## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## rac-Ammonium cis-2-carboxycyclo-hexane-1-carboxylate

Graham Smith* and Urs D. Wermuth

Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
Correspondence e-mail: g.smith@qut.edu.au

Received 5 December 2010; accepted 10 December 2010

Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.058 ; w R$ factor $=0.141$; data-to-parameter ratio $=13.5$.

In the structure of the title compound, $\mathrm{NH}_{4}^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{4}{ }^{-}$, the carboxyl and carboxylate groups of the cation adopt $\mathrm{C}-\mathrm{C}-$ $\mathrm{C}-\mathrm{O}$ torsion angles of 174.9 (2) and -145.4 (2) ${ }^{\circ}$, respectively, with the alicyclic ring. The ammonium H atoms of the cations give a total of five hydrogen-bonding associations with carboxylate O -atom acceptors of the anion which, together with a carboxyl $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}_{\text {carboxylate }}$ interaction give sheet structures which lie in the (101) planes.

## Related literature

For the structure of the isomeric racemic ammonium salt of trans-cyclohexane-1,2-dicarboxylic acid (TCDA), see: Stibrany et al. (2004). For the structures of rac-cis-CDA, rac-trans-CDA and (+)-trans-CDA, see: Benedetti et al. (1970); Benedetti, Corradini, Pedone \& Post (1969); Benedetti, Corradini \& Pedone (1969); Rizal \& Ng (2008). The cis,transisomer exists as an essentially unresolvable racemate, see: Eliel (1962). For hydrogen-bond motifs, see: Etter et al. (1990).


## Experimental

## Crystal data

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{4}{ }^{-} \\
& M_{r}=189.21 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=15.4908(13) \AA \\
& b=5.3475(3) \AA \\
& c=12.1716(9) \AA \\
& \beta=109.795(9)^{\circ}
\end{aligned}
$$

## Data collection

Oxford Diffraction Gemini-S CCDdetector diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.86, T_{\text {max }}=0.98$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.141$
$S=0.99$
1862 reflections
138 parameters

5997 measured reflections 1862 independent reflections 1313 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.046$

Table 1
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 1-\mathrm{H} 14 \cdots \mathrm{O} 11$ | 0.90 (3) | 2.22 (3) | 3.012 (3) | 146 (3) |
| $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 12$ | 0.90 (3) | 2.44 (3) | 3.237 (3) | 147 (3) |
| $\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 12{ }^{\text {i }}$ | 0.91 (4) | 1.96 (4) | 2.835 (3) | 161 (4) |
| $\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 11^{\text {ii }}$ | 0.97 (2) | 1.85 (3) | 2.811 (3) | 168 (2) |
| $\mathrm{N} 1-\mathrm{H} 1 \mathrm{D} \cdots \mathrm{O} 12^{\text {iii }}$ | 0.99 (3) | 1.86 (3) | 2.842 (3) | 174 (3) |
| $\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 11^{\text {iv }}$ | 0.88 (4) | 1.76 (4) | 2.619 (3) | 165 (5) |

Symmetry codes: (i) $x, y-1, z$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x,-y+2,-z+1$; (iv) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5083).

## References

Benedetti, E., Corradini, P. \& Pedone, C. (1969). J. Am. Chem. Soc. 91, 40754077.

Benedetti, E., Corradini, P., Pedone, C. \& Post, B. (1969). J. Am. Chem. Soc. 91, 4072-4074.
Benedetti, E., Pedone, C. \& Allegra, G. (1970). J. Phys. Chem. 74, 512-516.
Eliel, E. L. (1962). Stereochemistry of Carbon Compounds, pp. 211-215. New York: McGraw-Hill.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Rizal, M. R. \& Ng, S. W. (2008). Acta Cryst. E64, o992.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stibrany, R. T., Schugar, H. J. \& Potenza, J. A. (2004). Acta Cryst. E60, o1012o1014.

## supporting information

Acta Cryst. (2011). E67, o174 [https://doi.org/10.1107/S1600536810051883]

## rac-Ammonium cis-2-carboxycyclohexane-1-carboxylate

Graham Smith and Urs D. Wermuth

## S1. Comment

Cyclohexane-1,2-dicarboxylic acid (CDA) is of interest conformationally since the cis,cis- (or trans,trans)configurational isomers (the trans form) may be resolved while the cis,trans-isomer exists as an essentially unresolvable racemate (Eliel, 1962). The structures of both racemic-trans-CDA (TCDA) (Benedetti, Corradini, Pedrone \& Post, 1969; Rizal \& Ng, 2008), and (+)-trans-CDA (Benedetti, Corradini, Pedrone \& Post, 1969) are known as well as that of racemic-cis-CDA (CCDA) (Benedetti et al., 1970). Our reaction of cyclohexane-1,2-dicarboxylic anhydride in 50\% ethanol/water with an ammoniacal solution gave, after evaporation, crystals which were found to have a monoclinic unit cell which was very similar to that previously reported for the roon-temperature structure of ammonium trans-2-carboxycyclohexanecarboxylate (Stibrany et al., 2004) $\left[a=15.712\right.$ (7), $b=6.141$ (3), $c=10.464(5) \AA, \beta=104.96(4)^{\circ}, V=$ $975.5(8) \AA^{3}, Z=4$, space group $\left.P 2_{1} / c\right]$, suggesting either a crystal polymorph or the configurational cis-isomeric salt. The compound has been confirmed as the racemic cis-salt of $\mathrm{CDA}, \mathrm{NH}_{4}{ }^{+} \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{4}{ }^{-}(\mathrm{I})$ and the structure is reported here.
With (I) (Fig. 1) the ammonium cations give five hydrogen-bonding interactions with carboxylate O-atom acceptors of the anion (Table 1), including a three-centre asymmetric cyclic $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}^{\prime}$ association [graph set $\mathrm{R}^{2}{ }_{1}(4)$ (Etter et al., (1990)]. The two-dimensional sheet structures generated extend along the (101) planes in the unit cell (Fig. 2) with the ammonium ions lying close to these planes and providing the linkages within the sheets (Fig. 3), together with strong carboxylic acid $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}_{\text {carboxyl }}$ hydrogen bonds. This and all other features of the hydrogen bonding in (I), including the centrosymmetric cyclic $\mathrm{R}^{2}{ }_{4}(8)$ heteromolecular motifs, are similar to those of the trans-CDA ammonium salt (Stibrany et al., 2004) but conformationally, the anions differ although not in a major way. Comparative carboxylic acid and carboxylate groups defined by torsion angles $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 21-\mathrm{O} 22\left[174.9\right.$ (2) ${ }^{\circ}$ ] and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{O} 11\left[-145.4\right.$ (2) $\left.{ }^{\circ}\right]$ in (I) compare with $-166.66(19)$ and $137.3(2)^{\circ}$ respectively for the trans salt but are more comparable with $-178.8(5)$ and $152.9(2)^{\circ}$ for the rac-cis-CDA acid (Benedetti et al., 1970).

## S2. Experimental

The title compound was synthesized by reacting 1 mmol of cyclohexane-1,2-dicarboxylic anhydride with 50 ml of an 5 M ammoniacal 1:1 ethanol-water solution. The solution was allowed evaporate to moist dryness at room temperature over several months, finally giving colourless poorly formed plates of (I) from which a specimen was cleaved for the X-ray analysis.

## S3. Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H -atoms were included in the refinement at calculated positions $\left[\mathrm{C}-\mathrm{H}=0.96-0.97 \AA\right.$ and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$, using a riding-model approximation.


Figure 1
Molecular configuration and atom naming scheme for the ammonium cation the CDA anion in (I). Inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the $40 \%$ probability level.


Figure 2
The two-dimensional hydrogen-bonded sheet structures in (I) which extend down the (101) planes in the unit cell, showing hydrogen-bonding interactions as dashed lines. Non-associative H atoms are omitted. For symmetry codes, see Table 1.


Figure 3
A portion of the sheet structure in (I) viewed down the $a$ axis of the unit cell.
rac-Ammonium cis-2-carboxycyclohexane-1-carboxylate

## Crystal data

$\mathrm{NH}_{4}{ }^{+} \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{4}^{-}$
$M_{r}=189.21$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=15.4908$ (13) $\AA$
$b=5.3475$ (3) $\AA$
$c=12.1716(9) \AA$
$\beta=109.795(9)^{\circ}$
$V=948.68(13) \AA^{3}$
$Z=4$

## Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer
Radiation source: Enhance (Mo) X-ray source
Graphite monochromator
Detector resolution: 16.077 pixels $\mathrm{mm}^{-1}$
$\omega$ scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.86, T_{\text {max }}=0.98$

## Refinement

## Refinement on $F^{2}$

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.141$
$S=0.99$
1862 reflections
138 parameters
$F(000)=408$
$D_{\mathrm{x}}=1.325 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2294 reflections
$\theta=3.4-28.6^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Plate, colourless
$0.30 \times 0.22 \times 0.10 \mathrm{~mm}$

5997 measured reflections
1862 independent reflections
1313 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-19 \rightarrow 12$
$k=-6 \rightarrow 6$
$l=-15 \rightarrow 15$

0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

# supporting information 

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0838 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

## Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| O11 | $0.13732(12)$ | $0.9964(3)$ | $0.33214(13)$ | $0.0306(5)$ |
| O12 | $0.08448(12)$ | $1.2330(3)$ | $0.44276(14)$ | $0.0329(6)$ |
| O21 | $0.16061(13)$ | $0.7624(3)$ | $0.59854(14)$ | $0.0368(6)$ |
| O22 | $0.20622(15)$ | $0.9149(4)$ | $0.77916(15)$ | $0.0450(7)$ |
| C1 | $0.24584(16)$ | $1.1450(4)$ | $0.51309(18)$ | $0.0243(7)$ |
| C2 | $0.24599(17)$ | $1.1538(4)$ | $0.63967(18)$ | $0.0242(7)$ |
| C3 | $0.34336(18)$ | $1.1894(4)$ | $0.7268(2)$ | $0.0323(8)$ |
| C4 | $0.40930(18)$ | $0.9929(5)$ | $0.7113(2)$ | $0.0345(8)$ |
| C5 | $0.41077(18)$ | $0.9927(5)$ | $0.5871(2)$ | $0.0383(9)$ |
| C6 | $0.31483(17)$ | $0.9528(5)$ | $0.4989(2)$ | $0.0302(8)$ |
| C11 | $0.14981(17)$ | $1.1222(4)$ | $0.42428(19)$ | $0.0253(7)$ |
| C21 | $0.20048(16)$ | $0.9222(4)$ | $0.66831(19)$ | $0.0245(7)$ |
| N1 | $-0.01140(18)$ | $0.6903(5)$ | $0.3749(2)$ | $0.0320(8)$ |
| H1 | 0.26870 | 1.30850 | 0.49890 | $0.0290^{*}$ |
| H2 | 0.20960 | 1.29920 | 0.64640 | $0.0290^{*}$ |
| H22 | $0.192(3)$ | $0.764(8)$ | $0.796(3)$ | $0.088(13)^{*}$ |
| H31 | 0.36540 | 1.35430 | 0.71610 | $0.0390^{*}$ |
| H32 | 0.34180 | 1.18000 | 0.80560 | $0.0390^{*}$ |
| H41 | 0.47050 | 1.02650 | 0.76520 | $0.0410^{*}$ |
| H42 | 0.39080 | 0.82920 | 0.72960 | $0.0410^{*}$ |
| H51 | 0.45100 | 0.86070 | 0.57860 | $0.0460^{*}$ |
| H52 | 0.43490 | 1.15090 | 0.57130 | $0.0460^{*}$ |
| H61 | 0.29390 | 0.78600 | 0.50860 | $0.0360^{*}$ |
| H62 | 0.31740 | 0.96480 | 0.42050 | $0.0360^{*}$ |
| H1A | $0.016(2)$ | $0.832(6)$ | $0.363(3)$ | $0.057(10)^{*}$ |
| H1B | $0.031(3)$ | $0.566(7)$ | $0.402(3)$ | $0.071(11)^{*}$ |
| H1C | $-0.057(2)$ | $0.647(5)$ | $0.300(2)$ | $0.044(8)^{*}$ |
| H1D | $-0.038(2)$ | $0.728(6)$ | $0.436(3)$ |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O11 | $0.0415(11)$ | $0.0289(9)$ | $0.0191(8)$ | $0.0057(8)$ | $0.0071(7)$ | $-0.0059(7)$ |
| O12 | $0.0338(11)$ | $0.0378(10)$ | $0.0264(9)$ | $0.0104(8)$ | $0.0093(7)$ | $-0.0021(7)$ |
| O21 | $0.0556(13)$ | $0.0292(9)$ | $0.0254(9)$ | $-0.0167(9)$ | $0.0134(8)$ | $-0.0038(7)$ |
| O22 | $0.0814(16)$ | $0.0360(11)$ | $0.0207(9)$ | $-0.0190(11)$ | $0.0215(9)$ | $-0.0004(8)$ |
| C1 | $0.0336(14)$ | $0.0186(11)$ | $0.0232(12)$ | $-0.0030(10)$ | $0.0130(10)$ | $0.0004(9)$ |
| C2 | $0.0328(14)$ | $0.0171(11)$ | $0.0227(11)$ | $0.0002(10)$ | $0.0094(10)$ | $-0.0009(9)$ |
| C3 | $0.0398(16)$ | $0.0259(13)$ | $0.0288(13)$ | $-0.0043(11)$ | $0.0086(11)$ | $-0.0033(10)$ |
| C4 | $0.0258(14)$ | $0.0362(14)$ | $0.0349(14)$ | $0.0010(12)$ | $0.0017(11)$ | $-0.0002(11)$ |
| C5 | $0.0302(15)$ | $0.0431(16)$ | $0.0434(16)$ | $0.0057(13)$ | $0.0148(12)$ | $0.0011(12)$ |
| C6 | $0.0367(15)$ | $0.0315(14)$ | $0.0260(13)$ | $0.0026(11)$ | $0.0153(11)$ | $0.0003(10)$ |
| C11 | $0.0386(15)$ | $0.0173(11)$ | $0.0225(12)$ | $0.0017(11)$ | $0.0137(10)$ | $0.0037(9)$ |
| C21 | $0.0301(13)$ | $0.0216(11)$ | $0.0212(12)$ | $0.0020(10)$ | $0.0081(10)$ | $0.0016(9)$ |
| N1 | $0.0373(14)$ | $0.0327(13)$ | $0.0244(12)$ | $-0.0003(11)$ | $0.0085(10)$ | $0.0038(10)$ |
|  |  |  |  |  |  |  |

Geometric parameters ( $A,{ }^{\circ}$ )

| O11-C11 | 1.265 (3) | C3-C4 | 1.521 (4) |
| :---: | :---: | :---: | :---: |
| O12-C11 | 1.257 (3) | C4-C5 | 1.520 (3) |
| $\mathrm{O} 21-\mathrm{C} 21$ | 1.216 (3) | C5-C6 | 1.525 (4) |
| O22-C21 | 1.322 (3) | C1-H1 | 0.9800 |
| $\mathrm{O} 22-\mathrm{H} 22$ | 0.88 (4) | C2-H2 | 0.9800 |
| N1-H1D | 0.99 (3) | C3-H31 | 0.9700 |
| N1-H1B | 0.91 (4) | C3-H32 | 0.9700 |
| N1-H1C | 0.97 (2) | C4-H41 | 0.9700 |
| N1-H1A | 0.90 (3) | C4-H42 | 0.9700 |
| C1-C11 | 1.519 (3) | C5-H52 | 0.9700 |
| C1-C2 | 1.541 (3) | C5-H51 | 0.9700 |
| C1-C6 | 1.534 (4) | C6-H61 | 0.9700 |
| C2-C3 | 1.534 (4) | C6-H62 | 0.9700 |
| $\mathrm{C} 2-\mathrm{C} 21$ | 1.523 (3) |  |  |
| $\mathrm{C} 21-\mathrm{O} 22-\mathrm{H} 22$ | 109 (2) | C6- $\mathrm{C} 1-\mathrm{H} 1$ | 106.00 |
| H1B-N1-H1C | 112 (3) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 108.00 |
| $\mathrm{H} 1 \mathrm{C}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{D}$ | 114 (3) | C3-C2-H2 | 108.00 |
| H1B-N1-H1D | 108 (3) | $\mathrm{C} 21-\mathrm{C} 2-\mathrm{H} 2$ | 108.00 |
| H1A-N1-H1D | 107 (3) | H31-C3-H32 | 108.00 |
| H1A-N1-H1B | 110 (3) | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 31$ | 109.00 |
| H1A-N1-H1C | 106 (3) | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 32$ | 109.00 |
| C6-C1-C11 | 114.70 (18) | $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 31$ | 109.00 |
| C2-C1-C6 | 111.59 (18) | C4-C3-H32 | 109.00 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$ | 112.6 (2) | C3-C4-H42 | 109.00 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 111.3 (2) | C5-C4-H41 | 109.00 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 21$ | 111.10 (18) | C3-C4-H41 | 109.00 |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 21$ | 111.46 (18) | H41-C4-H42 | 108.00 |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | 111.90 (19) | C5-C4-H42 | 109.00 |


| C3-C4-C5 | 111.2 (2) | C6-C5-H51 | 109.00 |
| :---: | :---: | :---: | :---: |
| C4-C5-C6 | 111.2 (2) | C4-C5-H52 | 109.00 |
| C1-C6-C5 | 112.2 (2) | C4-C5-H51 | 109.00 |
| $\mathrm{O} 11-\mathrm{C} 11-\mathrm{O} 12$ | 121.2 (2) | C6-C5-H52 | 109.00 |
| O11-C11-C1 | 119.5 (2) | H51-C5-H52 | 108.00 |
| O12-C11-C1 | 119.25 (19) | H61-C6-H62 | 108.00 |
| $\mathrm{O} 21-\mathrm{C} 21-\mathrm{O} 22$ | 122.3 (2) | C1-C6-H61 | 109.00 |
| $\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 2$ | 125.2 (2) | C1-C6-H62 | 109.00 |
| O22-C21-C2 | 112.41 (19) | C5-C6-H61 | 109.00 |
| $\mathrm{C} 11-\mathrm{C} 1-\mathrm{H} 1$ | 106.00 | C5-C6-H62 | 109.00 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$ | 106.00 |  |  |
| C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 52.1 (2) | C1-C2-C3-C4 | -54.1 (2) |
| C6-C1-C2-C21 | -72.7 (3) | $\mathrm{C} 21-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | 70.6 (3) |
| C11-C1-C2-C3 | -177.29 (17) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 21-\mathrm{O} 21$ | -7.1 (4) |
| C11-C1-C2-C21 | 57.9 (2) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 21-\mathrm{O} 22$ | 174.9 (2) |
| C2-C1-C6-C5 | -53.0 (3) | $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 21-\mathrm{O} 21$ | -131.9 (3) |
| C11-C1-C6-C5 | 177.5 (2) | $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 21-\mathrm{O} 22$ | 50.1 (3) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{O} 11$ | -145.4 (2) | C2-C3-C4-C5 | 56.3 (3) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{O} 12$ | 36.0 (3) | C3-C4-C5-C6 | -56.4 (3) |
| C6- $\mathrm{C} 1-\mathrm{C} 11-\mathrm{O} 11$ | -16.4 (3) | C4-C5-C6-C1 | 55.1 (3) |
| C6- $\mathrm{C} 1-\mathrm{C} 11-\mathrm{O} 12$ | 165.0 (2) |  |  |

Hydrogen-bond geometry (A, o)

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 11$ | $0.90(3)$ | $2.22(3)$ | $3.012(3)$ | $146(3)$ |
| $\mathrm{N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 12$ | $0.90(3)$ | $2.44(3)$ | $3.237(3)$ | $147(3)$ |
| $\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{O} 12^{\mathrm{i}}$ | $0.91(4)$ | $1.96(4)$ | $2.835(3)$ | $161(4)$ |
| $\mathrm{N} 1 — \mathrm{H} 1 C \cdots \mathrm{O} 11^{\text {ii }}$ | $0.97(2)$ | $1.85(3)$ | $2.811(3)$ | $168(2)$ |
| $\mathrm{N} 1 — \mathrm{H} 1 D \cdots \mathrm{O} 12^{\mathrm{iii}}$ | $0.99(3)$ | $1.86(3)$ | $2.842(3)$ | $174(3)$ |
| $\mathrm{O} 22 — \mathrm{H} 22 \cdots \mathrm{O} 11^{\mathrm{iv}}$ | $0.88(4)$ | $1.76(4)$ | $2.619(3)$ | $165(5)$ |
| $\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O} 21^{\mathrm{v}}$ | 0.98 | 2.60 | $3.485(3)$ | 150 |
| $\mathrm{C} 3 — \mathrm{H} 32 \cdots \mathrm{O} 22$ | 0.97 | 2.46 | $2.827(4)$ | 102 |

Symmetry codes: (i) $x, y-1, z$; (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) $-x,-y+2,-z+1$; (iv) $x,-y+3 / 2, z+1 / 2$; (v) $x, y+1, z$.

