

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[µ-1,2-Bis(diphenylphosphanyl)benzene- $\kappa^2 P: P'$]bis[chloridogold(I)]

Nobuto Yoshinari,* Naoki Kitani, Toshiaki Tsukuda and Takumi Konno

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Correspondence e-mail: nobuto@chem.sci.osaka-u.ac.jp

Received 13 December 2010; accepted 16 December 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; R factor = 0.023; wR factor = 0.041; data-to-parameter ratio = 19.8.

In the crystal structure of the non-solvate form of the title compound, $[Au_2Cl_2(C_{30}H_{24}P_2)]$, two almost linear P-Au^I-Cl units $[175.87 (3) \text{ and } 171.48 (3)^{\circ}]$ are in a skewed arrangement with a Cl-Au···Au-Cl torsion angle of $-65.29 (3)^{\circ}$ so as to form an intramolecular Au···Au interaction [3.0563 (2) Å]. The complex molecules are connected each other through intermolecular $C-H \cdot \cdot \pi$ interactions, giving a sheet structure parallel to the bc plane.

Related literature

For the crystal structure of the diethylether solvate form of the title compound, $[(AuCl)_2(C_{30}H_{24}P_2)] \cdot (C_2H_5)_2O_2$ see: Mohamed et al. (2003). For closely related structures, see: Hashimoto et al. (2010).

Experimental

Crystal data $[Au_2Cl_2(C_{30}H_{24}P_2)]$ $M_r = 911.27$ Monoclinic, $P2_1/c$ a = 13.0733 (2) Å b = 12.4206 (2) Å

c = 17.4630 (3) Å $\beta = 96.795 \ (7)^{\circ}$

V = 2815.69 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 10.73 \text{ mm}^-$ T = 200 K $0.15 \times 0.10 \times 0.10 \ \mathrm{mm}$

Data collection

Rigaku R-AXIS VII diffractometer 31710 measured reflections Absorption correction: multi-scan 6438 independent reflections (ABSCOR; Higashi, 1995) 5897 reflections with $I > 2\sigma(I)$ $T_{\min} = 0.189, \ T_{\max} = 0.341$ $R_{\rm int} = 0.030$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	325 parameters
$wR(F^2) = 0.041$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 0.54 \text{ e} \text{ Å}^{-3}$
6438 reflections	$\Delta \rho_{\rm min} = -0.80 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

Au1-P1	2.2256 (8)	Au2-P2	2.2279 (7)
Au1-Cl1	2.2739 (8)	Au2-Cl2	2.2792 (8)

Table 2

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C25-C30 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C15-H15\cdots Cg^{i}$	0.95	2.82	3.569 (4)	137
$C21 - H21 \cdots Cg^{ii}$	0.95	2.84	3.559 (4)	134

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: Yadokari-XG 2009 (Kabuto et al., 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: Yadokari-XG 2009 and publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2645).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hashimoto, Y., Tsuge, K. & Konno, T. (2010). Chem. Lett. 39, 601-603.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84-m86.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, m121 [https://doi.org/10.1107/S1600536810052803] [μ-1,2-Bis(diphenylphosphanyl)benzene-κ²P:P']bis[chloridogold(I)] Nobuto Yoshinari, Naoki Kitani, Toshiaki Tsukuda and Takumi Konno

S1. Comment

[(AuCl)₂(diphosphine)]-type digold(I) complexes have been known as a good starting material to produce [(AuL)₂(diphosphine)]-type digold(I) metallounits. Recently, we found that a digold(I) complex, [{Au(D-Hpen)}₂(dppm)] (D-pen = D-penicillaminate, dppm = 1,2-bis(diphenylphosphino)methane), which was prepared from [(AuCl)₂(dppm)] and D-pen, can act as a hexadentate-S₂N₂O₂ metalloligand toward a Ni^{II} center to give a unique trinuclear Ni^{II}Au^I₂ complex with a nine-membered metalloring, [NiAu₂(D-pen)₂(dppm)] (Hashimoto *et al.*, 2010). In the course of our study on a digold(I) metalloligand system having both D-pen and diphosphines, we started to use [(AuCl)₂(dppbz)] (dppbz = *o*phenylenebis(diphenylphosphine)) instead of [(AuCl)₂(dppm)]. Herein, we report the crystal structure of the non-solvate form of [(AuCl)₂(dppbz)] (I). The crystal structure of the diethylether solvate form of the title compound, [(AuCl)₂(dppbz)].Et₂O (II), has been reported by Mohamed *et al.* (2003).

The asymmetric unit of (I) contains only a complex molecule without a significant solvent accessible space, which is distinct from the solvated structure of (II) (Mohamed *et al.*, 2003). The complex molecule is composed of two [Au^ICl] units that are linked by a dppbz ligand through Au—P bonds, forming a digold(I) structure in [(AuCl)₂(dppbz)] (Fig. 1). In (I), two approximately linear P—Au^I—Cl units are skewed each other so as to form an intramolecular Au…Au interaction. This conformational feature is the same as that in (II). In the crystal (I), the Au…Au distance [3.05634 (17) Å] is longer than that in (II) [2.966 (1) Å], and the Cl—Au…Au—Cl torsion angle [-65.29 (3)°] is larger than that in (II) [-63.92 (7)°]. The other bond distances and angles in (I) are similar to those in (II).

The crystal structure of (I) is stabilized by several intermolecular C—H $\cdots\pi$ interactions. Each complex molecule is connected with four adjacent molecules through a C—H $\cdots\pi$ interaction [H15 \cdots Cgⁱ = 2.82 Å and H21 \cdots Cgⁱⁱ = 2.84 Å; symmetry codes: (i) *x*, 3/2–y, -1/2 + *z*, (ii) 1 - *x*, -1/2 + *y*, 1/2–z]; Cg is the centroid of the C25–C30 ring] to construct a two-dimensional sheet structure (Fig. 2). Such an intermolecular C—H $\cdots\pi$ interaction has not been observed in (II).

S2. Experimental

To a solution containing tetrahydrothiophenechlorogold(I) (100 mg, 0.32 mmol) in 10 ml of CH_2Cl_2 was added *o*-phenylenebis(diphenylphosphine) (140 mg, 0.31 mmol). After stirring for 20 minutes, 100 ml of diethylether was added to the reaction solution. The resulting white powder was recrystallized from CH_2Cl_2 by diffusing diethylether, which afforded colorless block crystals of (I).

S3. Refinement

H atoms were placed at calculated positions and refined with isotropic displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C)]$ and a riding model (C—H = 0.95 Å).

Figure 1

A view of molecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Figure 2

A crystal packing drawing of the title compound. The blue lines indicate C—H $\cdots\pi$ interactions.

[μ -1,2-Bis(diphenylphosphanyl)benzene- $\kappa^2 P:P'$]bis[chloridogold(I)]

Crystal data

 $[Au_{2}Cl_{2}(C_{30}H_{24}P_{2})]$ $M_{r} = 911.27$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 13.0733 (2) Å b = 12.4206 (2) Å c = 17.4630 (3) Å $\beta = 96.795$ (7)° V = 2815.69 (8) Å³ Z = 4 F(000) = 1704 $D_x = 2.150 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 24394 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 10.73 \text{ mm}^{-1}$ T = 200 KBlock, white $0.15 \times 0.10 \times 0.10 \text{ mm}$ Data collection

Rigaku R-AXIS VII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{\min} = 0.189, T_{\max} = 0.341$	31710 measured reflections 6438 independent reflections 5897 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -16 \rightarrow 16$ $k = -15 \rightarrow 16$ $l = -22 \rightarrow 22$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.041$ S = 1.16 6438 reflections 325 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0112P)^2 + 2.7453P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.54$ e Å ⁻³ $\Delta\rho_{min} = -0.80$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Aul	0.283249 (9)	0.406709 (9)	0.296038 (6)	0.02169 (4)	
Au2	0.229077 (9)	0.602225 (9)	0.389584 (6)	0.02065 (4)	
C11	0.38861 (7)	0.31036 (7)	0.38364 (5)	0.0385 (2)	
C12	0.13663 (7)	0.53399 (7)	0.48118 (5)	0.0371 (2)	
P1	0.18427 (6)	0.49382 (6)	0.20367 (4)	0.01918 (16)	
P2	0.33234 (6)	0.68257 (6)	0.31436 (4)	0.01836 (16)	
C1	0.0679 (2)	0.5541 (2)	0.23080 (17)	0.0234 (7)	
C2	0.0205 (3)	0.5115 (3)	0.29040 (19)	0.0340 (8)	
H2	0.0486	0.4490	0.3164	0.041*	
C3	-0.0664 (3)	0.5576 (3)	0.3129 (2)	0.0444 (10)	
Н3	-0.0972	0.5282	0.3548	0.053*	
C4	-0.1088 (3)	0.6462 (3)	0.2748 (2)	0.0444 (10)	
H4	-0.1690	0.6783	0.2904	0.053*	
C5	-0.0643 (3)	0.6886 (3)	0.2142 (3)	0.0523 (11)	
Н5	-0.0945	0.7492	0.1872	0.063*	
C6	0.0241 (3)	0.6436 (3)	0.1923 (2)	0.0379 (9)	

H6	0.0550	0.6738	0.1507	0.045*
C7	0.1435 (2)	0.4040 (2)	0.12379 (17)	0.0236 (7)
C8	0.0401 (3)	0.3877 (3)	0.0987 (2)	0.0380 (9)
H8	-0.0107	0.4299	0.1194	0.046*
C9	0.0104 (3)	0.3101 (3)	0.0436 (2)	0.0502 (10)
H9	-0.0606	0.2972	0.0279	0.060*
C10	0.0833 (3)	0.2523 (3)	0.0118 (2)	0.0463 (10)
H10	0.0626	0.2002	-0.0267	0.056*
C11	0.1864 (3)	0.2685 (3)	0.03467 (19)	0.0402 (9)
H11	0.2365	0.2285	0.0115	0.048*
C12	0.2168 (3)	0.3431 (3)	0.09162 (19)	0.0328 (8)
H12	0.2879	0.3527	0.1088	0.039*
C13	0.2511 (2)	0.6058 (2)	0.16336 (17)	0.0197 (6)
C14	0.2447 (3)	0.6146 (2)	0.08372 (18)	0.0280(7)
H14	0.2084	0.5613	0.0523	0.034*
C15	0.2902 (3)	0.6993 (3)	0.04926 (17)	0.0306 (7)
H15	0.2860	0.7031	-0.0053	0.037*
C16	0.3408 (3)	0.7769 (3)	0.09325 (17)	0.0311 (8)
H16	0.3711	0.8358	0.0695	0.037*
C17	0.3483 (2)	0.7703 (2)	0.17310 (17)	0.0269 (7)
H17	0.3840	0.8250	0.2035	0.032*
C18	0.3046 (2)	0.6855 (2)	0.20917 (16)	0.0202 (6)
C19	0.4619 (2)	0.6301 (2)	0.33296 (16)	0.0209 (6)
C20	0.5251 (3)	0.6146 (3)	0.27570 (18)	0.0305 (7)
H20	0.5006	0.6304	0.2235	0.037*
C21	0.6239 (3)	0.5762 (3)	0.2947 (2)	0.0399 (9)
H21	0.6671	0.5651	0.2553	0.048*
C22	0.6606 (3)	0.5538 (3)	0.37001 (19)	0.0325 (8)
H22	0.7287	0.5276	0.3826	0.039*
C23	0.5983 (3)	0.5693 (3)	0.42694 (19)	0.0298 (7)
H23	0.6237	0.5544	0.4791	0.036*
C24	0.4994 (2)	0.6062 (2)	0.40878 (18)	0.0271 (7)
H24	0.4563	0.6156	0.4484	0.032*
C25	0.3414 (2)	0.8233 (2)	0.34357 (16)	0.0216 (6)
C26	0.2503 (3)	0.8795 (3)	0.34737 (19)	0.0321 (8)
H26	0.1862	0.8474	0.3287	0.039*
C27	0.2528 (3)	0.9822 (3)	0.3782 (2)	0.0422 (9)
H27	0.1904	1.0207	0.3805	0.051*
C28	0.3447 (4)	1.0283 (3)	0.4055 (2)	0.0490 (11)
H28	0.3458	1.0983	0.4275	0.059*
C29	0.4353 (4)	0.9744 (3)	0.4013 (2)	0.0462 (10)
H29	0.4990	1.0076	0.4195	0.055*
C30	0.4338 (3)	0.8710 (3)	0.37043 (19)	0.0339 (8)
H30	0.4965	0.8334	0 3679	0.041*
	0.1200		0.0019	0.011

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.02405 (7)	0.02000 (6)	0.02113 (6)	-0.00025 (5)	0.00320 (5)	0.00152 (4)
Au2	0.02083 (7)	0.02433 (7)	0.01768 (6)	-0.00245 (5)	0.00596 (5)	0.00182 (4)
C11	0.0439 (5)	0.0344 (5)	0.0352 (5)	0.0106 (4)	-0.0034 (4)	0.0077 (4)
Cl2	0.0305 (4)	0.0520 (5)	0.0309 (4)	-0.0058 (4)	0.0116 (4)	0.0160 (4)
P1	0.0189 (4)	0.0204 (4)	0.0184 (4)	-0.0017 (3)	0.0030 (3)	-0.0002 (3)
P2	0.0203 (4)	0.0216 (4)	0.0138 (4)	-0.0025 (3)	0.0045 (3)	-0.0004 (3)
C1	0.0204 (16)	0.0254 (16)	0.0246 (16)	-0.0056 (13)	0.0039 (13)	-0.0075 (12)
C2	0.0252 (18)	0.046 (2)	0.0313 (19)	-0.0061 (16)	0.0074 (15)	0.0009 (15)
C3	0.030(2)	0.069 (3)	0.038 (2)	-0.0064 (19)	0.0160 (17)	-0.0050 (19)
C4	0.028 (2)	0.048 (2)	0.061 (3)	-0.0017 (18)	0.0181 (19)	-0.025 (2)
C5	0.041 (2)	0.029 (2)	0.090 (3)	0.0116 (18)	0.022 (2)	-0.004 (2)
C6	0.036 (2)	0.0316 (19)	0.048 (2)	0.0066 (16)	0.0167 (18)	0.0031 (16)
C7	0.0255 (17)	0.0236 (16)	0.0214 (16)	-0.0004 (13)	0.0015 (13)	0.0007 (12)
C8	0.0298 (19)	0.037 (2)	0.046 (2)	0.0058 (16)	-0.0034 (17)	-0.0149 (16)
C9	0.041 (2)	0.052 (2)	0.053 (3)	-0.003 (2)	-0.0140 (19)	-0.019 (2)
C10	0.067 (3)	0.034 (2)	0.035 (2)	0.0033 (19)	-0.010 (2)	-0.0139 (16)
C11	0.058 (3)	0.0335 (19)	0.0293 (19)	0.0136 (18)	0.0077 (18)	-0.0084 (15)
C12	0.032 (2)	0.0336 (18)	0.0331 (19)	0.0030 (15)	0.0070 (15)	-0.0048 (14)
C13	0.0181 (15)	0.0222 (15)	0.0190 (15)	0.0019 (12)	0.0030 (12)	0.0018 (11)
C14	0.0326 (18)	0.0284 (17)	0.0222 (16)	-0.0012 (14)	0.0000 (14)	0.0000 (13)
C15	0.042 (2)	0.0367 (18)	0.0139 (15)	-0.0024 (16)	0.0064 (14)	0.0026 (13)
C16	0.041 (2)	0.0308 (18)	0.0217 (16)	-0.0092 (15)	0.0065 (15)	0.0051 (13)
C17	0.0331 (19)	0.0278 (17)	0.0198 (15)	-0.0072 (14)	0.0028 (14)	-0.0021 (12)
C18	0.0191 (15)	0.0271 (16)	0.0148 (14)	-0.0009 (12)	0.0032 (12)	0.0011 (11)
C19	0.0217 (16)	0.0222 (15)	0.0194 (15)	-0.0022 (12)	0.0050 (12)	-0.0005 (11)
C20	0.0272 (18)	0.046 (2)	0.0187 (16)	0.0034 (15)	0.0047 (14)	-0.0029 (14)
C21	0.0284 (19)	0.065 (2)	0.0280 (19)	0.0073 (18)	0.0101 (16)	-0.0085 (17)
C22	0.0213 (17)	0.0395 (19)	0.036 (2)	0.0058 (15)	0.0017 (15)	-0.0024 (15)
C23	0.0304 (19)	0.0355 (18)	0.0228 (17)	0.0012 (15)	0.0004 (14)	0.0043 (13)
C24	0.0256 (17)	0.0354 (18)	0.0212 (16)	0.0027 (14)	0.0072 (13)	0.0015 (13)
C25	0.0299 (17)	0.0228 (15)	0.0131 (14)	-0.0030 (13)	0.0068 (13)	0.0013 (11)
C26	0.043 (2)	0.0284 (17)	0.0262 (17)	0.0031 (16)	0.0101 (16)	0.0053 (13)
C27	0.066 (3)	0.0287 (19)	0.035 (2)	0.0113 (19)	0.0192 (19)	0.0077 (15)
C28	0.097 (4)	0.0248 (18)	0.0281 (19)	-0.001 (2)	0.019 (2)	-0.0004 (15)
C29	0.074 (3)	0.033 (2)	0.030 (2)	-0.021 (2)	0.0001 (19)	-0.0035 (15)
C30	0.041 (2)	0.0309 (18)	0.0297 (18)	-0.0079 (16)	0.0021 (16)	-0.0017 (14)

Geometric parameters (Å, °)

Au1—P1	2.2256 (8)	C13—C14	1.388 (4)	
Au1—Cl1	2.2739 (8)	C13—C18	1.407 (4)	
Au1—Au2	3.0563 (2)	C14—C15	1.381 (4)	
Au2—P2	2.2279 (7)	C14—H14	0.9500	
Au2—Cl2	2.2792 (8)	C15—C16	1.355 (4)	
P1—C1	1.808 (3)	C15—H15	0.9500	

supporting information

P1C7	1.816 (3)	C16—C17	1.389 (4)
P1—C13	1.827 (3)	С16—Н16	0.9500
P2—C19	1.809 (3)	C17—C18	1.384 (4)
P2—C25	1.821 (3)	С17—Н17	0.9500
P2—C18	1.830 (3)	C19—C20	1.384 (4)
C1—C2	1.378 (4)	C19—C24	1.388 (4)
C1—C6	1.387 (5)	C20—C21	1.381 (5)
C2—C3	1.372 (5)	C20—H20	0.9500
C2—H2	0.9500	C21—C22	1.373 (5)
C3—C4	1 368 (6)	$C_{21} = H_{21}$	0.9500
C3H3	0.9500	C_{22} C_{23}	1.371(5)
C4-C5	1 373 (6)	C22_H22	0.9500
CA = HA	0.9500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.373(5)
C_{4}	1,377(5)	$C_{23} = C_{24}$	0.0500
C5 H5	0.0500	C24 H24	0.9500
	0.9500	C_{24} = H_{24}	0.9300
	0.9300	$C_{23} = C_{30}$	1.377(4)
C/-C8	1.385 (5)	$C_{25} = C_{26}$	1.388 (4)
C/C12	1.391 (4)	C26—C27	1.383 (5)
C8—C9	1.385 (5)	C26—H26	0.9500
С8—Н8	0.9500	C27—C28	1.364 (6)
C9—C10	1.362 (5)	С27—Н27	0.9500
С9—Н9	0.9500	C28—C29	1.370 (6)
C10—C11	1.374 (5)	C28—H28	0.9500
C10—H10	0.9500	C29—C30	1.392 (5)
C11—C12	1.383 (5)	C29—H29	0.9500
C11—H11	0.9500	С30—Н30	0.9500
C12—H12	0.9500		
P1—Au1—Cl1	175.87 (3)	C14—C13—C18	118.8 (3)
P1—Au1—Au2	81.343 (19)	C14—C13—P1	118.1 (2)
Cl1—Au1—Au2	102.64 (2)	C18—C13—P1	123.1 (2)
P2—Au2—Cl2	171.48 (3)	C15—C14—C13	121.3 (3)
P2—Au2—Au1	81.132 (19)	C15—C14—H14	119.4
Cl2—Au2—Au1	104.79 (2)	C13—C14—H14	119.4
C1—P1—C7	106.00 (14)	C16—C15—C14	120.1 (3)
C1—P1—C13	103.96 (14)	C16—C15—H15	120.0
C7—P1—C13	106.38 (14)	C14—C15—H15	120.0
C1 - P1 - Au1	116 51 (10)	C_{15} C_{16} C_{17}	1199(3)
C7—P1—Au1	110.51(10) 110.53(10)	$C_{15} - C_{16} - H_{16}$	120.0
$C13 P1 \Delta u1$	110.35(10) 112.70(10)	C_{17} C_{16} H_{16}	120.0
C_{10} P_{2} C_{25}	112.70(10) 105.53(14)	$C_{17} = C_{10} = 110$	120.0 121.2(3)
$C_{19} - 12 - C_{23}$	103.33(17) 104.01(13)	$C_{10} - C_{17} - C_{10}$	110 /
$C_{19} - 12 - C_{10}$	107.71(13) 105.00(12)	$C_{10} - C_{17} - H_{17}$	117.4
$C_{23} = r_{2} = C_{1\delta}$	103.09 (13)	$C_{10} - C_{1} / - H_{1} / C_{12}$	119.4
$C19 - r_2 - Au_2$	110.03 (10)	$C_1/-C_1\delta$ -C_1S	118.8(3)
C10 P2 A 2	106.//(9)	$C1/-C1\delta-P2$	115.4 (2)
C18—P2—Au2	122.62 (10)	C13—C18—P2	125.6 (2)
C2—C1—C6	118.5 (3)	C20—C19—C24	119.1 (3)
C2-C1-P1	120.4 (3)	C20—C19—P2	123.1 (2)

C6C1P1	121.1 (2)	C24—C19—P2	117.7 (2)
C3—C2—C1	121.1 (3)	C21—C20—C19	119.7 (3)
С3—С2—Н2	119.4	C21—C20—H20	120.1
C1—C2—H2	119.4	C19—C20—H20	120.1
C4—C3—C2	119.9 (3)	C22—C21—C20	120.7 (3)
C4—C3—H3	120.0	C22—C21—H21	119.6
$C^2 - C^3 - H^3$	120.0	C_{20} C_{21} H_{21}	119.6
C_{3} C_{4} C_{5}	119.9 (3)	C_{23} C_{22} C_{21} C_{21}	119.0 119.7(3)
$C_3 - C_4 - H_4$	120.0	C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	120.1
$C_5 C_4 H_4$	120.0	$C_{23} C_{22} H_{22}$	120.1
C_{3}	120.0 120.3(4)	$C_{21} = C_{22} = C_{122}$	120.1 120.2(3)
C4 - C5 - C0	120.3 (4)	$C_{22} = C_{23} = C_{24}$	120.2 (3)
C4 - C5 - H5	119.0	C22—C23—H23	119.9
C6—C5—H5	119.8	$C_{24} = C_{23} = H_{23}$	119.9
C5—C6—C1	120.1 (3)	C_{23} C_{24} C_{19}	120.5 (3)
С5—С6—Н6	119.9	C23—C24—H24	119.7
СІ—С6—Н6	119.9	C19—C24—H24	119.7
C8—C7—C12	119.1 (3)	C30—C25—C26	119.3 (3)
C8—C7—P1	121.3 (2)	C30—C25—P2	122.2 (2)
C12—C7—P1	119.4 (3)	C26—C25—P2	117.9 (2)
C9—C8—C7	120.3 (3)	C27—C26—C25	120.1 (3)
С9—С8—Н8	119.9	C27—C26—H26	119.9
С7—С8—Н8	119.9	C25—C26—H26	119.9
С10—С9—С8	119.8 (4)	C28—C27—C26	120.1 (4)
С10—С9—Н9	120.1	C28—C27—H27	120.0
С8—С9—Н9	120.1	С26—С27—Н27	120.0
C9—C10—C11	120.9 (3)	C27—C28—C29	120.5 (3)
C9—C10—H10	119.5	C27—C28—H28	119.8
C11—C10—H10	119.5	C29—C28—H28	119.7
C10-C11-C12	119.7 (3)	C28—C29—C30	119.9 (4)
C10-C11-H11	120.2	C28—C29—H29	120.0
C12—C11—H11	120.2	С30—С29—Н29	120.0
C11—C12—C7	120.1 (3)	C25—C30—C29	120.0 (4)
C11—C12—H12	119.9	C25—C30—H30	120.0
C7—C12—H12	119.9	C29—C30—H30	120.0
e, eiz iiiz			12010
P1— $Au1$ — $Au2$ — $P2$	-70.42(3)	P1-C13-C14-C15	177.7(3)
C11— $Au1$ — $Au2$ — $P2$	108.45(3)	C_{13} C_{14} C_{15} C_{16}	-11(5)
$P1_Au1_Au2_C12$	100.45(3) 115.85(3)	C_{14} C_{15} C_{16} C_{17}	1.1(5)
$\frac{11}{11} \frac{1}{11} $	-65.29(3)	C_{15} C_{16} C_{17} C_{18}	-0.1(5)
$A_{\rm H2}$ $A_{\rm H1}$ B_1 C_1	-42.04(11)	$C_{15} = C_{10} = C_{17} = C_{18}$	-0.7(5)
Au2 Au1 $P1 C7$	-162.04(11)	$C_{10} = C_{17} = C_{18} = C_{15}$	0.7(3)
Au2 - Au1 - F1 - C/	-103.09(11)	C10 - C17 - C10 - F2	1/4.4(3)
Au1 = Au2 = D2 = C10	70.02(10)	C14 - C13 - C18 - C17	0.0(4)
Au1 - Au2 - P2 - C19	-03.04(10)	$r_1 - c_{12} - c_{18} - c_{17}$	-1/0.0(2)
Au1 - Au2 - P2 - C23	-1/8.20(11)	U14 - U13 - U18 - F2	-1/3.9(2)
Au1 - Au2 - P2 - C18	60.75 (11)	P1 - C13 - C18 - P2	8.9 (4)
C = PI = CI = C2	96.0 (3)	C19 - P2 - C18 - C17	-/8.0(3)
C13—P1—C1—C2	-152.0 (3)	C25—P2—C18—C17	33.0 (3)
Au1—P1—C1—C2	-27.4(3)	Au2—P2—C18—C17	154.9 (2)

C7—P1—C1—C6	-83.8 (3)	C19—P2—C18—C13	96.7 (3)
C13—P1—C1—C6	28.2 (3)	C25—P2—C18—C13	-152.3 (3)
Au1—P1—C1—C6	152.8 (2)	Au2—P2—C18—C13	-30.5 (3)
C6-C1-C2-C3	-1.7 (5)	C25—P2—C19—C20	-101.8 (3)
P1-C1-C2-C3	178.5 (3)	C18—P2—C19—C20	9.0 (3)
C1—C2—C3—C4	1.4 (6)	Au2—P2—C19—C20	143.1 (2)
C2—C3—C4—C5	0.1 (6)	C25—P2—C19—C24	77.1 (3)
C3—C4—C5—C6	-1.2 (6)	C18—P2—C19—C24	-172.2 (2)
C4—C5—C6—C1	0.8 (6)	Au2—P2—C19—C24	-38.1 (3)
C2-C1-C6-C5	0.6 (5)	C24—C19—C20—C21	-0.1 (5)
P1-C1-C6-C5	-179.6 (3)	P2-C19-C20-C21	178.7 (3)
C1—P1—C7—C8	-3.9 (3)	C19—C20—C21—C22	-0.5 (6)
C13—P1—C7—C8	-114.2 (3)	C20—C21—C22—C23	0.2 (6)
Au1—P1—C7—C8	123.2 (3)	C21—C22—C23—C24	0.6 (5)
C1—P1—C7—C12	-178.1 (2)	C22—C23—C24—C19	-1.1 (5)
C13—P1—C7—C12	71.6 (3)	C20-C19-C24-C23	0.9 (5)
Au1—P1—C7—C12	-51.0 (3)	P2-C19-C24-C23	-178.0 (2)
C12—C7—C8—C9	1.4 (5)	C19—P2—C25—C30	2.3 (3)
P1-C7-C8-C9	-172.8 (3)	C18—P2—C25—C30	-108.3 (3)
C7—C8—C9—C10	-2.4 (6)	Au2—P2—C25—C30	120.1 (2)
C8—C9—C10—C11	1.2 (6)	C19—P2—C25—C26	-169.8 (2)
C9—C10—C11—C12	1.1 (6)	C18—P2—C25—C26	79.7 (3)
C10—C11—C12—C7	-2.1 (5)	Au2—P2—C25—C26	-52.0 (2)
C8—C7—C12—C11	0.9 (5)	C30—C25—C26—C27	-0.3 (5)
P1-C7-C12-C11	175.2 (3)	P2-C25-C26-C27	172.0 (2)
C1—P1—C13—C14	-101.0 (3)	C25—C26—C27—C28	-0.4 (5)
C7—P1—C13—C14	10.6 (3)	C26—C27—C28—C29	1.2 (5)
Au1—P1—C13—C14	131.9 (2)	C27—C28—C29—C30	-1.2 (5)
C1—P1—C13—C18	76.2 (3)	C26—C25—C30—C29	0.3 (5)
C7—P1—C13—C18	-172.1 (2)	P2—C25—C30—C29	-171.7 (3)
Au1—P1—C13—C18	-50.9 (3)	C28—C29—C30—C25	0.5 (5)
C18—C13—C14—C15	0.3 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C15—H15…Cg ⁱ	0.95	2.82	3.569 (4)	137
C21—H21···Cg ⁱⁱ	0.95	2.84	3.559 (4)	134

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, y-1/2, -z+1/2.