

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4a-Hydroxy-9-(2-methoxyphenyl)-4,4a,5,6,7,8,9,9a-octahydro-3*H*xanthene-1,8(2*H*)-dione

Wan-Sin Loh,^a[‡] Hoong-Kun Fun,^a*§ B. Palakshi Reddy,^b V. Vijayakumar^b and S. Sarveswari^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India Correspondence e-mail: hkfun@usm.my

Received 25 November 2010; accepted 1 December 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.110; data-to-parameter ratio = 20.4.

In the title compound, $C_{20}H_{22}O_5$, an S(6) ring motif is formed by an intramolecular $C-H\cdots O$ hydrogen bond, which contributes to the stabilization of the molecule. In the xanthene system, the cyclohexane ring adopts a chair conformation, the cyclohexene ring adopts a half-boat conformation and the tetrahydropyran ring adopts a halfchair conformation. The mean plane of the four essentially planar atoms of the tetrahydropyran ring [r.m.s deviation = 0.092 (1) Å] forms a dihedral angle of 64.13 (6)° with the mean plane of the methoxyphenyl group. In the crystal, intermolecular $O-H\cdots O$ and weak $C-H\cdots O$ hydrogen bonds link molecules into chains along the *a* axis, which are further stabilized by $C-H\cdots \pi$ interactions.

Related literature

For background to and the biological activity of xanthenes and their derivatives, see: Menchen *et al.* (2003); Saint-Ruf *et al.* (1972); Ion *et al.* (1998); Knight & Stephens (1989); Jonathan *et al.* (1988). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For standard bond-length data, see: Allen *et al.* (1987). For a related structure, see: Reddy *et al.* (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{22}O_5 \\ M_r = 342.38 \\ \text{Triclinic, } P\overline{1} \\ a = 7.1060 \ (1) \text{ \AA} \\ b = 7.8897 \ (1) \text{ \AA} \\ c = 15.1001 \ (2) \text{ \AA} \\ \alpha = 91.285 \ (1)^\circ \\ \beta = 101.251 \ (1)^\circ \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.957, T_{max} = 0.990$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.110$ S = 1.054715 reflections 231 parameters 21213 measured reflections 4715 independent reflections 4132 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$

 $\gamma = 101.129 \ (1)^{\circ}$

Z = 2

V = 813.10 (2) Å³

Mo $K\alpha$ radiation

 $0.44 \times 0.23 \times 0.10 \text{ mm}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 100 K

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C14-C19 ring.

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots$ $O5-H1O5\cdots O3^{i}$ 0.87 (2) 1.93 (2) 2.7877 (11) 166.3 (1) $C6-H6A\cdots O4$ 0.98 2.32 2.9266 (12) 120					
O5-H1 $O5\cdots O3^{i}$ 0.87 (2) 1.93 (2) 2.7877 (11) 166.3 (1) C6-H6 $A\cdots O4$ 0.98 2.32 2.9266 (12) 120	$D - H \cdots A$	H H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} O5 - H1O5 \cdots O3^{i} \\ C6 - H6A \cdots O4 \\ C16 - H16A \cdots O5^{ii} \\ C20 - H20B \cdots Cg1^{ii} \end{array}$	(2) 1 2 2 2	1.93 (2) 2.32 2.53 2.67	2.7877 (11) 2.9266 (12) 3.4172 (13) 3.5206 (13)	166.3 (18) 120 160 147

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to the DST–

[‡] Thomson Reuters ResearcherID: C-7581-2009.

[§] Thomson Reuters ResearcherID: A-3561-2009.

India for funding through the Young Scientist Scheme (Fast Track Proposal).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5179).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Ion, R. M., Frackowiak, D., Planner, A. & Wiktorowicz, K. (1998). Acta Biochim. Pol. 45, 833–845.
- Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111–117.
- Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683-689.
- Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6 583 168.
- Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, 0916.
- Saint-Ruf, G., De, A. & Hieu, H. T. (1972). Bull. Chim. Ther. 7, 83-86.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o35–o36 [https://doi.org/10.1107/S1600536810050191]

4a-Hydroxy-9-(2-methoxyphenyl)-4,4a,5,6,7,8,9,9a-octahydro-3*H*-xanthene-1,8(2*H*)-dione

Wan-Sin Loh, Hoong-Kun Fun, B. Palakshi Reddy, V. Vijayakumar and S. Sarveswari

S1. Comment

Xanthene derivatives are very important heterocyclic compounds and due to their useful spectroscopic properties, they have been widely used as dyes, fluorescent materials for visualization of bio-molecules and in laser technologies (Menchen *et al.*, 2003; Saint-Ruf *et al.*, 1972; Ion *et al.*, 1998). They have been reported for their agricultural bactericide activity, photodynamic therapy, antiflammatory effect and antiviral activity (Knight & Stephens, 1989; Jonathan *et al.*, 1988). Due to their wide range of applications, these compounds have received a great deal of attention in connection with their synthesis. In the synthesis of these compounds, intermediates play a key role, because these compounds can be easily converted into acridines and other biological active compounds.

In the title compound, an intramolecular C6—H6A···O4 hydrogen bond (Table 1) contributes to the stabilization of the molecule (Fig. 1), forming an *S*(6) ring motif (Bernstein *et al.*, 1995). The xanthene ring system consists of three rings which adopt different conformations. The cyclohexane ring (C1–C6) adopts a chair conformation with the puckering parameters Q = 0.5427 (11) Å, Θ = 4.67 (12)°, φ = 169.6 (15)° (Cremer & Pople, 1975). The cyclohexene ring (C8–C13) and the tetrahydropyran ring (O1/C1/C6/C7/C8/C13) adopt half-boat and half-chair conformations, with the puckering parameters, Q = 0.4831 (11) Å, Θ = 61.06 (13)°, φ = 176.13 (15)° and Q = 0.4497 (10) Å, Θ = 47.24 (13)°, φ = 87.44 (17)° (Cremer & Pople, 1975), respectively. The mean plane of the essentially planar atoms of the tetrahydropyran ring (C7/C8/C13/O1) [r.m.s deviation = 0.092 (1) Å] forms a dihedral angle of 64.13 (6)° with the methoxyphenyl group (C14–C20/O4). The bond lengths (Allen *et al.*, 1987) and angles are within the normal range and are comparable to the related structure (Reddy *et al.*, 2009).

In the crystal packing (Fig. 2), intermolecular O5—H1O5···O3ⁱ and C16—H16A···O5ⁱⁱ hydrogen bonds (see Table 1 for symmetry codes) link molecules into chains along the *a* axis which are further stabilized by C—H···Cg1ⁱⁱ interactions (Table 1), involving C14–C19 ring.

S2. Experimental

A mixture of 2-methoxybenzaldehyde (0.365 ml, 0.0025 mol) and 1,3-cyclohexanedione (0.56 g, 0.005 mol) was refluxed in acetonitrile for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, it was kept for 2 days for solid formation. The pure product was obtained by recrystallization of the crude product from ethanol. M.p.: 493–495 K, yield: 72%.

S3. Refinement

Atom H1O5 was located from the difference Fourier map and was refined freely [O-H = 0.874 (18) Å]. The remaining H atoms were positioned geometrically [C-H = 0.93 or 0.98 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was applied to the methyl group.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular hydrogen bond.

supporting information

Figure 2

The crystal packing of the title compound, viewed along the c axis, showing a chain along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

4a-Hydroxy-9-(2-methoxyphenyl)-4,4a,5,6,7,8,9,9a-octahydro-3*H*- xanthene-1,8(2*H*)-dione

Crystal data	
$C_{20}H_{22}O_5$	$\gamma = 101.129 (1)^{\circ}$
$M_r = 342.38$	$V = 813.10 (2) Å^3$
Triclinic, P1	Z = 2
Hall symbol: -P 1	F(000) = 364
a = 7.1060 (1) Å	$D_{\rm x} = 1.398 {\rm ~Mg} {\rm ~m}^{-3}$
b = 7.8897 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 15.1001 (2) Å	Cell parameters from 9956 reflections
$\alpha = 91.285 \ (1)^{\circ}$	$\theta = 2.6 - 37.2^{\circ}$
$\beta = 101.251 \ (1)^{\circ}$	$\mu=0.10~\mathrm{mm}^{-1}$

T = 100 KBlock, colourless

Data collection

Dura concention	
Bruker SMART APEXII CCD area-detector diffractometer	21213 measured reflections 4715 independent reflections
Radiation source: fine-focus sealed tube	4132 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
φ and ω scans	$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 2.6^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 2009)	$k = -11 \rightarrow 11$
$T_{\min} = 0.957, \ T_{\max} = 0.990$	$l = -21 \rightarrow 21$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.110$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent

 $0.44 \times 0.23 \times 0.10 \text{ mm}$

S = 1.05H atoms treated by a mixture of indep4715 reflectionsand constrained refinement231 parameters $w = 1/[\sigma^2(F_o^2) + (0.057P)^2 + 0.3385P]$ 0 restraintswhere $P = (F_o^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant
direct methods $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{max} = 0.46 \text{ e } \text{Å}^{-3}$ $\Delta \rho_{min} = -0.25 \text{ e } \text{Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.99328 (11)	0.05712 (9)	0.14023 (5)	0.01184 (15)	
O2	0.70333 (12)	0.35590 (10)	0.19525 (6)	0.01849 (17)	
03	0.34225 (11)	-0.15228 (10)	0.17249 (5)	0.01475 (16)	
04	0.74431 (12)	0.15152 (9)	0.43898 (5)	0.01407 (16)	
05	1.11520 (11)	-0.03057 (9)	0.28104 (5)	0.01311 (15)	
C1	1.06767 (15)	0.11229 (12)	0.23546 (6)	0.01072 (18)	
C2	1.24660 (15)	0.25412 (13)	0.23649 (7)	0.01350 (19)	
H2A	1.3340	0.2104	0.2039	0.016*	
H2B	1.3158	0.2835	0.2986	0.016*	
C3	1.19583 (16)	0.41749 (13)	0.19413 (7)	0.0163 (2)	
H3A	1.1438	0.3927	0.1298	0.020*	

H3B	1.3137	0.5066	0.2015	0.020*
C4	1.04414 (17)	0.48393 (13)	0.23831 (8)	0.0172 (2)
H4A	1.1005	0.5208	0.3012	0.021*
H4B	1.0064	0.5825	0.2075	0.021*
C5	0.86650 (16)	0.34065 (13)	0.23232 (7)	0.01310 (19)
C6	0.90683 (15)	0.17311 (12)	0.27485 (6)	0.01074 (18)
H6A	0.9570	0.2001	0.3398	0.013*
C7	0.71877 (15)	0.03250 (12)	0.26338 (6)	0.01037 (18)
H7A	0.6112	0.0933	0.2644	0.012*
C8	0.67731 (15)	-0.05984 (12)	0.17062 (6)	0.01066 (18)
С9	0.47820 (15)	-0.15295 (12)	0.13264 (6)	0.01103 (18)
C10	0.43704 (15)	-0.24679 (13)	0.04013 (7)	0.01356 (19)
H10A	0.3871	-0.1725	-0.0052	0.016*
H10B	0.3363	-0.3499	0.0383	0.016*
C11	0.61838 (16)	-0.29864 (13)	0.01678 (7)	0.01432 (19)
H11A	0.6579	-0.3863	0.0563	0.017*
H11B	0.5882	-0.3473	-0.0451	0.017*
C12	0.78507 (16)	-0.14125 (13)	0.02780 (7)	0.01329 (19)
H12A	0.9051	-0.1781	0.0224	0.016*
H12B	0.7561	-0.0643	-0.0200	0.016*
C13	0.81329 (15)	-0.04614 (12)	0.11791 (6)	0.01064 (18)
C14	0.71718 (14)	-0.09100 (12)	0.33983 (6)	0.01062 (18)
C15	0.72872 (15)	-0.02412 (12)	0.42848 (7)	0.01140 (18)
C16	0.72200 (16)	-0.13289 (13)	0.49996 (7)	0.01399 (19)
H16A	0.7337	-0.0869	0.5585	0.017*
C17	0.69757 (16)	-0.31127 (13)	0.48290 (7)	0.0150 (2)
H17A	0.6903	-0.3844	0.5301	0.018*
C18	0.68398 (16)	-0.38035 (13)	0.39597 (7)	0.0146 (2)
H18A	0.6674	-0.4992	0.3847	0.018*
C19	0.69553 (15)	-0.26938 (13)	0.32551 (7)	0.01285 (19)
H19A	0.6886	-0.3158	0.2675	0.015*
C20	0.79471 (17)	0.22709 (13)	0.52994 (7)	0.0154 (2)
H20A	0.8251	0.3509	0.5289	0.023*
H20B	0.9066	0.1875	0.5625	0.023*
H20C	0.6861	0.1934	0.5593	0.023*
H1O5	1.201 (3)	-0.067 (2)	0.2552 (12)	0.027 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0112 (3)	0.0143 (3)	0.0096 (3)	-0.0001 (3)	0.0038 (3)	-0.0002 (2)
O2	0.0168 (4)	0.0169 (4)	0.0226 (4)	0.0053 (3)	0.0039 (3)	0.0048 (3)
O3	0.0130 (4)	0.0158 (3)	0.0160 (3)	0.0021 (3)	0.0054 (3)	-0.0011 (3)
O4	0.0207 (4)	0.0119 (3)	0.0100 (3)	0.0039 (3)	0.0036 (3)	-0.0005 (2)
O5	0.0144 (4)	0.0141 (3)	0.0132 (3)	0.0058 (3)	0.0053 (3)	0.0034 (3)
C1	0.0112 (4)	0.0117 (4)	0.0091 (4)	0.0014 (3)	0.0027 (3)	0.0007 (3)
C2	0.0111 (4)	0.0148 (4)	0.0141 (4)	-0.0001 (4)	0.0041 (3)	0.0004 (3)
C3	0.0160 (5)	0.0134 (4)	0.0194 (5)	-0.0004 (4)	0.0065 (4)	0.0020 (3)

supporting information

C4	0.0175 (5)	0.0116 (4)	0.0229 (5)	0.0006 (4)	0.0076 (4)	0.0002 (4)
C5	0.0158 (5)	0.0115 (4)	0.0129 (4)	0.0022 (4)	0.0058 (4)	0.0000 (3)
C6	0.0114 (4)	0.0110 (4)	0.0098 (4)	0.0015 (3)	0.0030 (3)	0.0000 (3)
C7	0.0110 (4)	0.0109 (4)	0.0093 (4)	0.0018 (3)	0.0026 (3)	0.0003 (3)
C8	0.0119 (4)	0.0099 (4)	0.0099 (4)	0.0019 (3)	0.0021 (3)	0.0003 (3)
C9	0.0125 (4)	0.0097 (4)	0.0112 (4)	0.0026 (3)	0.0029 (3)	0.0014 (3)
C10	0.0132 (5)	0.0143 (4)	0.0122 (4)	0.0009 (4)	0.0025 (4)	-0.0024 (3)
C11	0.0161 (5)	0.0126 (4)	0.0140 (4)	0.0012 (4)	0.0044 (4)	-0.0025 (3)
C12	0.0156 (5)	0.0137 (4)	0.0108 (4)	0.0014 (4)	0.0052 (4)	-0.0016 (3)
C13	0.0119 (4)	0.0098 (4)	0.0099 (4)	0.0016 (3)	0.0021 (3)	0.0010 (3)
C14	0.0098 (4)	0.0121 (4)	0.0100 (4)	0.0017 (3)	0.0027 (3)	0.0014 (3)
C15	0.0106 (4)	0.0121 (4)	0.0118 (4)	0.0021 (3)	0.0032 (3)	0.0004 (3)
C16	0.0155 (5)	0.0157 (4)	0.0109 (4)	0.0028 (4)	0.0035 (4)	0.0014 (3)
C17	0.0162 (5)	0.0153 (4)	0.0139 (4)	0.0025 (4)	0.0039 (4)	0.0046 (3)
C18	0.0159 (5)	0.0119 (4)	0.0155 (4)	0.0020 (4)	0.0026 (4)	0.0017 (3)
C19	0.0130 (5)	0.0130 (4)	0.0122 (4)	0.0022 (4)	0.0022 (3)	-0.0003 (3)
C20	0.0189 (5)	0.0158 (4)	0.0112 (4)	0.0043 (4)	0.0020 (4)	-0.0025 (3)

Geometric parameters (Å, °)

O1—C13	1.3529 (12)	C8—C13	1.3574 (14)
O1—C1	1.4570 (11)	C8—C9	1.4607 (14)
O2—C5	1.2148 (13)	C9—C10	1.5151 (13)
O3—C9	1.2345 (12)	C10-C11	1.5253 (15)
O4—C15	1.3718 (12)	C10—H10A	0.9700
O4—C20	1.4350 (12)	C10—H10B	0.9700
O5—C1	1.3962 (11)	C11—C12	1.5227 (14)
O5—H1O5	0.874 (18)	C11—H11A	0.9700
C1—C2	1.5203 (14)	C11—H11B	0.9700
C1—C6	1.5345 (14)	C12—C13	1.4982 (13)
C2—C3	1.5255 (14)	C12—H12A	0.9700
C2—H2A	0.9700	C12—H12B	0.9700
C2—H2B	0.9700	C14—C19	1.3931 (13)
C3—C4	1.5378 (16)	C14—C15	1.4091 (13)
С3—НЗА	0.9700	C15—C16	1.3964 (13)
С3—Н3В	0.9700	C16—C17	1.3961 (14)
C4—C5	1.5098 (15)	C16—H16A	0.9300
C4—H4A	0.9700	C17—C18	1.3884 (14)
C4—H4B	0.9700	C17—H17A	0.9300
C5—C6	1.5344 (13)	C18—C19	1.3976 (14)
C6—C7	1.5412 (14)	C18—H18A	0.9300
C6—H6A	0.9800	C19—H19A	0.9300
С7—С8	1.5133 (13)	C20—H20A	0.9600
C7—C14	1.5276 (13)	C20—H20B	0.9600
С7—Н7А	0.9800	С20—Н20С	0.9600
C13—O1—C1	117.22 (7)	C8—C9—C10	118.74 (9)
C15—O4—C20	116.87 (8)	C9—C10—C11	112.70 (8)

C1	106.7 (11)	C9—C10—H10A	109.1
O5—C1—O1	107.99 (7)	C11—C10—H10A	109.1
O5—C1—C2	112.32 (8)	C9—C10—H10B	109.1
O1—C1—C2	104.81 (7)	C11—C10—H10B	109.1
O5—C1—C6	108.38 (8)	H10A—C10—H10B	107.8
O1—C1—C6	109.47 (8)	C12—C11—C10	110.02 (8)
C2—C1—C6	113.68 (8)	C12—C11—H11A	109.7
C1—C2—C3	113.12 (9)	C10—C11—H11A	109.7
C1—C2—H2A	109.0	C12—C11—H11B	109.7
C3—C2—H2A	109.0	C10—C11—H11B	109.7
C1-C2-H2B	109.0	H11A—C11—H11B	108.2
C3—C2—H2B	109.0	C_{13} C_{12} C_{11}	110.92 (8)
$H_2A = C_2 = H_2B$	107.8	C_{13} C_{12} H_{12A}	109.5
$C_2 - C_3 - C_4$	111.06 (9)	C_{11} C_{12} H_{12A}	109.5
$C_2 = C_3 = H_3 \Delta$	109.4	C_{12} C_{12} H_{12R}	109.5
$C_2 = C_3 = H_3 \Lambda$	109.4	$C_{13} - C_{12} - H_{12B}$	109.5
C_{2} C_{3} $H_{3}B$	109.4	H_{12} H_{12} H_{12} H_{12}	109.5
$C_2 = C_3 = H_2 D_2$	109.4	$\begin{array}{c} 1112A - C12 - 1112B \\ 01 C12 C^{9} \end{array}$	108.0
C4 - C3 - H3B	109.4	01 - 012 - 012	123.90 (9)
НЗА—Сэ—НЗВ	108.0	01 - 012 - 012	111.00 (8)
C_{5}	109.20 (8)	C_{3} C_{13} C_{12} C_{14} C_{15}	125.03 (9)
C_{3} C_{4} H_{4}	109.8	C19 - C14 - C15	117.89 (9)
C3—C4—H4A	109.8	C19 - C14 - C7	122.94 (8)
C5—C4—H4B	109.8	C15—C14—C7	119.10 (8)
C3—C4—H4B	109.8	O4—C15—C16	123.04 (9)
H4A—C4—H4B	108.3	O4—C15—C14	115.90 (8)
O2—C5—C4	122.38 (9)	C16—C15—C14	121.05 (9)
O2—C5—C6	122.26 (9)	C17—C16—C15	119.48 (9)
C4—C5—C6	115.35 (9)	C17—C16—H16A	120.3
C5—C6—C1	109.28 (8)	C15—C16—H16A	120.3
C5—C6—C7	111.86 (8)	C18—C17—C16	120.50 (9)
C1—C6—C7	112.48 (8)	C18—C17—H17A	119.8
С5—С6—Н6А	107.7	C16—C17—H17A	119.8
C1—C6—H6A	107.7	C17—C18—C19	119.31 (9)
С7—С6—Н6А	107.7	C17—C18—H18A	120.3
C8—C7—C14	113.17 (8)	C19—C18—H18A	120.3
C8—C7—C6	109.55 (8)	C14—C19—C18	121.74 (9)
C14—C7—C6	114.28 (8)	C14—C19—H19A	119.1
С8—С7—Н7А	106.4	C18—C19—H19A	119.1
C14—C7—H7A	106.4	O4—C20—H20A	109.5
С6—С7—Н7А	106.4	O4—C20—H20B	109.5
C13—C8—C9	118.53 (9)	H20A—C20—H20B	109.5
C13—C8—C7	122.45 (9)	O4—C20—H20C	109.5
C9—C8—C7	118.73 (8)	H20A—C20—H20C	109.5
03-09-08	121.80 (9)	H20B-C20-H20C	109.5
03-C9-C10	119 41 (9)		107.0
$C_{13} = 0_{1} = C_{1} = 0_{5}$	71,99 (10)	C7—C8—C9—C10	-179 45 (8)
$C_{13} = 01 = C_{1} = C_{2}$	-168 09 (8)	03-C9-C10-C11	-156.92(0)
010 01 01 02	100.05 (0)		120.72 (7)

C13—O1—C1—C6	-45.81 (10)	C8—C9—C10—C11	25.45 (12)
O5—C1—C2—C3	-175.06 (8)	C9—C10—C11—C12	-53.49 (11)
O1—C1—C2—C3	67.95 (10)	C10-C11-C12-C13	50.03 (11)
C6—C1—C2—C3	-51.54 (11)	C1—O1—C13—C8	20.22 (13)
C1—C2—C3—C4	54.04 (11)	C1-01-C13-C12	-160.09 (8)
C2—C3—C4—C5	-55.21 (12)	C9—C8—C13—O1	169.98 (8)
C3—C4—C5—O2	-122.06 (11)	C7—C8—C13—O1	-3.74 (15)
C3—C4—C5—C6	56.91 (11)	C9—C8—C13—C12	-9.66 (14)
O2—C5—C6—C1	125.76 (10)	C7—C8—C13—C12	176.62 (9)
C4—C5—C6—C1	-53.20 (11)	C11—C12—C13—O1	160.59 (8)
O2—C5—C6—C7	0.54 (13)	C11—C12—C13—C8	-19.73 (13)
C4—C5—C6—C7	-178.43 (8)	C8—C7—C14—C19	4.92 (14)
O5—C1—C6—C5	174.47 (8)	C6—C7—C14—C19	-121.40 (10)
O1—C1—C6—C5	-67.98 (10)	C8—C7—C14—C15	-171.98 (9)
C2-C1-C6-C5	48.83 (11)	C6—C7—C14—C15	61.70 (12)
O5—C1—C6—C7	-60.66 (10)	C20-04-C15-C16	12.66 (14)
O1—C1—C6—C7	56.89 (10)	C20-04-C15-C14	-168.10 (9)
C2-C1-C6-C7	173.70 (8)	C19—C14—C15—O4	-178.20 (9)
C5—C6—C7—C8	82.61 (9)	C7—C14—C15—O4	-1.14 (14)
C1—C6—C7—C8	-40.82 (10)	C19—C14—C15—C16	1.06 (15)
C5-C6-C7-C14	-149.21 (8)	C7—C14—C15—C16	178.12 (9)
C1-C6-C7-C14	87.36 (10)	O4—C15—C16—C17	177.27 (10)
C14—C7—C8—C13	-114.03 (10)	C14—C15—C16—C17	-1.94 (16)
C6—C7—C8—C13	14.77 (12)	C15—C16—C17—C18	1.30 (16)
C14—C7—C8—C9	72.27 (11)	C16—C17—C18—C19	0.17 (16)
C6—C7—C8—C9	-158.94 (8)	C15-C14-C19-C18	0.46 (15)
C13—C8—C9—O3	-170.97 (9)	C7—C14—C19—C18	-176.48 (9)
C7—C8—C9—O3	2.98 (14)	C17—C18—C19—C14	-1.07 (16)
C13—C8—C9—C10	6.60 (13)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

	<i>D</i> —Н	H···A	D···A	D—H…A
05—H1 <i>0</i> 5····O3 ⁱ	0.87 (2)	1.93 (2)	2.7877 (11)	166.3 (18)
C6—H6 <i>A</i> ····O4	0.98	2.32	2.9266 (12)	120
C16—H16A····O5 ⁱⁱ	0.93	2.53	3.4172 (13)	160
C20—H20 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱ	0.96	2.67	3.5206 (13)	147

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*+2, –*y*, –*z*+1.