Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-4-[2-(4-Ethoxyphenyl)ethenyl]-1methylpyridinium 4-bromobenzenesulfonate methanol hemisolvate¹

Hoong Kun Fun, ^a*§ Suchada Chantrapromma^b¶ and Patcharaporn Jansrisewangwong^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Received 27 November 2010; accepted 5 December 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.033; wR factor = 0.086; data-to-parameter ratio = 17.6.

In the title compound, $C_{16}H_{18}NO^+ \cdot C_6H_4BrO_3S^- \cdot 0.5CH_3OH$, the cation exists in the E configuration and the whole molecule of the cation, except for the O atom of the ethoxy group, is disordered with a site-occupancy ratio of 0.695 (5):0.305 (5). The cation is disordered in such a way that the ethenyl units of the major and minor components are related by 180° around the long molecular axis. In the major component, the cation is almost planar, the dihedral angle between the pyridinium and benzene rings being $0.8 (3)^\circ$, whereas in the minor component, the dihedral angle between the two aromatic rings is $4.2 (6)^{\circ}$. In the crystal, the cations are stacked in an antiparallel manner along the *a* axis, while the anions and methanol molecules are linked through $O-H \cdots O$ hydrogen bonds and $Br \cdots O$ short contacts [3.0248 (13) Å] into a tape along the same direction. The three components are further linked by weak $C-H \cdots O$, $C-H\cdots Br$ and $C-H\cdots \pi$ interactions.

Related literature

For bond-length data, see: Allen *et al.* (1987). For background to non-linear optical materials research, see: Cheng, Tam, Marder *et al.* (1991); Cheng, Tam, Stevenson *et al.* (1991); Ogawa *et al.* (2008); Ruanwas *et al.* (2010); Yang *et al.* (2007). For related structures, see: Chantrapromma *et al.* (2006); Chantrapromma, Chanawanno & Fun (2009); Chantrapromma, Jansrisewangwong *et al.* (2009); Fun *et al.* (2009). For

the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

 $\gamma = 88.395 \ (2)^{\circ}$

Z = 1

V = 1078.00 (7) Å³

Mo $K\alpha$ radiation

 $0.58 \times 0.41 \times 0.17~\text{mm}$

24757 measured reflections

6214 independent reflections

5389 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 2.04 \text{ mm}^{-1}$ T = 100 K

 $R_{\rm int} = 0.030$

6 restraints

 $\Delta \rho_{\text{max}} = 1.47 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

Experimental

Crystal data

$2C_{16}H_{18}NO^+ \cdot 2C_6H_4BrO_3S^- \cdot CH_4O$	
$M_r = 984.79$	
Triclinic, P1	
a = 9.9270 (4) Å	
b = 9.9813 (4) Å	
c = 11.5293 (4) Å	
$\alpha = 75.703 \ (2)^{\circ}$	
$\beta = 76.965 \ (2)^{\circ}$	

Data collection

```
Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
T<sub>min</sub> = 0.383, T<sub>max</sub> = 0.721
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.086$ S = 1.036214 reflections 354 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the N1A/C1A–C5A, C8A–C13A, N1B/C1B–C5B, C8B–C13B and C17–C22 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O5-H5···O3 ⁱ	0.82	1.92	2.657 (4)	149
$C1A - H1AA \cdots O2^{ii}$	0.93	2.42	3.334 (4)	168
$C2A - H2AA \cdots O2^{iii}$	0.93	2.38	3.237 (5)	153
$C14A - H14A \cdots O4^{iv}$	0.96	2.36	3.180 (6)	143
$C14A - H14B \cdots O4^{iii}$	0.96	2.41	3.343 (6)	163
$C19-H19A\cdots O5^{v}$	0.93	2.53	3.385 (4)	153
$C21-H21A\cdots O2^{vi}$	0.93	2.58	3.311 (2)	135
C23−H23C···Br1	0.96	2.77	3.724 (5)	173
$C14A - H14C \cdots Cg2^{ii}$	0.96	2.66	3.609 (6)	172
$C14A - H14C \cdots Cg4^{ii}$	0.96	2.63	3.572 (8)	167
$C15A - H15A \cdots Cg1^{vii}$	0.97	2.84	3.639 (8)	140
$C15A - H15A \cdots Cg3^{vii}$	0.97	2.84	3.611 (9)	137
$C14B - H14D \cdots Cg2^{ii}$	0.96	2.87	3.562 (15)	129
$C14B - H14D \cdots Cg4^{ii}$	0.96	2.80	3.564 (16)	137
$C15B - H15C \cdots Cg1^{vii}$	0.97	2.81	3.65 (3)	145
$C15B-H15C\cdots Cg3^{vii}$	0.97	2.81	3.62 (3)	141
$C15B-H15D\cdots Cg5^{viii}$	0.97	2.98	3.60 (2)	123

¹ This paper is dedicated to His Majesty King Bhumibol Adulyadej of Thailand (King Rama IX) on the occasion of his 83th Birthday Anniversary which fell on December 5th, 2010.

[§] Thomson Reuters ResearcherID: A-3561-2009.

 $[\]P$ Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

organic compounds

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Prince of Songkla University for a research grant. They also thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2636).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, 01144-01145.
- Chantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217-o218.
- Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, 05494-05496.
- Cheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. & Spangler, C. W. (1991). J. Phys. Chem. 95, 10643-10652.
- Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. & Marder, S. R. (1991). J. Phys. Chem. 95, 10631-10643. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, 01406-01407.
- Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, **310**, 836–842.
- Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819-824. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Res. 7, 83-86.

Acta Cryst. (2011). E67, o105-o106 [https://doi.org/10.1107/S1600536810050944]

(*E*)-4-[2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate methanol hemisolvate

Hoong Kun Fun, Suchada Chantrapromma and Patcharaporn Jansrisewangwong

S1. Comment

Organic crystals with extensive conjugated π systems with large hyperpolarizability which exhibit NLO properties have been reported (Ogawa *et al.*, 2008; Ruanwas *et al.*, 2010; Yang *et al.*, 2007). Styryl pyridinium derivatives are considered to be good conjugated π -systems (Cheng, Tam, Marder *et al.*, 1991; Cheng, Tam, Stevenson *et al.*, 1991). In our on-going research in searching for NLO materials (Chantrapromma *et al.*, 2006; Chantrapromma, Chanawanno & Fun, 2009; Chantrapromma, Jansrisewangwong *et al.*, 2009; Ruanwas *et al.*, 2010), the title compound (I) was synthesized. Unfortunately (I) crystallizes in the triclinic centrosymmetric space group *P*-1 and did not exhibit second-order nonlinear optical properties.

The asymmetric unit of (I) consists of one $C_{16}H_{18}NO^+$ cation, one $C_6H_4BrO_3S^-$ anion and one-half of the CH₃OH molecule. The whole molecule except the O atom of the ethoxy group (O1) of the cation is disordered over two sites with the major component *A* and the minor *B* components having refined site-occupancy ratio of 0.695 (5):0.305 (5) (Fig. 1). The cation exists in the *E* configuration with respect to the C6=C7 double bond and the torsion angle C5–C6–C7–C8 = -179.6 (2)° for major component *A* and 179.5 (6)° for minor component *B* indicating that the orientation of the ethenyl moiety in major and minor components is related by 180° rotation. In the major component *A*, the cation is planar with the dihedral angle between the pyridinium and benzene rings being 0.8 (3)°, whereas in the minor component *B*, the dihedral angle between the two aromatic rings is 4.2 (6)°. The anion is inclined to the cation with the dihedral angle between the C17–C22 benzene ring of the anion and the mean plane of the conjugated π system (C1–C13/N1) [*r.m.s* = 0.013 (2) and 0.033 (2) Å for major and minor components, respectively] of the cation being 79.73 (12) and 79.2 (2)° for major and minor components, respectively] of the cation being 79.73 (12) and 79.2 (2)° for major and minor components. The bond lengths in (I) are in normal ranges (Allen *et al.*, 1987) and comparable to those in related structures (Chantrapromma *et al.*, 2006; Chantrapromma, Chanawanno & Fun, 2009; Chantrapromma, Jansrisewangwong *et al.*, 2009).

In the crystal packing (Fig. 2), the cations and anions are individually arranged into chains along the *a* axis. The methanol molecules are linked to the anions by C—H···Br weak interactions and O—H···O hydrogen bonds, respectively (Table 1). The cations, anions and methanol molecules are linked together by O—H···O hydrogen bonds and C—H···O weak interactions forming sheets parallel to the *bc* plane. The crystal structure is further stabilized by C—H··· π interactions (Table 1). A Br···O short contact [3.0248 (13) Å; symmetry code: 1 + x, y, z] was observed.

S2. Experimental

(*E*)-4-(4-Ethoxystyryl)-1-methylpyridinium iodide (compound A) was prepared by mixing 1:1:1 molar ratio solutions of 1,4-dimethylpyridinium iodide (2.00 g, 8.5 mmol), 4-ethoxybenzaldehyde (1.27 g, 8.5 mmol) and piperidine (0.84 ml, 8.5 mmol) in hot methanol (50 ml). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The resultant solid was filtered off and washed with diethylether to give oranged-yellow solid of compound A (2.18 g, 69%), M.p. 491-492 K. Silver (I) 4-bromobenzenesulfonate (compound B) was synthesized according to our previously reported procedure (Chantrapromma *et al.*, 2006). The title compound B (0.17 g, 0.5 mmol) in hot methanol (50 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding a yellow solid of the title compound. Yellow plate-shaped single crystals of the title compound suitable for *x*-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature over several days, M.p. 513-515 K.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O-H) = 0.82 Å, d(C-H) = 0.93 Å for aromatic and CH, 0.97 Å for CH₂ and 0.96 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atoms for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.30 Å from H23B and the deepest hole is located at 0.68 Å from Br1. The whole cation, with the exception of the O1 atom of the ethoxy group, is disordered over two sites with a refined occupancy ratio of 0.695 (5):0.305 (5). All atoms of the minor component *B* were refined isotropically. Initially rigidity and similarity restraints were applied. After steady state has been reached, these restraints were removed and *DFIX* restraints were applied to O1-C11A, O1-C11B, O1-C15A and O1-C15B bond distances. The occupancy of the metahnol molecule was refined to 0.542 (7). In the final refinement, it was fixed to 0.5.

Figure 1

The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.

Figure 2

The crystal packing of the major component of the title compound viewed down the *a* axis. O—H…O hydrogen bonds and C—H…O weak interactions are shown as dashed lines.

(E)-4-[2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate methanol hemisolvate

Crystal data	
$2C_{16}H_{18}NO^{+} \cdot 2C_{6}H_{4}BrO_{3}S^{-} \cdot CH_{4}O$ $M_{r} = 984.79$ Triclinic, <i>P</i> I Hall symbol: -P 1 a = 9.9270 (4) Å b = 9.9813 (4) Å c = 11.5293 (4) Å a = 75.703 (2)° $\beta = 76.965$ (2)°	$\gamma = 88.395 (2)^{\circ}$ $V = 1078.00 (7) \text{ Å}^{3}$ Z = 1 F(000) = 506 $D_x = 1.517 \text{ Mg m}^{-3}$ Melting point = 513–515 K Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6214 reflections $\theta = 1.9-30.0^{\circ}$

 $\mu = 2.04 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker APEXII CCD area-detector	24757 measured reflections
diffractometer	6214 independent reflections
Radiation source: sealed tube	5389 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
φ and ω scans	$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 1.9^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Bruker, 2005)	$k = -14 \rightarrow 14$
$T_{\min} = 0.383, T_{\max} = 0.721$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
g 1.03	

Plate, yellow

 $0.58 \times 0.41 \times 0.17 \text{ mm}$

 $WR(F^2) = 0.086$ Heighbouring sitesS = 1.03H-atom parameters constrained6214 reflections $w = 1/[\sigma^2(F_o^2) + (0.0421P)^2 + 0.6369P]$ 354 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 6 restraints $(\Delta/\sigma)_{max} = 0.002$ Primary atom site location: structure-invariant
direct methods $\Delta \rho_{min} = -0.54$ e Å⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.611495 (18)	0.152815 (19)	0.312050 (17)	0.02878 (6)	
S1	-0.01349 (4)	0.19135 (4)	0.23886 (4)	0.02485 (9)	
01	0.57929 (15)	0.21814 (14)	0.88911 (12)	0.0318 (3)	
O2	-0.09844 (13)	0.10914 (14)	0.35315 (12)	0.0314 (3)	
03	-0.04752 (16)	0.33740 (14)	0.21612 (16)	0.0415 (4)	
O4	-0.00778 (15)	0.13368 (18)	0.13490 (14)	0.0396 (3)	
05	0.8900 (4)	0.4976 (3)	0.0154 (3)	0.0435 (7)	0.50
Н5	0.9371	0.4481	0.0578	0.065*	0.50
N1A	-0.0147 (7)	0.7395 (6)	0.2448 (5)	0.0267 (12)	0.695 (5)
C1A	0.0554 (4)	0.7375 (4)	0.4310 (3)	0.0239 (6)	0.695 (5)
H1AA	0.0530	0.7777	0.4961	0.029*	0.695 (5)
C2A	-0.0181 (6)	0.7948 (5)	0.3438 (4)	0.0228 (8)	0.695 (5)

H2AA	-0.0707	0.8720	0.3517	0.027*	0.695 (5)
C3A	0.0609 (9)	0.6259 (8)	0.2357 (7)	0.0367 (15)	0.695 (5)
H3AA	0.0643	0.5885	0.1688	0.044*	0.695 (5)
C4A	0.1331 (4)	0.5640(3)	0.3233 (4)	0.0332 (8)	0.695 (5)
H4AA	0.1818	0.4845	0.3157	0.040*	0.695 (5)
C5A	0.1341 (3)	0.6195 (3)	0.4234 (3)	0.0237 (6)	0.695 (5)
C6A	0.2090 (3)	0.5626 (3)	0.5195 (2)	0.0270 (7)	0.695 (5)
H6AA	0.1987	0.6051	0.5841	0.032*	0.695 (5)
C7A	0.2907 (3)	0.4544 (3)	0.5214 (2)	0.0261 (7)	0.695 (5)
H7AA	0.3008	0.4130	0.4561	0.031*	0.695 (5)
C8A	0.3662 (3)	0.3946 (3)	0.6161 (3)	0.0243 (6)	0.695 (5)
C9A	0.4440 (3)	0.2777 (4)	0.6085 (3)	0.0283 (7)	0.695 (5)
H9AA	0.4482	0.2397	0.5418	0.034*	0.695 (5)
C10A	0.5148 (6)	0.2167 (6)	0.6964 (5)	0.0294 (10)	0.695 (5)
H10A	0.5643	0.1378	0.6884	0.035*	0.695 (5)
C11A	0.5143 (8)	0.2692 (7)	0.7955 (6)	0.0287 (13)	0.695 (5)
C12A	0.4362 (6)	0.3892 (5)	0.8051 (5)	0.0348 (11)	0.695 (5)
H12A	0.4333	0.4268	0.8718	0.042*	0.695 (5)
C13A	0.3649 (3)	0.4505 (3)	0.7172 (4)	0.0302 (7)	0.695 (5)
H13A	0.3154	0.5295	0.7247	0.036*	0.695 (5)
C14A	-0.0929(6)	0.8055 (6)	0.1557 (5)	0.0371 (11)	0.695 (5)
H14A	-0.0579	0.7792	0.0800	0.056*	0.695 (5)
H14B	-0.0841	0.9041	0.1414	0.056*	0.695 (5)
H14C	-0.1885	0.7771	0.1864	0.056*	0.695 (5)
C15A	0.6589(7)	0.0983 (6)	0.8757 (7)	0.0231(17)	0.695 (5)
H15A	0.7289	0.1197	0.7994	0.028*	0.695 (5)
H15B	0.5994	0.0236	0.8743	0.028*	0.695 (5)
C16A	0.7260 (12)	0.0566 (17)	0.9834(10)	0.034(2)	0.695 (5)
H16A	0.7892	-0.0160	0.9718	0.051*	0.695 (5)
H16B	0.6561	0.0243	1.0573	0.051*	0.695 (5)
H16C	0.7753	0.1349	0.9897	0.051*	0.695 (5)
N1B	-0.0172(14)	0.7490 (16)	0.2597(13)	0.020 (2)*	0.305 (5)
C1B	0.0848(8)	0.7018 (9)	0.4259(7)	0.0201(18)*	0.305 (5)
H1BA	0.0962	0 7236	0 4971	0.024*	0.305(5)
C2B	0.0053(12)	0.7800 (14)	0.3562(12)	$0.024(3)^*$	0.305(5)
H2BA	-0.0344	0.8582	0 3782	0.029*	0.305(5)
C3B	0.0405 (19)	0.638(2)	0.2234(19)	$0.029(3)^*$	0.305(5)
H3BA	0.0207	0.6149	0.1556	0.035*	0.305 (5)
C4B	0.1273(10)	0.5607(11)	0.2859 (9)	0.030 (2)*	0.305(5)
H4BA	0 1720	0 4881	0.2574	0.036*	0.305(5)
C5B	0.1499(7)	0 5881 (8)	0.3903 (8)	0.0212 (15)*	0.305(5)
C6B	0.2386 (6)	0.5015 (6)	0.3903(0) 0.4641(5)	0.0212(19)	0.305(5)
H6BA	0.2810	0.4282	0.4351	0.027*	0.305 (5)
C7B	0.2637 (6)	0.5186(6)	0.5688 (5)	0.0211 (14)*	0.305(5)
H7BA	0 2213	0 5926	0.5966	0.025*	0.305(5)
C8B	0.3503(7)	0.4341 (8)	0.6447(7)	0.0210 (14)*	0 305 (5)
C9B	0.4213 (8)	0.3225 (9)	0.6190(7)	0.0241 (16)*	0 305 (5)
H9BA	0.4174	0.2964	0.5477	0.029*	0.305(5)
	···· ·	··		··· - /	

C10B	0.5018 (16)	0.2447 (14)	0.6990 (15)	0.035 (4)*	0.305 (5)
H10B	0.5512	0.1691	0.6808	0.042*	0.305 (5)
C11B	0.5034 (16)	0.2863 (15)	0.8051 (13)	0.018 (3)*	0.305 (5)
C12B	0.4343 (11)	0.3971 (12)	0.8312 (10)	0.021 (2)*	0.305 (5)
H12B	0.4399	0.4246	0.9014	0.026*	0.305 (5)
C13B	0.3546 (9)	0.4703 (9)	0.7531 (8)	0.030 (2)*	0.305 (5)
H13B	0.3037	0.5442	0.7734	0.036*	0.305 (5)
C14B	-0.1068 (15)	0.8318 (13)	0.1724 (13)	0.028 (3)*	0.305 (5)
H14D	-0.1681	0.7690	0.1567	0.042*	0.305 (5)
H14E	-0.0475	0.8797	0.0963	0.042*	0.305 (5)
H14F	-0.1601	0.8975	0.2106	0.042*	0.305 (5)
C15B	0.659 (3)	0.098 (2)	0.877 (3)	0.054 (8)*	0.305 (5)
H15C	0.7338	0.1217	0.8046	0.065*	0.305 (5)
H15D	0.6004	0.0271	0.8673	0.065*	0.305 (5)
C16B	0.716 (3)	0.044 (4)	0.990 (3)	0.047 (9)*	0.305 (5)
H16D	0.7610	-0.0419	0.9852	0.071*	0.305 (5)
H16E	0.6426	0.0291	1.0619	0.071*	0.305 (5)
H16F	0.7825	0.1101	0.9937	0.071*	0.305 (5)
C17	0.42651 (18)	0.16977 (18)	0.29296 (16)	0.0244 (3)	
C18	0.39864 (19)	0.25307 (19)	0.18576 (17)	0.0288 (4)	
H18A	0.4697	0.3034	0.1249	0.035*	
C19	0.26369 (19)	0.26051 (19)	0.17041 (17)	0.0285 (4)	
H19A	0.2439	0.3161	0.0990	0.034*	
C20	0.15803 (18)	0.18491 (17)	0.26178 (16)	0.0233 (3)	
C21	0.18730 (19)	0.10245 (18)	0.36949 (16)	0.0252 (3)	
H21A	0.1163	0.0524	0.4307	0.030*	
C22	0.32179 (19)	0.09490 (18)	0.38552 (16)	0.0262 (3)	
H22A	0.3416	0.0404	0.4573	0.031*	
C23	0.7489 (5)	0.4042 (5)	0.0126 (4)	0.0433 (10)	0.50
H23A	0.7764	0.3470	-0.0440	0.065*	0.50
H23B	0.6475	0.4335	-0.0202	0.065*	0.50
H23C	0.7118	0.3469	0.0933	0.065*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02518 (9)	0.02959 (10)	0.03098 (10)	-0.00350 (7)	-0.00640 (7)	-0.00585 (7)
S1	0.0239 (2)	0.02263 (19)	0.0257 (2)	-0.00041 (15)	-0.00211 (16)	-0.00470 (16)
01	0.0433 (8)	0.0253 (6)	0.0284 (7)	0.0050 (6)	-0.0099 (6)	-0.0086 (5)
O2	0.0247 (6)	0.0336 (7)	0.0307 (7)	-0.0064 (5)	-0.0021 (5)	-0.0010 (5)
03	0.0341 (8)	0.0242 (7)	0.0566 (10)	0.0035 (6)	-0.0008 (7)	-0.0009 (6)
04	0.0318 (7)	0.0584 (10)	0.0357 (8)	0.0039 (7)	-0.0091 (6)	-0.0239 (7)
05	0.0519 (19)	0.0435 (17)	0.0314 (15)	0.0016 (14)	-0.0150 (14)	0.0030 (13)
N1A	0.044 (2)	0.0231 (18)	0.0148 (18)	-0.0134 (11)	-0.0077 (13)	-0.0057 (12)
C1A	0.0287 (14)	0.0213 (14)	0.0223 (14)	0.0016 (13)	-0.0060 (11)	-0.0064 (11)
C2A	0.0265 (19)	0.0225 (17)	0.0199 (17)	-0.0026 (14)	-0.0077 (14)	-0.0036 (12)
C3A	0.060 (4)	0.022 (2)	0.032 (2)	-0.004 (2)	-0.011 (3)	-0.0119 (18)
C4A	0.052 (2)	0.0206 (13)	0.0271 (18)	0.0008 (11)	-0.0114 (16)	-0.0042 (13)

Acta Cryst. (2011). E67, o105-o106

C5A	0.0283 (13)	0.0190 (12)	0.0216 (14)	-0.0059 (10)	-0.0012 (10)	-0.0043 (11)
C6A	0.0322 (14)	0.0231 (12)	0.0256 (13)	-0.0034 (10)	-0.0039 (10)	-0.0079 (10)
C7A	0.0302 (13)	0.0231 (12)	0.0231 (12)	-0.0060 (10)	-0.0001 (10)	-0.0067 (10)
C8A	0.0284 (13)	0.0187 (13)	0.0230 (13)	-0.0032 (11)	0.0006 (10)	-0.0051 (11)
C9A	0.0327 (15)	0.0245 (15)	0.0274 (14)	0.0011 (12)	-0.0010 (11)	-0.0110 (12)
C10A	0.0321 (19)	0.026 (2)	0.0288 (18)	0.0007 (16)	-0.0019 (12)	-0.0084 (16)
C11A	0.034 (2)	0.018 (2)	0.030 (2)	0.0008 (14)	-0.0010 (16)	-0.0034 (15)
C12A	0.054 (2)	0.0253 (17)	0.028 (2)	-0.0017 (12)	-0.0086 (18)	-0.0111 (16)
C13A	0.0373 (16)	0.0173 (13)	0.0323 (19)	0.0016 (10)	-0.0011 (14)	-0.0057 (13)
C14A	0.045 (3)	0.033 (3)	0.030 (2)	-0.012 (2)	-0.0155 (19)	0.0052 (18)
C15A	0.0195 (18)	0.0215 (19)	0.026 (2)	0.0024 (9)	-0.0013 (9)	-0.0062 (10)
C16A	0.025 (2)	0.040 (3)	0.032 (3)	0.002 (2)	-0.0059 (15)	0.0003 (18)
C17	0.0246 (8)	0.0231 (8)	0.0259 (8)	-0.0016 (6)	-0.0043 (6)	-0.0078 (6)
C18	0.0267 (8)	0.0268 (8)	0.0277 (9)	-0.0070 (7)	-0.0015 (7)	-0.0005 (7)
C19	0.0298 (9)	0.0262 (8)	0.0255 (8)	-0.0041 (7)	-0.0046 (7)	0.0001 (7)
C20	0.0234 (8)	0.0204 (7)	0.0255 (8)	-0.0028 (6)	-0.0018 (6)	-0.0074 (6)
C21	0.0264 (8)	0.0243 (8)	0.0226 (8)	-0.0034 (6)	0.0000 (6)	-0.0060 (6)
C22	0.0294 (9)	0.0249 (8)	0.0231 (8)	-0.0024 (7)	-0.0040 (7)	-0.0050 (6)
C23	0.057 (3)	0.033 (2)	0.032 (2)	0.0013 (19)	0.0035 (19)	-0.0064 (17)

Geometric parameters (Å, °)

Br1—C17	1.8962 (18)	N1B—C3B	1.35 (2)
S1—O4	1.4420 (15)	N1B—C14B	1.56 (2)
S1—O2	1.4575 (14)	C1B—C2B	1.349 (12)
S1—O3	1.4600 (14)	C1B—C5B	1.394 (10)
S1-C20	1.7780 (18)	C1B—H1BA	0.9300
O1-C11A	1.366 (5)	C2B—H2BA	0.9300
O1—C11B	1.394 (8)	C3B—C4B	1.351 (17)
O1-C15B	1.434 (9)	СЗВ—НЗВА	0.9300
01—C15A	1.436 (3)	C4B—C5B	1.364 (10)
O5—C23	1.716 (6)	C4B—H4BA	0.9300
O5—H5	0.8200	C5B—C6B	1.476 (9)
N1A—C3A	1.355 (10)	C6B—C7B	1.336 (8)
N1A—C2A	1.379 (6)	C6B—H6BA	0.9300
N1A—C14A	1.445 (8)	C7B—C8B	1.467 (9)
C1A—C2A	1.376 (6)	C7B—H7BA	0.9300
C1A—C5A	1.405 (5)	C8B—C9B	1.360 (10)
C1A—H1AA	0.9300	C8B—C13B	1.394 (10)
C2A—H2AA	0.9300	C9B—C10B	1.427 (17)
C3A—C4A	1.381 (8)	C9B—H9BA	0.9300
СЗА—НЗАА	0.9300	C10B—C11B	1.39 (2)
C4A—C5A	1.400 (5)	C10B—H10B	0.9300
C4A—H4AA	0.9300	C11B—C12B	1.346 (17)
C5A—C6A	1.463 (4)	C12B—C13B	1.391 (14)
C6A—C7A	1.331 (4)	C12B—H12B	0.9300
С6А—Н6АА	0.9300	C13B—H13B	0.9300
C7A—C8A	1.460 (4)	C14B—H14D	0.9600

С7А—Н7АА	0.9300	C14B—H14E	0.9600
C8A—C9A	1.391 (4)	C14B—H14F	0.9600
C8A—C13A	1.408 (5)	C15B—C16B	1.511 (10)
C9A—C10A	1.373 (7)	C15B—H15C	0.9700
С9А—Н9АА	0.9300	C15B—H15D	0.9700
C10A—C11A	1.368 (8)	C16B—H16D	0.9600
C10A—H10A	0.9300	C16B—H16E	0.9600
C11A—C12A	1.422 (8)	C16B—H16F	0.9600
C12A—C13A	1.377 (6)	C17—C22	1.388 (2)
C12A—H12A	0.9300	C17—C18	1.389 (3)
C13A—H13A	0.9300	C18—C19	1.388 (3)
C14A—H14A	0.9600	C18—H18A	0.9300
C14A—H14B	0.9600	C19—C20	1.390 (2)
C14A—H14C	0.9600	C19—H19A	0.9300
C15A—C16A	1.503 (5)	C20—C21	1.396 (2)
C15A—H15A	0.9700	C21—C22	1.386 (3)
C15A—H15B	0.9700	C21—H21A	0.9300
C16A—H16A	0.9600	C22—H22A	0.9300
C16A—H16B	0.9600	С23—Н23А	0.9600
C16A—H16C	0.9600	C23—H23B	1.1586
N1B—C2B	1.291 (17)	C23—H23C	0.9600
O4—S1—O2	113.62 (9)	C3B—C4B—H4BA	119.7
O4—S1—O3	113.59 (10)	C5B—C4B—H4BA	119.7
O2—S1—O3	112.28 (9)	C4B—C5B—C1B	117.3 (8)
O4—S1—C20	105.52 (8)	C4B—C5B—C6B	122.1 (8)
O2—S1—C20	105.47 (8)	C1B—C5B—C6B	120.6 (8)
O3—S1—C20	105.41 (9)	C7B—C6B—C5B	126.1 (6)
C11A—O1—C15B	114.3 (11)	С7В—С6В—Н6ВА	116.9
C11B—O1—C15B	124.0 (12)	С5В—С6В—Н6ВА	116.9
C11A—O1—C15A	113.7 (4)	C6B—C7B—C8B	127.5 (6)
C11B—O1—C15A	123.5 (7)	С6В—С7В—Н7ВА	116.2
С23—О5—Н5	109.5	C8B—C7B—H7BA	116.2
C3A—N1A—C2A	118.7 (6)	C9B—C8B—C13B	118.8 (7)
C3A—N1A—C14A	123.1 (6)	C9B—C8B—C7B	125.0 (7)
C2A—N1A—C14A	118.2 (6)	C13B—C8B—C7B	116.2 (7)
C2A—C1A—C5A	121.2 (3)	C8B-C9B-C10B	121.4 (9)
C2A—C1A—H1AA	119.4	C8B—C9B—H9BA	119.3
C5A—C1A—H1AA	119.4	C10B—C9B—H9BA	119.3
C1A—C2A—N1A	120.9 (5)	C11B—C10B—C9B	117.4 (10)
C1A—C2A—H2AA	119.5	C11B—C10B—H10B	121.3
N1A—C2A—H2AA	119.5	C9B—C10B—H10B	121.3
N1A—C3A—C4A	121.8 (7)	C12B—C11B—C10B	121.8 (9)
N1A—C3A—H3AA	119.1	C12B—C11B—O1	116.1 (10)
С4А—С3А—НЗАА	119.1	C10B—C11B—O1	122.1 (11)
C3A—C4A—C5A	120.9 (4)	C11B—C12B—C13B	120.0 (9)
СЗА—С4А—Н4АА	119.6	C11B—C12B—H12B	120.0
C5A—C4A—H4AA	119.6	C13B—C12B—H12B	120.0

C4A—C5A—C1A	116.6 (3)	C12B—C13B—C8B	120.6 (8)
C4A—C5A—C6A	124.8 (3)	C12B—C13B—H13B	119.7
C1A—C5A—C6A	118.7 (3)	C8B—C13B—H13B	119.7
C7A—C6A—C5A	124.9 (3)	N1B—C14B—H14D	109.5
С7А—С6А—Н6АА	117.6	N1B-C14B-H14E	109.5
С5А—С6А—Н6АА	117.6	H14D—C14B—H14E	109.5
C6A—C7A—C8A	126.2 (3)	N1B—C14B—H14F	109.5
С6А—С7А—Н7АА	116.9	H14D—C14B—H14F	109.5
С8А—С7А—Н7АА	116.9	H14E— $C14B$ — $H14F$	109.5
C9A—C8A—C13A	117.2 (3)	O1— $C15B$ — $C16B$	110 (2)
C9A - C8A - C7A	1200(3)	O1-C15B-H15C	109 7
C13A - C8A - C7A	122.8 (3)	C16B-C15B-H15C	109.7
C10A - C9A - C8A	122.0(3) 122.0(4)	O1-C15B-H15D	109.7
C10A - C9A - H9AA	119.0	C16B-C15B-H15D	109.7
C8A - C9A - H9AA	119.0	$H_{15}C_{}C_{15}B_{}H_{15}D$	108.2
C_{11A} C_{10A} C_{9A}	121.6 (5)	C15B-C16B-H16D	109.5
C_{11A} C_{10A} H_{10A}	119.2	C15B-C16B-H16F	109.5
C9A - C10A - H10A	119.2	$H_{16}D_{-C_{16}}C_{16}B_{-H_{16}}H_{16}E_{-H_{16}}$	109.5
O1-C11A-C10A	117.2	C15B-C16B-H16F	109.5
O1-C11A-C12A	127.5(5)	$H_{16}D_{-C_{16}}C_{16}B_{-H_{16}}H_{16}E_{-H_{16}}$	109.5
C10A - C11A - C12A	117.1(5) 117.5(4)	H_{16F} C_{16B} H_{16F}	109.5
$C_{13} - C_{12} - C_{11}$	117.5(4) 1210(4)	C^{22} C^{17} C^{18}	121.26 (17)
C_{13A} C_{12A} H_{12A}	119 5	$C_{22} = C_{17} = C_{10}$	121.20(17) 119.00(13)
$C_{11}A - C_{12}A - H_{12}A$	119.5	C_{18} C_{17} Br_{1}	119.00 (13)
C12A - C13A - C8A	119.5 120.7(3)	C19-C18-C17	119.35 (16)
C12A - C13A - H13A	120.7 (5)	C19-C18-H184	120.3
C8A = C13A = H13A	119.7	C17— $C18$ — $H18A$	120.3
01-C15A-C16A	107 4 (7)	C_{18} C_{19} C_{20}	120.0 (17)
O1-C15A-H15A	110.2	C18 - C19 - H19A	120.00 (17)
C16A - C15A - H15A	110.2	C20-C19-H19A	120.0
O1-C15A-H15B	110.2	C_{19} C_{20} C_{21}	120.06 (16)
C_{16A} C_{15A} H_{15B}	110.2	C19 - C20 - S1	119 50 (14)
H15A-C15A-H15B	108.5	$C_{21} - C_{20} - S_{1}$	120.42(13)
C2B—N1B—C3B	121.0(14)	C^{22} C^{21} C^{20} C^{20}	120.12 (15)
C2B N1B $C14B$	121.0(11) 1261(12)	C^{22} C^{21} C^{20}	119.9
C3B—N1B—C14B	1120.1(12) 1129(13)	C_{20} C_{21} H_{21A}	119.9
C2B-C1B-C5B	119.4 (9)	C_{21} C_{22} C_{21} C_{22} C_{17}	119.11 (16)
C2B— $C1B$ — $H1BA$	120.3	C21—C22—H22A	120.4
C5B-C1B-H1BA	120.3	C17 - C22 - H22A	120.1
N1B-C2B-C1B	120.3 121.7(12)	$05-C^{23}-H^{23}A$	109.3
N1B-C2B-H2BA	119.1	$05 - C_{23} - H_{23B}$	133.8
C1B-C2B-H2BA	119.1	H23A—C23—H23B	92.4
N1B-C3B-C4B	119.7 (18)	$05-C^{23}-H^{23}C$	109.5
N1B-C3B-H3BA	120.1	$H_{23A} - C_{23} - H_{23C}$	109.5
C4B-C3B-H3BA	120.1	$H_{23B} C_{23} H_{23C}$	100.1
C3B-C4B-C5B	120.7 (13)	11251 025-11250	100.1
	120.7 (13)		
C5A—C1A—C2A—N1A	-1.2 (6)	C2B—C1B—C5B—C4B	-0.9(12)
	(-)		()

C3A—N1A—C2A—C1A	1.0 (9)	C2B-C1B-C5B-C6B	179.4 (8)
C14A—N1A—C2A—C1A	-179.3 (4)	C4B—C5B—C6B—C7B	-178.3 (7)
C2A—N1A—C3A—C4A	0.6 (11)	C1B—C5B—C6B—C7B	1.4 (10)
C14A—N1A—C3A—C4A	-179.2 (6)	C5B—C6B—C7B—C8B	179.5 (6)
N1A—C3A—C4A—C5A	-2.0 (10)	C6B—C7B—C8B—C9B	0.5 (11)
C3A—C4A—C5A—C1A	1.6 (6)	C6B—C7B—C8B—C13B	-177.2 (7)
C3A—C4A—C5A—C6A	-179.0 (5)	C13B—C8B—C9B—C10B	-1.4 (13)
C2A—C1A—C5A—C4A	-0.1 (5)	C7B—C8B—C9B—C10B	-179.1 (9)
C2A—C1A—C5A—C6A	-179.5 (3)	C8B—C9B—C10B—C11B	0.8 (19)
C4A—C5A—C6A—C7A	3.1 (4)	C9B-C10B-C11B-C12B	-1 (2)
C1A—C5A—C6A—C7A	-177.6 (3)	C9B-C10B-C11B-O1	-179.6 (12)
C5A—C6A—C7A—C8A	-179.6 (2)	C11A—O1—C11B—C12B	-176 (8)
C6A—C7A—C8A—C9A	177.5 (3)	C15B—O1—C11B—C12B	179.7 (18)
C6A—C7A—C8A—C13A	-2.7 (4)	C15A—O1—C11B—C12B	180.0 (10)
C13A—C8A—C9A—C10A	1.2 (5)	C11A—O1—C11B—C10B	2 (5)
C7A—C8A—C9A—C10A	-179.0 (3)	C15B—O1—C11B—C10B	-2 (3)
C8A—C9A—C10A—C11A	-1.0 (7)	C15A—O1—C11B—C10B	-2 (2)
C11B-01-C11A-C10A	-175 (7)	C10B—C11B—C12B—C13B	2 (2)
C15B—O1—C11A—C10A	1.7 (17)	O1—C11B—C12B—C13B	-179.3 (11)
C15A—O1—C11A—C10A	1.9 (10)	C11B—C12B—C13B—C8B	-2.9 (17)
C11B-01-C11A-C12A	4 (6)	C9B—C8B—C13B—C12B	2.4 (13)
C15B—O1—C11A—C12A	-179.4 (15)	C7B—C8B—C13B—C12B	-179.6 (8)
C15A—O1—C11A—C12A	-179.1 (6)	C11A—O1—C15B—C16B	-176 (2)
C9A—C10A—C11A—O1	179.6 (5)	C11B—O1—C15B—C16B	-175 (2)
C9A—C10A—C11A—C12A	0.6 (9)	C15A—O1—C15B—C16B	158 (100)
O1-C11A-C12A-C13A	-179.6 (5)	C22-C17-C18-C19	-0.6 (3)
C10A—C11A—C12A—C13A	-0.5 (9)	Br1-C17-C18-C19	177.40 (14)
C11A—C12A—C13A—C8A	0.8 (7)	C17—C18—C19—C20	-0.1 (3)
C9A—C8A—C13A—C12A	-1.1 (5)	C18—C19—C20—C21	0.6 (3)
C7A—C8A—C13A—C12A	179.1 (3)	C18—C19—C20—S1	-178.10 (14)
C11A—O1—C15A—C16A	178.8 (8)	O4—S1—C20—C19	62.92 (17)
C11B—O1—C15A—C16A	179.5 (11)	O2—S1—C20—C19	-176.53 (14)
C15B—O1—C15A—C16A	-27 (100)	O3—S1—C20—C19	-57.57 (17)
C3B—N1B—C2B—C1B	-1 (2)	O4—S1—C20—C21	-115.77 (15)
C14B—N1B—C2B—C1B	-179.9 (12)	O2—S1—C20—C21	4.79 (16)
C5B—C1B—C2B—N1B	3.0 (18)	O3—S1—C20—C21	123.75 (15)
C2B—N1B—C3B—C4B	-2 (3)	C19—C20—C21—C22	-0.4 (3)
C14B—N1B—C3B—C4B	176.3 (14)	S1—C20—C21—C22	178.28 (13)
N1B—C3B—C4B—C5B	4 (2)	C20—C21—C22—C17	-0.3 (3)
C3B—C4B—C5B—C1B	-2.7 (16)	C18—C17—C22—C21	0.8 (3)
C3B—C4B—C5B—C6B	176.9 (12)	Br1-C17-C22-C21	-177.23 (13)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the N1A/C1A–C5A, C8A–C13A, N1B/C1B–C5B, C8B–C13B and C17–C22 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
O5—H5···O3 ⁱ	0.82	1.92	2.657 (4)	149
$C1A$ — $H1AA$ ···· $O2^{ii}$	0.93	2.42	3.334 (4)	168

C2A— $H2AA$ ···O2 ⁱⁱⁱ	0.93	2.38	3.237 (5)	153
$C14A$ — $H14A$ ···· $O4^{iv}$	0.96	2.36	3.180 (6)	143
C14 <i>A</i> —H14 <i>B</i> ····O4 ⁱⁱⁱ	0.96	2.41	3.343 (6)	163
C19—H19A····O5 ^v	0.93	2.53	3.385 (4)	153
C21—H21 A ···O2 ^{vi}	0.93	2.58	3.311 (2)	135
C23—H23C···Br1	0.96	2.77	3.724 (5)	173
C14 <i>A</i> —H14 <i>C</i> ··· <i>Cg</i> 2 ⁱⁱ	0.96	2.66	3.609 (6)	172
C14 <i>A</i> —H14 <i>C</i> ··· <i>Cg</i> 4 ⁱⁱ	0.96	2.63	3.572 (8)	167
C15 A —H15 A ··· $Cg1^{vii}$	0.97	2.84	3.639 (8)	140
C15 <i>A</i> —H15 <i>A</i> ··· <i>Cg</i> 3 ^{vii}	0.97	2.84	3.611 (9)	137
C14 <i>B</i> —H14 <i>D</i> ··· <i>C</i> g2 ⁱⁱ	0.96	2.87	3.562 (15)	129
C14 <i>B</i> —H14 <i>D</i> ··· <i>Cg</i> 4 ⁱⁱ	0.96	2.80	3.564 (16)	137
C15 <i>B</i> —H15 <i>C</i> ··· <i>Cg</i> 1 ^{vii}	0.97	2.81	3.65 (3)	145
C15 <i>B</i> —H15 <i>C</i> ··· <i>Cg</i> 3 ^{vii}	0.97	2.81	3.62 (3)	141
C15B—H15D···· $Cg5^{viii}$	0.97	2.98	3.60 (2)	123

Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) x, y+1, z; (iv) -x, -y+1, -z; (v) -x+1, -y+1, -z; (vi) -x, -y, -z+1; (vii) -x+1, -y+1, -z+1; (viii) -x+1, -y, -z+1.