

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2'-lodo-2,2",3,3",4,4",5,5",6,6"-decamethyl-1,1':3',1"-terphenyl chloroform monosolvate

Marian Olaru, Sorin Rosca and Ciprian I. Rat*

Universitatea Babeş-Bolyai, Facultatea de Chimie și Inginerie Chimicã, 11 Arany Janos 400028 Clui-Napoca Romania Correspondence e-mail: crat@chem.ubbcluj.ro

Received 7 December 2010; accepted 15 December 2010

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.007 Å; R factor = 0.066; wR factor = 0.137; data-to-parameter ratio = 19.1.

The title compound, C₂₈H₃₃I·CHCl₃, forms dimers through $C-I \cdot \cdot \pi$ interactions. The crystal structure is consolidated by the presence of $C-H \cdot \cdot \pi$ interactions between the chloroform solvent and the main molecule.

Related literature

For the synthesis and spectroscopic characterization of 2'iodo-2,2",3,3",4,4",5,5",6,6"-decamethyl-1,1':3',1"-terphenyl, see: Hino et al. (2005); Duttwyler et al. (2008). For related mterphenyl iodides, see: Niemeyer (1998); Twamley et al. (2000); Zakharov et al. (2003). For general background to compounds with *m*-terphenyl substituents, see: Power (2004).

Experimental

Crystal data

C28H33I·CHCl3 $M_{*} = 615.81$ Monoclinic, $P2_1/n$ a = 12.0294 (10) Åb = 16.0651 (13) Åc = 15.3762 (12) Å $\beta = 103.385(1)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\rm min}=0.663,\ T_{\rm max}=0.712$

22910 measured reflections 5896 independent reflections 4698 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.056$

V = 2890.8 (4) Å³

Mo $K\alpha$ radiation

 $0.32\,\times\,0.28\,\times\,0.26$ mm

 $\mu = 1.40 \text{ mm}^{-1}$

T = 2.97 K

Z = 4

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.137$ S = 1.135896 reflections

308 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-1}$ $\Delta \rho_{\rm min} = -0.68~{\rm e}~{\rm \AA}^{-3}$

Table 1

C-H··· π interactions (Å, °).

Cg2 and C3 are the centroids of the C7-C12 and C18-C23 benzene rings, respectively.

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} C26 - H26A \cdots Cg2^{i} \\ C28 - H28A \cdots Cg2^{ii} \\ C29 - H29 \cdots Cg3^{iii} \end{array}$	0.96 0.96 0.98	3.86 (1) 3.53 (1) 3.42 (1)	2.97 2.87 2.44	155 127 177
Symmetry codes: (i $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.) -x + 2, -	-y, -z + 1; (ii)	$x + \frac{1}{2}, -y +$	$-\frac{1}{2}, z + \frac{1}{2};$ (iii)

Table 2

 $C-I \cdot \cdot \pi$ interactions (Å, °).

Cg3 is the centroid of the C18-C23 benzene ring.

$Y - X \cdots Cg$	Y - X	$X \cdots Cg$	$Y \cdots Cg$	$Y - X \cdots Cg$
$C1 - I1 \cdots Cg3^i$	2.099 (4)	3.975 (2)	6.026 (5)	164.67 (13)
Symmetry code: (i)	2 - r - v - 1 - z			

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

This work was supported by the National University Research Council (CNCSIS) of Romania (project TE 295/ 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2291).

References

- Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duttwyler, S., Do, Q.-Q., Linden, A., Baldrige, K. K. & Siegel, J. S. (2008).
- Angew. Chem. Int. Ed. 47, 1719-1722 Hino, S., Olmstead, M. M., Fettinger, J. C. & Power, P. P. (2005). J. Organomet. Chem. 690, 1638-1644.
- Niemeyer, M. (1998). Organometallics, 17, 4649-4656.
- Power, P. P. (2004). J. Organomet. Chem. 689, 3904-3919.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Twamley, B., Hardman, N. J. & Power, P. P. (2000). Acta Cryst. C56, e514-e515.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zakharov, L. N., Rheingold, A. L. & Protasiewicz, J. D. (2003). Private Communication (refcode: TUWZAM). CCDC, Cambridge, England.

supporting information

Acta Cryst. (2011). E67, o213 [https://doi.org/10.1107/S1600536810052736]

2'-Iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl chloroform monosolvate

Marian Olaru, Sorin Roşca and Ciprian I. Raț

S1. Comment

m-Terphenyl substituents are sterrically crowded ligands used in stabilizing labile bonds and unusual geometries (Power, 2004).

We report herein the crystal structure of the title compound. The synthesis and the spectroscopic characterization of 2'iodo-2,2",3,3",4,4",5,5",6,6"-decamethyl-1,1':3',1"-terphenyl were previously reported (Hino *et al.*, 2005; Duttwyler *et al.*, 2008).

The crystal structure (Fig. 1) of the title compound is similar to the structures of other 2,6-diarylphenyliodides. The C—I bond length [2.099 (4) Å] is slightly smaller than those found in 2,6-(2,4,6 - $iPr_3C_6H_2)_2C_6H_3I$ [2.102 (6) Å] (Twamley *et al.*, 2000), 2,6-Ph₂C₆H₃I [2.122 (4) Å] (Niemeyer, 1998), and 2,6-Mes₂C₆H₃I [2.102 (5) Å] (Zakharov *et al.*, 2003).

Similar to the other 2,6-diarylphenyliodides, the dihedral angles between the flanking groups and the central benzene ring are close to 90° (Niemeyer, 1998; Twamley *et al.*, 2000; Zakharov *et al.*, 2003). This arrangement permits the presence of an intramolecular I···*Cg* contact [3.955 (1) Å]. The I···*Cg* interaction is reflected in the difference [$\Delta = 2.9^{\circ}$] at the C1 bonding angles.

In the crystal structure symmetry related molecules are linked into dimers through C—I··· π interactions (Table 1 and Fig. 2). In addition there are C—H··· π interactions (Table 2 and Fig. 2) that link the dimeric units and the solvent molecules into a three dimensional network.

S2. Experimental

The synthesis of 2'-iodo-2,2",3,3",4,4",5,5",6,6"-decamethyl-1,1':3',1"-terphenyl was carried out according to a previously described method (Hino *et al.*, 2005). Crystals of the title compound were obtained by slow evaporation of the solvent from a solution of 2'-iodo-2,2",3,3",4,4",5,5",6,6"-decamethyl-1,1':3',1"-terphenyl in chloroform.

S3. Refinement

Hydrogen atoms were placed in calculated positions with isotropic thermal parameters set at 1.2 times the carbon atoms directly attached for aromatic and methine hydrogen atoms and 1.5 for hydrogen atoms of the methyl groups. Methyl hydrogen atoms were allowed to rotate but not to tip.

Figure 1

Crystal structure of the title compound with labelling and displacement ellipsoids of C, Cl and I atoms drawn at 25% probability level.

Figure 2

Intermolecular C—H··· π and C—I··· π interactions in the structure of the title compound. Symmetry codes: (i) 2 - *x*,-*y*,1 - *z*; (ii) 1/2 + x,1/2 - y,1/2 + z; (iii) -1/2 + x,1/2 - y,-1/2 + z; (iv) 3/2 - x, -1/2 + y, 1/2 - z; (v) 5/2 - x, -1/2 + y, 3/2 - z. *Cg2* and *Cg3* are the centroids of the benzene rings C7–C12 and C18–C23, respectively.

2'-Iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl chloroform monosolvate

F(000) = 1248

 $\theta = 2.3 - 19.9^{\circ}$

 $\mu = 1.40 \text{ mm}^{-1}$

Block, colourless

 $0.32 \times 0.28 \times 0.26 \text{ mm}$

T = 297 K

 $D_{\rm x} = 1.415 {\rm Mg} {\rm m}^{-3}$

Melting point = 498-497 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3032 reflections

Crystal data

C₂₈H₃₃I·CHCl₃ $M_r = 615.81$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.0294 (10) Å b = 16.0651 (13) Å c = 15.3762 (12) Å $\beta = 103.385$ (1)° V = 2890.8 (4) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	22910 measured reflections
diffractometer	5896 independent reflections
Radiation source: fine-focus sealed tube	4698 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.056$
φ and ω scans	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(SADABS; Bruker, 2000)	$k = -20 \rightarrow 20$
$T_{\min} = 0.663, T_{\max} = 0.712$	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 1.13	H-atom parameters constrained
5896 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0465P)^2 + 3.6212P]$
308 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.031$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.83 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.68 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.7505 (4)	0.1344 (3)	0.4780 (3)	0.0364 (11)	
C2	0.6846 (4)	0.1920 (3)	0.4197 (3)	0.0383 (11)	
C3	0.6011 (5)	0.2346 (3)	0.4498 (3)	0.0499 (13)	
H3	0.5556	0.273	0.4122	0.06*	

C4	0.5835 (5)	0.2216 (4)	0.5341 (4)	0.0570(15)
H4	0.5278	0.2518	0.5535	0.068*
C5	0.6487 (5)	0.1637 (3)	0.5897 (3)	0.0490 (13)
Н5	0.6354	0.1544	0.6461	0.059*
C6	0.7338 (4)	0.1191 (3)	0.5631 (3)	0.0377 (11)
C7	0.6986 (4)	0.2074 (3)	0.3265 (3)	0.0377 (11)
C8	0.6370 (4)	0.1577 (3)	0.2572 (3)	0.0422 (12)
С9	0.6476 (4)	0.1740 (3)	0.1698 (3)	0.0476 (13)
C10	0.7155 (5)	0.2388 (3)	0.1525 (3)	0.0493 (13)
C11	0.7780 (4)	0.2865 (3)	0.2222(3)	0.0473 (12)
C12	0.7713 (4)	0.2701 (3)	0.3103 (3)	0.0422 (12)
C13	0.5589 (6)	0.0903 (4)	0.2764 (4)	0.0680 (17)
H13A	0.4823	0.1009	0.2431	0.102*
H13B	0.5607	0.0898	0.3391	0.102*
H13C	0.5839	0.0374	0.2592	0.102*
C14	0.5810(7)	0.1203 (5)	0.0945(4)	0.084(2)
H14A	0.6145	0 1244	0.0438	0.125*
H14B	0.5031	0.139	0.0782	0.125*
H14C	0.5831	0.0634	0.1139	0.125*
C15	0.7196 (6)	0.2594 (5)	0.0568 (4)	0.084(2)
H15A	0.6584	0.2314	0.0163	0.127*
H15B	0.7914	0.2415	0.046	0.127*
H15C	0.7117	0.3184	0.0476	0.127*
C16	0.8538(6)	0.3562 (4)	0.2035 (5)	0.079 (2)
H16A	0.813	0.3886	0.1538	0.118*
H16B	0.9211	0.3331	0.1895	0.118*
H16C	0.8753	0.3911	0.2553	0.118*
C17	0.8413 (5)	0.3199 (4)	0.3880 (4)	0.0681 (17)
H17A	0.8268	0.2997	0.443	0.102*
H17B	0.8204	0.3776	0.3807	0.102*
H17C	0.9211	0.3139	0.3893	0.102*
C18	0.8017 (4)	0.0550 (3)	0.6229 (3)	0.0368 (11)
C19	0.7593 (4)	-0.0266 (3)	0.6220 (3)	0.0396 (11)
C20	0.8242 (5)	-0.0875 (3)	0.6762 (3)	0.0468 (13)
C21	0.9318 (5)	-0.0657 (3)	0.7299 (3)	0.0489 (13)
C22	0.9726 (4)	0.0152 (3)	0.7312 (3)	0.0459 (12)
C23	0.9068 (4)	0.0763 (3)	0.6789 (3)	0.0447 (12)
C24	0.6463 (5)	-0.0464 (4)	0.5600 (4)	0.0608 (16)
H24A	0.6358	-0.1056	0.5565	0.091*
H24B	0.645	-0.0248	0.5015	0.091*
H24C	0.5859	-0.0214	0.5822	0.091*
C25	0.7790 (6)	-0.1748 (3)	0.6782 (4)	0.076 (2)
H25A	0.6995	-0.176	0.6484	0.114*
H25B	0.7879	-0.1924	0.7391	0.114*
H25C	0.8208	-0.2117	0.6483	0.114*
C26	1.0042 (6)	-0.1318 (4)	0.7865 (4)	0.078 (2)
H26A	1.0682	-0.1451	0.7616	0.117*
H26B	0.9591	-0.1809	0.7876	0.117*

112/0	1 0 2 1 4	0.1112	0.0460	0.117*
H26C	1.0314	-0.1113	0.8463	0.11/*
C27	1.0888 (5)	0.0364 (5)	0.7901 (4)	0.0730 (18)
H27A	1.1433	-0.0051	0.7828	0.109*
H27B	1.0837	0.038	0.8515	0.109*
H27C	1.1128	0.0899	0.7733	0.109*
C28	0.9492 (6)	0.1650 (4)	0.6799 (4)	0.0728 (19)
H28A	1.0236	0.1655	0.6671	0.109*
H28B	0.9536	0.189	0.7378	0.109*
H28C	0.8973	0.1969	0.6354	0.109*
I1	0.87935 (3)	0.06968 (3)	0.43456 (2)	0.05850 (16)
C29	0.2774 (6)	0.4708 (4)	0.3696 (4)	0.0684 (17)
H29	0.2996	0.4802	0.313	0.082*
C11	0.14519 (19)	0.41957 (14)	0.34585 (16)	0.1030 (7)
Cl2	0.3802 (2)	0.40834 (19)	0.43583 (18)	0.1351 (10)
C13	0.2678 (3)	0.56550 (15)	0.4179 (2)	0.1352 (10)

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U ²³
C1	0.037 (3)	0.036 (3)	0.036 (2)	0.008 (2)	0.008 (2)	0.002 (2)
C2	0.046 (3)	0.038 (3)	0.030 (2)	0.002 (2)	0.006 (2)	0.000 (2)
C3	0.057 (3)	0.048 (3)	0.044 (3)	0.021 (3)	0.012 (3)	0.006 (2)
C4	0.065 (4)	0.056 (4)	0.055 (3)	0.024 (3)	0.024 (3)	-0.005 (3)
C5	0.059 (3)	0.056 (3)	0.035 (3)	0.008 (3)	0.016 (2)	0.002 (2)
C6	0.040 (3)	0.036 (3)	0.036 (3)	0.000 (2)	0.006 (2)	0.001 (2)
C7	0.037 (3)	0.041 (3)	0.033 (2)	0.014 (2)	0.005 (2)	0.007 (2)
C8	0.039 (3)	0.047 (3)	0.037 (3)	0.007 (2)	0.002 (2)	0.006 (2)
C9	0.047 (3)	0.053 (3)	0.039 (3)	0.011 (3)	0.004 (2)	0.000 (2)
C10	0.060 (3)	0.054 (3)	0.036 (3)	0.016 (3)	0.016 (3)	0.008 (2)
C11	0.044 (3)	0.049 (3)	0.049 (3)	0.006 (2)	0.012 (2)	0.015 (3)
C12	0.040 (3)	0.041 (3)	0.044 (3)	0.006 (2)	0.007 (2)	0.003 (2)
C13	0.072 (4)	0.064 (4)	0.065 (4)	-0.013 (3)	0.009 (3)	0.006 (3)
C14	0.104 (6)	0.096 (5)	0.044 (3)	-0.010 (4)	0.005 (4)	-0.015 (4)
C15	0.104 (6)	0.109 (6)	0.046 (4)	0.002 (5)	0.028 (4)	0.015 (4)
C16	0.084 (5)	0.080 (5)	0.077 (5)	-0.008 (4)	0.028 (4)	0.025 (4)
C17	0.067 (4)	0.072 (4)	0.061 (4)	-0.011 (3)	0.006 (3)	0.003 (3)
C18	0.039 (3)	0.040 (3)	0.031 (2)	0.004 (2)	0.008 (2)	0.007 (2)
C19	0.047 (3)	0.044 (3)	0.029 (2)	0.000 (2)	0.011 (2)	0.002 (2)
C20	0.067 (4)	0.038 (3)	0.039(3)	0.003 (2)	0.018 (3)	0.002 (2)
C21	0.057 (3)	0.055 (3)	0.038 (3)	0.020 (3)	0.017 (2)	0.011 (2)
C22	0.042 (3)	0.062 (4)	0.035 (3)	0.004 (2)	0.010(2)	0.005 (2)
C23	0.049 (3)	0.049 (3)	0.033 (2)	-0.003 (2)	0.004 (2)	0.004 (2)
C24	0.057 (4)	0.060 (4)	0.063 (4)	-0.012 (3)	0.010 (3)	-0.006 (3)
C25	0.119 (6)	0.037 (3)	0.070 (4)	-0.006(3)	0.019 (4)	0.005 (3)
C26	0.079 (5)	0.078 (5)	0.073 (4)	0.032 (4)	0.008 (4)	0.028 (4)
C27	0.049 (4)	0.103 (5)	0.059 (4)	0.005 (3)	-0.003 (3)	0.011 (4)
C28	0.074 (4)	0.065 (4)	0.070 (4)	-0.023 (3)	-0.002 (3)	0.008 (3)
I1	0.0572 (2)	0.0742 (3)	0.0485 (2)	0.03317 (19)	0.02111 (17)	0.01532 (19)

supporting information

C29	0.072 (4)	0.068 (4)	0.070 (4)	0.006 (3)	0.027 (3)	0.014 (3)
Cl1	0.0842 (14)	0.1114 (17)	0.1078 (16)	-0.0161 (12)	0.0108 (12)	0.0079 (13)
Cl2	0.0936 (17)	0.165 (3)	0.144 (2)	0.0425 (16)	0.0228 (16)	0.0602 (19)
C13	0.160 (3)	0.1012 (18)	0.150 (2)	-0.0052 (16)	0.048 (2)	-0.0496 (16)

Geometric parameters (Å, °)

C1—C6	1.392 (6)	C16—H16C	0.96
C1—C2	1.400 (6)	C17—H17A	0.96
C1—I1	2.099 (4)	C17—H17B	0.96
C2—C3	1.381 (6)	C17—H17C	0.96
C2—C7	1.501 (6)	C18—C23	1.398 (7)
C3—C4	1.377 (7)	C18—C19	1.406 (7)
С3—Н3	0.93	C19—C20	1.400 (7)
C4—C5	1.379 (7)	C19—C24	1.503 (7)
C4—H4	0.93	C20—C21	1.408 (8)
C5—C6	1.386 (7)	C20—C25	1.507 (7)
С5—Н5	0.93	C21—C22	1.389 (7)
C6—C18	1.492 (6)	C21—C26	1.514 (7)
C7—C12	1.394 (7)	C22—C23	1.393 (7)
С7—С8	1.398 (7)	C22—C27	1.518 (8)
С8—С9	1.403 (7)	C23—C28	1.513 (7)
C8—C13	1.507 (7)	C24—H24A	0.96
C9—C10	1.386 (7)	C24—H24B	0.96
C9—C14	1.516 (8)	C24—H24C	0.96
C10-C11	1.389 (7)	C25—H25A	0.96
C10—C15	1.521 (7)	С25—Н25В	0.96
C11—C12	1.401 (7)	C25—H25C	0.96
C11—C16	1.512 (8)	C26—H26A	0.96
C12—C17	1.520 (7)	C26—H26B	0.96
C13—H13A	0.96	C26—H26C	0.96
C13—H13B	0.96	С27—Н27А	0.96
C13—H13C	0.96	С27—Н27В	0.96
C14—H14A	0.96	С27—Н27С	0.96
C14—H14B	0.96	C28—H28A	0.96
C14—H14C	0.96	C28—H28B	0.96
C15—H15A	0.96	C28—H28C	0.96
C15—H15B	0.96	C29—Cl3	1.708 (7)
C15—H15C	0.96	C29—Cl2	1.729 (7)
C16—H16A	0.96	C29—Cl1	1.753 (7)
C16—H16B	0.96	С29—Н29	0.98
C6—C1—C2	122.3 (4)	C12—C17—H17A	109.5
C6—C1—I1	119.4 (3)	C12—C17—H17B	109.5
C2—C1—I1	118.3 (3)	H17A—C17—H17B	109.5
C3—C2—C1	117.5 (4)	C12—C17—H17C	109.5
C3—C2—C7	119.3 (4)	H17A—C17—H17C	109.5
C1—C2—C7	123.2 (4)	H17B—C17—H17C	109.5

C4—C3—C2	121.5 (5)	C23—C18—C19	120.6 (4)
С4—С3—Н3	119.3	C23—C18—C6	119.9 (4)
С2—С3—Н3	119.3	C19—C18—C6	119.5 (4)
C3—C4—C5	119.8 (5)	C20—C19—C18	119.7 (5)
C3—C4—H4	120.1	C20—C19—C24	121.9 (5)
C5—C4—H4	120.1	C18 - C19 - C24	118.5 (4)
C4—C5—C6	121.2 (5)	C19 - C20 - C21	119.0 (5)
C4—C5—H5	119.4	C19-C20-C25	120.5(5)
С6—С5—Н5	119.4	$C_{21} - C_{20} - C_{25}$	120.0(c)
C_{5} C_{6} C_{1}	1177(4)	$C_{22} = C_{21} = C_{20}$	120.1(5) 1210(5)
$C_{5} - C_{6} - C_{18}$	120.8(4)	$C_{22} = C_{21} = C_{20}$	121.0(5) 1196(5)
C1 - C6 - C18	120.0(1) 1215(4)	C_{20} C_{21} C_{20} C_{21} C_{20}	119.0(5)
C12-C7-C8	121.3(1) 121.3(4)	$C_{20} = C_{21} = C_{20}$	120.0(5)
C12 - C7 - C2	121.3(4) 120.2(4)	$C_{21} = C_{22} = C_{23}$	120.0(3) 1195(5)
$C_{12} = C_{1} = C_{2}$	120.2(4) 1185(4)	C_{23} C_{22} C_{27} C_{27}	119.5(5) 120.5(5)
C_{1}^{-}	118.3 (5)	$C_{23} = C_{23} = C$	120.3(5) 119.7(5)
C7 - C8 - C13	110.3(5)	$C_{22} = C_{23} = C_{18}$	119.7(3) 120.0(5)
$C_{1} = C_{2} = C_{13}$	120.3(5)	$C_{22} = C_{23} = C_{28}$	120.9(3)
$C_{9} = C_{8} = C_{13}$	121.3(5) 120.8(5)	$C_{10} = C_{23} = C_{28}$	119.5 (5)
$C_{10} = C_{9} = C_{8}$	120.8(5)	$C_{19} = C_{24} = H_{24} R$	109.5
$C_{10} C_{20} C_{14}$	120.8(5)	H_{24} C_{24} H_{24B}	109.5
$C_{0} = C_{10} = C_{11}$	110.4(5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{9} = C_{10} = C_{11}$	120.3(3)	$H_{24} = C_{24} = H_{24} C_{24}$	109.5
$C_{1} = C_{10} = C_{15}$	120.2(5)	$H_2 4 A - C_2 4 - H_2 4 C$	109.5
C10 - C11 - C12	119.0(5)	$H_24D = C_24 = H_24C$	109.5
C10-C11-C12	120.0(5)	C_{20} C_{25} H_{25} H	109.5
C10-C11-C16	120.3(3)	$U_{20} = U_{23} = H_{25} B$	109.5
C12 - C11 - C10	119.7(5)	H25A—C25—H25B	109.5
$C_{1} = C_{12} = C_{13}$	119.2(3)	С20—С25—П25С Н25А С25 Ц25С	109.5
$C_{}C_{12}$	119.8(5)	H25A - C25 - H25C	109.5
C12 - C12 - C17	121.0 (5)	$H_{23}B = C_{23} = H_{23}C$	109.5
C8-C13-H13A	109.5	C_{21} — C_{26} — H_{26} A	109.5
	109.5	C21—C26—H26B	109.5
H13A - C13 - H13B	109.5	$H_{26A} - C_{26} - H_{26B}$	109.5
C8—C13—H13C	109.5	C21—C26—H26C	109.5
H13A—C13—H13C	109.5	H26A—C26—H26C	109.5
H13B—C13—H13C	109.5	H26B—C26—H26C	109.5
C9—C14—H14A	109.5	С22—С27—Н27А	109.5
C9—C14—H14B	109.5	С22—С27—Н27В	109.5
H14A—C14—H14B	109.5	Н27А—С27—Н27В	109.5
C9—C14—H14C	109.5	С22—С27—Н27С	109.5
H14A—C14—H14C	109.5	H27A—C27—H27C	109.5
H14B—C14—H14C	109.5	H27B—C27—H27C	109.5
C10—C15—H15A	109.5	C23—C28—H28A	109.5
C10—C15—H15B	109.5	C23—C28—H28B	109.5
H15A—C15—H15B	109.5	H28A—C28—H28B	109.5
C10—C15—H15C	109.5	C23—C28—H28C	109.5
H15A—C15—H15C	109.5	H28A—C28—H28C	109.5
H15B—C15—H15C	109.5	H28B—C28—H28C	109.5

C11—C16—H16A	109.5	Cl3—C29—Cl2	111.9 (4)
C11—C16—H16B	109.5	Cl3—C29—Cl1	111.1 (4)
H16A—C16—H16B	109.5	Cl2—C29—Cl1	110.0 (4)
C11—C16—H16C	109.5	Cl3—C29—H29	107.9
H16A—C16—H16C	109.5	Cl2—C29—H29	107.9
H16B—C16—H16C	109.5	C11—C29—H29	107.9
C6—C1—C2—C3	0.3 (7)	C2-C7-C12-C11	-176.4 (4)
I1—C1—C2—C3	-179.4 (4)	C8—C7—C12—C17	-176.9 (5)
C6-C1-C2-C7	-177.9 (4)	C2-C7-C12-C17	3.3 (7)
I1—C1—C2—C7	2.5 (6)	C10-C11-C12-C7	-2.0 (7)
C1—C2—C3—C4	0.5 (8)	C16—C11—C12—C7	178.1 (5)
C7—C2—C3—C4	178.8 (5)	C10-C11-C12-C17	178.3 (5)
C2—C3—C4—C5	-1.3 (9)	C16—C11—C12—C17	-1.5 (8)
C3—C4—C5—C6	1.3 (9)	C5-C6-C18-C23	-94.7 (6)
C4—C5—C6—C1	-0.5 (8)	C1—C6—C18—C23	87.5 (6)
C4—C5—C6—C18	-178.3 (5)	C5-C6-C18-C19	85.6 (6)
C2-C1-C6-C5	-0.3 (7)	C1—C6—C18—C19	-92.2 (6)
I1—C1—C6—C5	179.3 (4)	C23-C18-C19-C20	-1.4 (7)
C2-C1-C6-C18	177.5 (4)	C6-C18-C19-C20	178.3 (4)
I1—C1—C6—C18	-2.8 (6)	C23—C18—C19—C24	-179.5 (5)
C3—C2—C7—C12	89.3 (6)	C6-C18-C19-C24	0.2 (7)
C1—C2—C7—C12	-92.5 (6)	C18—C19—C20—C21	-0.8 (7)
C3—C2—C7—C8	-90.5 (6)	C24—C19—C20—C21	177.2 (5)
C1—C2—C7—C8	87.7 (6)	C18—C19—C20—C25	178.3 (5)
C12—C7—C8—C9	-1.7 (7)	C24—C19—C20—C25	-3.7 (8)
C2C7C8C9	178.1 (4)	C19—C20—C21—C22	1.5 (7)
C12—C7—C8—C13	-179.9 (5)	C25—C20—C21—C22	-177.6 (5)
C2—C7—C8—C13	-0.2 (7)	C19—C20—C21—C26	-178.1 (5)
C7—C8—C9—C10	-1.4 (7)	C25—C20—C21—C26	2.8 (8)
C13—C8—C9—C10	176.8 (5)	C20—C21—C22—C23	0.1 (7)
C7—C8—C9—C14	-180.0 (5)	C26—C21—C22—C23	179.7 (5)
C13—C8—C9—C14	-1.8 (8)	C20—C21—C22—C27	179.8 (5)
C8—C9—C10—C11	2.7 (8)	C26—C21—C22—C27	-0.6 (8)
C14—C9—C10—C11	-178.7 (5)	C21—C22—C23—C18	-2.3 (7)
C8—C9—C10—C15	-175.7 (5)	C27—C22—C23—C18	178.0 (5)
C14—C9—C10—C15	2.8 (8)	C21—C22—C23—C28	179.5 (5)
C9—C10—C11—C12	-1.0 (8)	C27—C22—C23—C28	-0.2 (8)
C15—C10—C11—C12	177.5 (5)	C19—C18—C23—C22	3.0 (7)
C9—C10—C11—C16	178.8 (5)	C6-C18-C23-C22	-176.7 (4)
C15—C10—C11—C16	-2.7 (8)	C19—C18—C23—C28	-178.7 (5)

Hydrogen-bond geometry (Å, °)

Cg2 and C3 are the centroids of the C7–C12 and C18–C23 benzene rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C26—H26 A ···Cg2 ⁱ	0.96	3.86 (1)	2.97	155

			supporti	supporting information		
C28—H28 <i>A</i> ···· <i>Cg</i> 2 ⁱⁱ	0.96	3.53 (1)	2.87	127		
С29—Н29…Сд3ііі	0.98	3.42 (1)	2.44	177		

Symmetry codes: (i) -x+2, -y, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) x+1/2, -y+1/2, z-1/2.