

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-({4-[Bis(2-cyanoethyl)amino]phenyl}diazenyl)benzenesulfonamide

Giuliana Gervasio,* Domenica Marabello and Federica Bertolotti

Dipartimento di Chimica I,F.M. e Centro CrisDi, University of Turin, Via P. Giuria 7, 10125 Torino, Italy

Correspondence e-mail: giuliana.gervasio@unito.it

Received 9 December 2010; accepted 17 December 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.055; data-to-parameter ratio = 16.8.

In the title compound, $C_{18}H_{16}N_6O_2S$, which belongs to the family of azo dyes, the dihedral angle between the benzene rings is 26.16 (7)°. In the crystal, molecules are joined by N- $H \cdots N$ and $C - H \cdots N$ hydrogen bonds into double chains parallel to the *a* axis.

Related literature

For the synthesis and properties of azo dyes, see: Wenker (1935); Ledoux et al. (2000); Viscardi et al. (2002). For a related structure, see: Sasaki et al. (2004).

Experimental

Crystal data C18H18N6O2S

 $M_r = 382.45$

organic	compounds
---------	-----------

Triclinic, $P\overline{1}$	V = 929.8 (3) Å ³
a = 7.8093 (16) A	Z = 2
b = 11.035 (2) Å	Mo $K\alpha$ radiation
c = 11.776 (3) Å	$\mu = 0.20 \text{ mm}^{-1}$
$\alpha = 94.268 \ (4)^{\circ}$	T = 295 K
$\beta = 106.544 \ (4)^{\circ}$	$0.30 \times 0.23 \times 0.03 \text{ mm}$
$\gamma = 104.568 \ (5)^{\circ}$	
Data collection	
Siemens-Bruker APEX	4100 independent reflections

Siemens Druker / II L/	4100 independent reneetions
diffractometer	1577 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.040$
(SORTAV; Blessing, 1995)	15 standard reflections every 60 min
$T_{\min} = 0.93, T_{\max} = 1.00$	intensity decay: none
9271 measured reflections	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of

$K[F > 2\sigma(F)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.055$	independent and constrained
S = 0.86	refinement
4100 reflections	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
244 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C15-H15A\cdots N23^{i}$	0.93	2.52	3.427 (4)	166
$N10-H10B\cdots N27^{ii}$	0.91(2)	2.19 (2)	3.084 (2)	165
$N10-H10A\cdots N12^{iii}$	0.94 (2)	2.19 (2)	3.124 (2)	176

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x, -y, -z + 1; (iii) x - 1, y, z.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We thank Dr C. Barolo for supplying crystals of the title compound.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2541).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Bruker (2007). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.

Ledoux, I., Zyss, J., Barni, E., Barolo, C., Diulgheroff, N. & Quagliotto, P. (2000). Synth. Met. 115, 213-217.

Sasaki, C., Kitoh, S., Hayashi, H. & Kunimoto, K.-K. (2004). Anal. Sci. X-ray Struct. Anal Online, 20, x117-x118.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Viscardi, G., Quagliotto, P., Barolo, C., Diulgheroff, N., Caputo, G. & Barni, E. (2002). Dyes Pigments, 54, 131-140.

Wenker, H. (1935). Ind. Eng. Chem. Anal. 27, 40-41.

supporting information

Acta Cryst. (2011). E67, o231 [https://doi.org/10.1107/S1600536810053158] 4-({4-[Bis(2-cyanoethyl)amino]phenyl}diazenyl)benzenesulfonamide

Giuliana Gervasio, Domenica Marabello and Federica Bertolotti

S1. Comment

The blood gas (CO₂ or O₂) measurement is often required in modern diagnosis and the indicator properties of azo dyestuff have been proved very informative in this field, as proposed in the pioneering work of Wenker (1935). The title compound, 4-diethylcyanoamino-4'-sulfonylamino-azobenzene (Fig. 1), is part of this study and has been synthesized according to a modification of a standard procedure (Ledoux *et al.*, 2000; Viscardi *et al.*, 2002). Bond lengths and angles agree with those of a similar compound reported by Sasaki *et al.* (2004). The two phenyl rings form a dihedral angle of 26.16 (7)°. In the crystal packing, double chains of molecules parallel to the *a* axis are generated by weak C—H···N and N—H···N hydrogen bonds, where N acceptor atoms are the azo (N12) or cyano (N27) atoms (Table 1).

S2. Experimental

The title compound has been obtained according to Ledoux *et al.* (2000) and Viscardi *et al.* (2002), and prepared by a modification of a standard procedure in analogy to similar compounds previously reported. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

S3. Refinement

All H atoms, except those of the NH₂ group, have been placed in geometrically idealized positions and refined as riding, with C—H = 0.93–0.97 Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$. The NH₂ hydrogen atoms have been located in the final Fourier map and refined freely with $U_{iso}(H) = 1.2 U_{eq}(N)$. A small and poorly diffracting crystal has been used in the analysis.

Figure 1

The molecular structure of the title compound showing the atomic numbering and 50% probability displacements ellipsoids.

4-({4-[Bis(2-cyanoethyl)amino]phenyl}diazenyl)benzenesulfonamide

Crystal data

C₁₈H₁₈N₆O₂S $M_r = 382.45$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.8093 (16) Å b = 11.035 (2) Å c = 11.776 (3) Å a = 94.268 (4)° $\beta = 106.544$ (4)° $\gamma = 104.568$ (5)° V = 929.8 (3) Å³

Data collection

Siemens–Bruker APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ scans Absorption correction: multi-scan (*SORTAV*; Blessing, 1995) $T_{\min} = 0.93, T_{\max} = 1.00$ 9271 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.055$ S = 0.864100 reflections Z = 2 F(000) = 400 $D_x = 1.359 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 52 reflections $\theta = 1.9-20.2^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 295 K Plate, red $0.30 \times 0.23 \times 0.03 \text{ mm}$

4100 independent reflections 1577 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 28.4^\circ, \theta_{min} = 1.8^\circ$ $h = -10 \rightarrow 10$ $k = -14 \rightarrow 14$ $I = -14 \rightarrow 15$ 15 standard reflections every 60 min intensity decay: none

244 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2)]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.40 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.4369 (3)	0.3324 (2)	0.1462 (2)	0.0329 (7)
C2	-0.3729 (3)	0.2269 (2)	0.1422 (2)	0.0385 (7)
H2A	-0.4475	0.1532	0.0896	0.046*
C3	-0.1985 (3)	0.2304 (2)	0.2160 (2)	0.0397 (7)
H3A	-0.1535	0.1603	0.2117	0.048*
C4	-0.0912 (3)	0.3396 (2)	0.2967 (2)	0.0338 (7)
C5	-0.1585 (3)	0.4427 (2)	0.3021 (2)	0.0474 (8)
H5A	-0.0880	0.5146	0.3582	0.057*
C6	-0.3308 (3)	0.4404 (2)	0.2245 (2)	0.0438 (8)
H6A	-0.3735	0.5118	0.2258	0.053*
S7	-0.66133 (10)	0.32583 (7)	0.05031 (7)	0.0441 (2)
08	-0.6950 (2)	0.44536 (15)	0.07477 (14)	0.0586 (6)
O9	-0.6729 (2)	0.27865 (16)	-0.06983 (13)	0.0548 (6)
N10	-0.8133 (3)	0.2210 (2)	0.0862 (2)	0.0468 (7)
H10A	-0.817 (3)	0.243 (2)	0.1638 (18)	0.056*
H10B	-0.799 (3)	0.1427 (19)	0.0698 (19)	0.056*
N11	0.0845 (3)	0.34976 (19)	0.38119 (16)	0.0416 (6)
N12	0.1748 (3)	0.28313 (18)	0.34648 (16)	0.0402 (6)
C13	0.3437 (3)	0.2869 (2)	0.4342 (2)	0.0343 (7)
C14	0.4404 (3)	0.2039 (2)	0.4088 (2)	0.0406 (8)
H14A	0.3980	0.1541	0.3336	0.049*
C15	0.5974 (3)	0.1942 (2)	0.4928 (2)	0.0416 (8)
H15A	0.6601	0.1382	0.4737	0.050*
C16	0.6644 (3)	0.2679 (2)	0.6072 (2)	0.0373 (7)
C17	0.5725 (3)	0.3570 (2)	0.6288 (2)	0.0388 (7)
H17A	0.6186	0.4110	0.7019	0.047*
C18	0.4168 (3)	0.3660 (2)	0.5447 (2)	0.0365 (7)
H18A	0.3586	0.4259	0.5614	0.044*
N19	0.8150 (3)	0.2551 (2)	0.69548 (18)	0.0471 (7)
C20	0.9028 (4)	0.1477 (3)	0.6819 (2)	0.0713 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H20A	0.9460	0.1199	0.7584	0.086*	
H20B	0.8126	0.0760	0.6252	0.086*	
C21	1.0583 (4)	0.1988 (3)	0.6383 (2)	0.0766 (10)	
H21A	1.1448	0.2737	0.6924	0.092*	
H21B	1.0145	0.2216	0.5594	0.092*	
C22	1.1544 (4)	0.0919 (3)	0.6327 (3)	0.0738 (11)	
N23	1.2304 (4)	0.0229 (2)	0.6272 (2)	0.0917 (10)	
C24	0.8777 (3)	0.3258 (2)	0.8154 (2)	0.0445 (8)	
H24A	0.8795	0.4133	0.8098	0.053*	
H24B	1.0046	0.3248	0.8548	0.053*	
C25	0.7577 (3)	0.2751 (2)	0.8932 (2)	0.0538 (8)	
H25A	0.8088	0.3273	0.9717	0.065*	
H25B	0.6327	0.2814	0.8571	0.065*	
C26	0.7480 (4)	0.1423 (3)	0.9075 (3)	0.0547 (9)	
N27	0.7442 (3)	0.0422 (2)	0.9183 (2)	0.0735 (9)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0227 (18)	0.0427 (19)	0.0314 (16)	0.0090 (15)	0.0055 (14)	0.0084 (14)
C2	0.0346 (19)	0.0360 (18)	0.0405 (17)	0.0106 (15)	0.0069 (15)	-0.0041 (14)
C3	0.040(2)	0.041 (2)	0.0427 (17)	0.0215 (16)	0.0118 (15)	0.0065 (15)
C4	0.030 (2)	0.0396 (19)	0.0351 (17)	0.0149 (16)	0.0098 (14)	0.0099 (15)
C5	0.039 (2)	0.045 (2)	0.0466 (18)	0.0112 (16)	-0.0015 (16)	-0.0058 (15)
C6	0.038 (2)	0.041 (2)	0.0496 (18)	0.0204 (16)	0.0025 (16)	-0.0011 (16)
S 7	0.0330 (5)	0.0526 (6)	0.0437 (5)	0.0171 (4)	0.0030 (4)	0.0080 (4)
08	0.0472 (14)	0.0501 (14)	0.0769 (14)	0.0306 (11)	0.0030 (11)	0.0080 (11)
09	0.0463 (14)	0.0874 (16)	0.0290 (11)	0.0259 (11)	0.0041 (10)	0.0059 (11)
N10	0.0328 (15)	0.0556 (18)	0.0497 (16)	0.0109 (14)	0.0127 (13)	0.0012 (15)
N11	0.0277 (15)	0.0549 (17)	0.0401 (14)	0.0191 (13)	0.0017 (12)	0.0056 (12)
N12	0.0299 (15)	0.0549 (17)	0.0363 (14)	0.0157 (12)	0.0074 (12)	0.0094 (12)
C13	0.0276 (19)	0.0417 (19)	0.0362 (17)	0.0148 (15)	0.0094 (15)	0.0078 (15)
C14	0.039 (2)	0.051 (2)	0.0302 (16)	0.0160 (16)	0.0076 (15)	-0.0014 (15)
C15	0.043 (2)	0.054 (2)	0.0379 (17)	0.0302 (17)	0.0143 (15)	0.0024 (16)
C16	0.0285 (19)	0.049 (2)	0.0380 (18)	0.0181 (15)	0.0089 (15)	0.0108 (15)
C17	0.0333 (19)	0.0476 (19)	0.0336 (17)	0.0197 (15)	0.0023 (14)	-0.0012 (14)
C18	0.0327 (19)	0.0416 (19)	0.0376 (17)	0.0182 (15)	0.0089 (15)	0.0028 (15)
N19	0.0448 (17)	0.0643 (18)	0.0404 (15)	0.0410 (15)	0.0056 (13)	0.0005 (13)
C20	0.049 (2)	0.107 (3)	0.044 (2)	0.001 (2)	0.0126 (18)	0.0098 (19)
C21	0.078 (3)	0.073 (3)	0.064 (2)	0.006 (2)	0.013 (2)	0.016 (2)
C22	0.078 (3)	0.079 (3)	0.080(2)	0.052 (2)	0.024 (2)	0.008 (2)
N23	0.113 (3)	0.094 (2)	0.121 (2)	0.076 (2)	0.069 (2)	0.040 (2)
C24	0.043 (2)	0.059 (2)	0.0342 (17)	0.0288 (16)	0.0034 (15)	0.0058 (16)
C25	0.064 (2)	0.061 (2)	0.0455 (19)	0.0304 (18)	0.0190 (17)	0.0099 (17)
C26	0.051 (2)	0.061 (2)	0.054 (2)	0.015 (2)	0.0202 (17)	0.005 (2)
N27	0.069 (2)	0.055 (2)	0.095 (2)	0.0141 (18)	0.0277 (17)	0.0099 (18)

Geometric parameters (Å, °)

С1—С6	1.364 (3)	C15—C16	1.405 (3)
C1—C2	1.381 (3)	C15—H15A	0.9300
C1—S7	1.775 (2)	C16—N19	1.376 (3)
C2—C3	1.381 (3)	C16—C17	1.403 (3)
C2—H2A	0.9300	C17—C18	1.363 (3)
C3—C4	1.387 (3)	C17—H17A	0.9300
С3—НЗА	0.9300	C18—H18A	0.9300
C4—C5	1.373 (3)	N19—C24	1.447 (3)
C4—N11	1.419 (3)	N19—C20	1.530 (3)
C5—C6	1.388 (3)	C20—C21	1.452 (3)
С5—Н5А	0.9300	C20—H20A	0.9700
С6—Н6А	0.9300	C20—H20B	0.9700
S7—O8	1.4326 (15)	C21—C22	1.556 (3)
S7—O9	1.4403 (15)	C21—H21A	0.9700
S7—N10	1.610 (2)	C21—H21B	0.9700
N10—H10A	0.939 (19)	C22—N23	1.085 (3)
N10—H10B	0.913 (19)	C24—C25	1.527 (3)
N11—N12	1.259 (2)	C24—H24A	0.9700
N12—C13	1.414 (3)	C24—H24B	0.9700
C13—C14	1.390 (3)	C25—C26	1.472 (3)
C13—C18	1.393 (3)	C25—H25A	0.9700
C14—C15	1.372 (3)	C25—H25B	0.9700
C14—H14A	0.9300	C26—N27	1.116 (3)
C6—C1—C2	120.7 (2)	N19—C16—C17	120.6 (2)
C6—C1—S7	119.93 (19)	N19—C16—C15	121.9 (2)
C2—C1—S7	119.4 (2)	C17—C16—C15	117.5 (2)
C1—C2—C3	120.2 (2)	C18—C17—C16	121.3 (2)
C1—C2—H2A	119.9	C18—C17—H17A	119.4
C3—C2—H2A	119.9	C16—C17—H17A	119.4
C2—C3—C4	119.3 (2)	C17—C18—C13	121.0 (2)
С2—С3—НЗА	120.4	C17—C18—H18A	119.5
C4—C3—H3A	120.4	C13—C18—H18A	119.5
C5—C4—C3	120.0 (2)	C16—N19—C24	122.0 (2)
C5—C4—N11	116.5 (2)	C16—N19—C20	122.3 (2)
C3—C4—N11	123.5 (2)	C24—N19—C20	114.63 (19)
C4—C5—C6	120.5 (2)	C21—C20—N19	106.4 (3)
C4—C5—H5A	119.7	C21—C20—H20A	110.4
С6—С5—Н5А	119.7	N19—C20—H20A	110.4
C1—C6—C5	119.3 (2)	C21—C20—H20B	110.4
С1—С6—Н6А	120.3	N19—C20—H20B	110.4
С5—С6—Н6А	120.3	H20A—C20—H20B	108.6
O8—S7—O9	119.73 (10)	C20—C21—C22	106.0 (3)
O8—S7—N10	106.68 (11)	C20—C21—H21A	110.5
O9—S7—N10	106.08 (12)	C22—C21—H21A	110.5
O8—S7—C1	108.04 (11)	C20—C21—H21B	110.5

O9—S7—C1	107.70 (11)	C22—C21—H21B	110.5
N10—S7—C1	108.15 (12)	H21A—C21—H21B	108.7
S7—N10—H10A	112.7 (14)	N23—C22—C21	175.3 (4)
S7—N10—H10B	109.6 (15)	N19—C24—C25	114.2 (2)
H10A—N10—H10B	116 (2)	N19—C24—H24A	108.7
N12—N11—C4	114.1 (2)	C25—C24—H24A	108.7
N11—N12—C13	113.8 (2)	N19—C24—H24B	108.7
C14—C13—C18	118.2 (2)	C25—C24—H24B	108.7
C14—C13—N12	117.5 (2)	H24A—C24—H24B	107.6
C18—C13—N12	124.3 (2)	C26—C25—C24	112.5 (2)
C15—C14—C13	121.2 (2)	С26—С25—Н25А	109.1
C15—C14—H14A	119.4	С24—С25—Н25А	109.1
C13—C14—H14A	119.4	С26—С25—Н25В	109.1
C14—C15—C16	120.6 (2)	С24—С25—Н25В	109.1
C14—C15—H15A	119.7	H25A—C25—H25B	107.8
C16—C15—H15A	119.7	N27—C26—C25	178.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
C15—H15A…N23 ⁱ	0.93	2.52	3.427 (4)	166
N10—H10B…N27 ⁱⁱ	0.91 (2)	2.19 (2)	3.084 (2)	165
N10—H10A…N12 ⁱⁱⁱ	0.94 (2)	2.19 (2)	3.124 (2)	176

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x, -y, -z+1; (iii) x-1, y, z.