mathrm{Ba} 1-\mathrm{C} 3-\mathrm{O} 3$	-172.3 (9)

[^0]
supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$\underline{D-H \cdots A}$	D-H	H \cdots A	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
O6-H6B $\cdots{ }^{\text {O }}$ viii	0.87	2.08	2.893 (14)	157
O6- $\mathrm{H} 6 A^{\cdots} \mathrm{O} 1^{\text {vi }}$	0.85	1.99	2.781 (13)	156
O5- $\mathrm{H} 5 B \cdots{ }^{\circ}{ }^{\text {i }}$	0.87	2.19	2.919 (15)	141
O5-H5A \cdots O2 ${ }^{\text {iv }}$	0.84	2.01	2.810 (14)	159

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (iv) $-x+1,-y+1,-z+1$; (vi) $-x+1, y-1 / 2,-z+1 / 2$; (viii) $x, y-1, z$.

[^0]: Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (ii) $-x+1 / 2, y, z+1 / 2$; (iii) $-x+1 / 2,-y+1 / 2, z$; (iv) $-x+1,-y+1,-z+1$; (v) $-x+1, y+1 / 2,-z+1 / 2$; (vi) $-x+1, y-1 / 2$, $-z+1 / 2$; (vii) $-x+1 / 2, y, z-1 / 2$.

