organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3S)-2-Benzyl-3-carboxy-1,2,3,4-tetrahydroisoquinolinium chloride monohydrate

Tricia Naicker,^a Thavendran Govender,^a Hendrik G. Kruger^b and Glenn E. M. Maguire^b*

^aSchool of Pharmacy and Pharmacology, University of KwaZulu Natal, Durban 4000, South Africa, and ^bSchool of Chemistry, University of KwaZulu Natal, Durban 4000, South Africa

Correspondence e-mail: maguireg@ukzn.ac.za

Received 22 November 2010; accepted 17 December 2010

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.082; data-to-parameter ratio = 19.5.

In the title compound, $C_{17}H_{18}NO_2^{+}\cdot Cl^{-}\cdot H_2O$, a precursor to novel asymmetric catalysts, the N-containing six-membered ring of the tetrahydroquinolinium unit assumes a half-boat conformation. In the crystal, intermolecular $O-H\cdots O$, O- $H\cdots Cl$, $N-H\cdots Cl$ and $C-H\cdots O$ hydrogen bonds and C- $H\cdots \pi$ interactions link the molecules into a three-dimensional network.

Related literature

For related structures of tetrahydroisoquinoline derivatives, see: Naicker, Petzold *et al.* (2010); Naicker, Govender *et al.* (2010, 2011); Peters *et al.* (2010). For related structures with the same chiral centre and conformation of the six-membered ring, see: Naicker *et al.* (2009); Chakka *et al.* (2010).

Experimental

Crystal data $C_{17}H_{18}NO_2^+ \cdot Cl^- \cdot H_2O$ $M_r = 321.79$ Monoclinic, $P2_1$ a = 8.6159 (8) Å b = 10.0670 (9) Å c = 10.1392 (9) Å $\beta = 108.686$ (2)°

 $V = 833.08 (13) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.24 \text{ mm}^{-1}$ T = 193 K $0.30 \times 0.11 \times 0.02 \text{ mm}$

Data collection

```
Bruker Kappa DUO APEXII
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
T_{min} = 0.931, T_{max} = 0.995
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$
$wR(F^2) = 0.082$
S = 1.04
4158 reflections
213 parameters
5 restraints

9083 measured reflections 4158 independent reflections 3414 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.024$

Table 1

Hydrogen-bond geometry (Å, °). Cg is the centroid of the C12–C17 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots Cl1^{i}$ $D2 - H2 \cdots O3^{ii}$ $D3 - H3A \cdots Cl1^{i}$ $D3 - H3B \cdots Cl1^{i}$ $C9 - H9 \cdots O1^{iii}$	0.97 (2) 0.96 (2) 0.96 (2) 0.96 (2) 1.00	2.09 (2) 1.59 (2) 2.21 (2) 2.20 (2) 2.30	3.0521 (15) 2.533 (2) 3.1615 (15) 3.1434 (16) 3.169 (2)	176 (1) 167 (3) 172 (2) 165 (2) 145
$C13-H15\cdots Cg$	0.95	2.78	3.380 (3)	122

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) x, y, z - 1; (iii) -x + 1, $y + \frac{1}{2}$, -z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008*b*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008*b*); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *SHELXL97*.

The authors wish to thank Dr Hong Su of the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2635).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakka, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010). Acta Cryst. E66, o1818.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010). Acta Cryst. E66, o3105.
- Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, 067.
- Naicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, 03278.
- Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). *Tetrahedron Asymmetry*. In the press. doi:10.1016/j.tetasy.2010.11.010.
- Peters, B. K., Chakka, S. K., Naicker, T., Maguire, G. E. M., Kruger, H. G., Andersson, P. G. & Govender, T. (2010). *Tetrahedron Asymmetry*, 21, 679– 687.

Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2011). E67, o228 [https://doi.org/10.1107/S1600536810053122]

(3*S*)-2-Benzyl-3-carboxy-1,2,3,4-tetrahydroisoquinolinium chloride monohydrate

Tricia Naicker, Thavendran Govender, Hendrik G. Kruger and Glenn E. M. Maguire

S1. Comment

The tetrahydroisoquinoline (TIQ) molecule and its derivatives have been widely investigated due to their biological and pharmaceutical properties. We have recently had much success with TIQ based ligands for both metal ligand (Peters *et al.*, 2010) and organocatalysis (Naicker, Petzold *et al.*, 2010). Bearing an acid functional group, the title compound is a useful precursor to many of these novel asymmetric catalysts. The neutral form of this compound is commercially available but there has been no report of its single X-ray crystal structure.

The structure has monoclinic ($P2_1$) symmetry with a single molecule in the asymmetric unit together with a water molecule (Fig. 1). Various intra- and intermolecular short contact interactions (2.87–3.14 Å) occur but only one C15—H··· π (C12—C17 ring) is observed within the crystal packing (Table 1). The most significant feature of the structure is the intermolecular hydrogen bonding array. The carboxylic acid functional group (O2—H) hydrogen bonds to the water molecule which in turn interacts with two chloride ions. These ions interact further with another water molecule but also with the protonated tertiary amine nitrogen. This series of interactions helps to construct the three-dimensional network (Fig. 2 and Table 1).

From the crystal structure it is evident that the *N*-containing six membered ring assumes a half boat conformation (Fig. 1), this observation is similar to analogous structures that we have recently reported (Naicker *et al.*, 2009; Naicker, Govender *et al.*, 2010).

S2. Experimental

(S)-Methyl 2-benzyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate was added to a 10% (v/v) solution of HCl in water (5 mL). The mixture was then microwaved for 2 h at 120 °C, thereafter the reaction mixture was evaporated under reduced pressure to afford the title compound as a white solid.

Melting point 205–208 °C. IR (neat): 3339, 2501, 1712, 1224, 754, 701 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 3.28 (d, 1H), 3.36 (d, 1H), 4.37 (m, 5H), 7.13 (d, 1H), 7.25 (m, 3H) and 7.39 (m, 5H).

Recrystallization from 10% HCl in water afforded colourless crystals suitable for X-ray analysis.

S3. Refinement

All H atoms on carbons were positioned geometrically with C—H distances ranging from 0.95 to 1.00 Å and refined as riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. Atoms H1, H2, H3A and H3B were located in a difference Fourier map. The distances of N1—H1, O2—H2, O3—H3A and O3—H3B were restrained to 0.97 (1) Å and the U_{iso} values of H3A and H3B were assigned as $1.2U_{eq}(O3)$.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Partial projection viewed along the *a* axis, depicting hydrogen bonding from the water molecule and chloride ion. Displacement ellipsoids are drawn at the 50% probability level.

(3S)-2-Benzyl-3-carboxy-1,2,3,4-tetrahydroisoquinolinium chloride monohydrate

F(000) = 340

 $\theta = 2.1 - 28.3^{\circ}$

 $\mu = 0.24 \text{ mm}^{-1}$

Needle, colourless

 $0.30 \times 0.11 \times 0.02 \text{ mm}$

T = 193 K

 $D_{\rm x} = 1.283 {\rm Mg} {\rm m}^{-3}$

Melting point: 479 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9083 reflections

Crystal data

C₁₇H₁₈NO₂⁺·Cl⁻·H₂O $M_r = 321.79$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 8.6159 (8) Å b = 10.0670 (9) Å c = 10.1392 (9) Å $\beta = 108.686$ (2)° V = 833.08 (13) Å³ Z = 2

Data collection

Bruker Kappa DUO APEXII	9083 measured reflections
diffractometer	4158 independent reflections
Radiation source: fine-focus sealed tube	3414 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
φ and ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Sheldrick, 2008a	$k = -13 \rightarrow 13$
$T_{\min} = 0.931, \ T_{\max} = 0.995$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of independent
$wR(F^2) = 0.082$	and constrained refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0365P)^2 + 0.0675P]$
4158 reflections	where $P = (F_o^2 + 2F_c^2)/3$
213 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
5 restraints	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 1961 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: -0.01 (5)

Special details

Experimental. Half sphere of data collected using the Bruker *SAINT* software package. Crystal to detector distance = 30 mm; combination of φ and ω scans of 0.5°, 30 s per °, 2 iterations

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C11	0.49392 (7)	0.38386 (5)	0.55522 (5)	0.04878 (14)

01	0.52160 (16)	0.58413 (12)	-0.04364 (13)	0.0387 (3)
O2	0.6338 (2)	0.76556 (14)	-0.10233 (14)	0.0490 (4)
H2	0.629 (4)	0.716 (3)	-0.184 (2)	0.090 (9)*
O3	0.6423 (2)	0.66136 (15)	0.67265 (14)	0.0555 (4)
H3A	0.610 (3)	0.7278 (19)	0.601 (2)	0.067*
H3B	0.578 (3)	0.5841 (17)	0.634 (2)	0.067*
N1	0.49861 (17)	0.70659 (13)	0.19862 (14)	0.0280 (3)
H1	0.501 (2)	0.7664 (16)	0.2736 (15)	0.038 (5)*
C1	0.6027 (2)	0.59202 (17)	0.27205 (18)	0.0327 (4)
H1A	0.5619	0.5600	0.3472	0.039*
H1B	0.5925	0.5182	0.2052	0.039*
C2	0.7801 (2)	0.62971 (17)	0.33336 (17)	0.0310 (4)
C3	0.8823 (2)	0.5464 (2)	0.43363 (19)	0.0409 (5)
Н3	0.8377	0.4710	0.4650	0.049*
C4	1.0477 (3)	0.5725 (2)	0.4878 (2)	0.0483 (5)
H4	1.1170	0.5144	0.5550	0.058*
C5	1.1130 (2)	0.6837 (2)	0.4441 (2)	0.0441 (5)
Н5	1.2268	0.7026	0.4819	0.053*
C6	1.0113 (2)	0.7668 (2)	0.34518 (18)	0.0368 (4)
H6	1.0564	0.8426	0.3149	0.044*
C7	0.8446 (2)	0.74187 (16)	0.28922 (17)	0.0302 (4)
C8	0.7346 (2)	0.83776 (17)	0.18686 (17)	0.0305 (4)
H8A	0.7920	0.8686	0.1221	0.037*
H8B	0.7157	0.9162	0.2385	0.037*
С9	0.5689 (2)	0.77988 (16)	0.10185 (16)	0.0271 (3)
H9	0.4946	0.8568	0.0638	0.033*
C10	0.5722 (2)	0.69626 (16)	-0.02157 (17)	0.0292 (3)
C11	0.3223 (2)	0.66112 (18)	0.1368 (2)	0.0354 (4)
H11A	0.3204	0.5756	0.0880	0.043*
H11B	0.2765	0.6452	0.2133	0.043*
C12	0.2151 (2)	0.75869 (18)	0.03655 (19)	0.0343 (4)
C13	0.1818 (2)	0.8829 (2)	0.0808 (2)	0.0411 (4)
H13	0.2281	0.9074	0.1759	0.049*
C14	0.0813 (3)	0.9713 (2)	-0.0132 (3)	0.0522 (6)
H14	0.0603	1.0566	0.0173	0.063*
C15	0.0118 (3)	0.9354 (3)	-0.1511 (3)	0.0551 (6)
H15	-0.0581	0.9958	-0.2150	0.066*
C16	0.0432 (3)	0.8130 (2)	-0.1963 (2)	0.0512 (5)
H16	-0.0053	0.7886	-0.2911	0.061*
C17	0.1460 (2)	0.7249 (2)	-0.1032 (2)	0.0417 (4)
H17	0.1694	0.6408	-0.1351	0.050*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0783 (4)	0.0361 (2)	0.0339 (2)	-0.0070 (3)	0.0209 (2)	0.0013 (2)
O1	0.0530 (8)	0.0247 (6)	0.0402 (7)	-0.0058 (6)	0.0177 (6)	-0.0053 (6)
02	0.0828 (11)	0.0376 (8)	0.0353 (7)	-0.0184 (7)	0.0311 (7)	-0.0053 (6)

Acta Cryst. (2011). E67, o228

supporting information

O3	0.0928 (12)	0.0438 (9)	0.0322 (7)	-0.0064 (8)	0.0231 (8)	-0.0007 (7)
N1	0.0354 (7)	0.0231 (7)	0.0269 (7)	-0.0014 (6)	0.0120 (6)	0.0022 (6)
C1	0.0427 (10)	0.0236 (8)	0.0313 (9)	-0.0004 (7)	0.0111 (7)	0.0065 (7)
C2	0.0415 (10)	0.0274 (8)	0.0249 (8)	0.0019 (7)	0.0116 (7)	0.0006 (7)
C3	0.0514 (12)	0.0373 (10)	0.0329 (10)	0.0028 (9)	0.0121 (9)	0.0067 (8)
C4	0.0530 (13)	0.0483 (12)	0.0370 (10)	0.0094 (10)	0.0050 (9)	0.0085 (10)
C5	0.0384 (10)	0.0502 (12)	0.0391 (10)	0.0028 (9)	0.0061 (8)	-0.0071 (9)
C6	0.0408 (10)	0.0375 (10)	0.0324 (9)	-0.0053 (8)	0.0119 (8)	-0.0057 (8)
C7	0.0404 (9)	0.0276 (9)	0.0231 (8)	0.0001 (7)	0.0111 (7)	-0.0032 (7)
C8	0.0379 (9)	0.0232 (8)	0.0293 (8)	-0.0051 (7)	0.0092 (7)	-0.0001 (7)
C9	0.0351 (9)	0.0181 (7)	0.0281 (8)	-0.0011 (7)	0.0100 (7)	0.0030 (7)
C10	0.0367 (9)	0.0223 (8)	0.0274 (8)	-0.0004 (7)	0.0086 (7)	0.0015 (7)
C11	0.0369 (10)	0.0309 (9)	0.0406 (10)	-0.0051 (8)	0.0154 (8)	0.0026 (8)
C12	0.0312 (9)	0.0319 (9)	0.0422 (9)	-0.0031 (7)	0.0150 (7)	0.0035 (8)
C13	0.0399 (10)	0.0397 (10)	0.0492 (10)	0.0035 (9)	0.0220 (8)	-0.0013 (11)
C14	0.0511 (13)	0.0396 (11)	0.0771 (16)	0.0143 (10)	0.0360 (12)	0.0076 (11)
C15	0.0482 (13)	0.0631 (15)	0.0600 (14)	0.0194 (11)	0.0256 (11)	0.0236 (12)
C16	0.0491 (12)	0.0586 (14)	0.0448 (12)	0.0056 (10)	0.0135 (10)	0.0106 (11)
C17	0.0430 (11)	0.0393 (11)	0.0428 (10)	-0.0021 (9)	0.0138 (9)	-0.0004 (9)

Geometric parameters (Å, °)

01—C10	1.205 (2)	С6—Н6	0.9500
O2—C10	1.310 (2)	С7—С8	1.509 (2)
O2—H2	0.961 (10)	C8—C9	1.527 (2)
O3—H3A	0.957 (10)	C8—H8A	0.9900
O3—H3B	0.963 (10)	C8—H8B	0.9900
N1—C9	1.502 (2)	C9—C10	1.516 (2)
N1-C1	1.504 (2)	С9—Н9	1.0000
N1-C11	1.516 (2)	C11—C12	1.500 (3)
N1—H1	0.965 (9)	C11—H11A	0.9900
C1—C2	1.502 (3)	C11—H11B	0.9900
C1—H1A	0.9900	C12—C13	1.390 (3)
C1—H1B	0.9900	C12—C17	1.392 (3)
C2—C3	1.392 (2)	C13—C14	1.386 (3)
C2—C7	1.394 (2)	C13—H13	0.9500
C3—C4	1.379 (3)	C14—C15	1.382 (3)
С3—Н3	0.9500	C14—H14	0.9500
C4—C5	1.388 (3)	C15—C16	1.371 (3)
C4—H4	0.9500	C15—H15	0.9500
C5—C6	1.382 (3)	C16—C17	1.388 (3)
С5—Н5	0.9500	C16—H16	0.9500
C6—C7	1.388 (2)	С17—Н17	0.9500
С10—О2—Н2	110.4 (19)	C9—C8—H8B	108.7
НЗА—ОЗ—НЗВ	106 (2)	H8A—C8—H8B	107.6
C9—N1—C1	113.50 (13)	N1C9C10	112.63 (13)
C9—N1—C11	116.00 (13)	N1—C9—C8	108.58 (13)

C1—N1—C11	109.44 (13)	C10-C9-C8	114.61 (14)
C9—N1—H1	107.3 (12)	N1—C9—H9	106.9
C1—N1—H1	1033(12)	C10-C9-H9	106.9
C_{11} N1 H1	106.2(11)	C8_C9_H9	106.9
$C_2 - C_1 - N_1$	112 18 (13)	01 - C10 - 02	125.28(17)
$C_2 = C_1 = H_1 \Lambda$	100.2	01 - 010 - 02	123.20(17) 124.00(16)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	109.2	0^{-10}	124.90(10) 100.70(14)
$N_{1} = C_{1} = M_{1}$	109.2	02-010-05	109.79(14)
C2-CI-HIB	109.2	C12 - C11 - N1	115.01 (14)
NI-CI-HIB	109.2	CI2—CII—HIIA	108.8
HIA—CI—HIB	107.9	NI—CII—HIIA	108.8
$C_3 = C_2 = C_1$	119.88 (17)	CI2—CII—HIIB	108.8
C3—C2—C1	118.13 (15)	N1—C11—H11B	108.8
C7—C2—C1	121.95 (15)	H11A—C11—H11B	107.7
C4—C3—C2	120.48 (18)	C13—C12—C17	118.93 (18)
С4—С3—Н3	119.8	C13—C12—C11	121.11 (17)
С2—С3—Н3	119.8	C17—C12—C11	119.95 (17)
C3—C4—C5	119.98 (18)	C14—C13—C12	120.24 (19)
C3—C4—H4	120.0	C14—C13—H13	119.9
C5—C4—H4	120.0	C12—C13—H13	119.9
C6—C5—C4	119.49 (18)	C15—C14—C13	120.1 (2)
С6—С5—Н5	120.3	C15—C14—H14	120.0
С4—С5—Н5	120.3	C13—C14—H14	120.0
C5—C6—C7	121.30 (18)	C16—C15—C14	120.3 (2)
C5—C6—H6	119.4	C16—C15—H15	119.8
C7—C6—H6	119.4	C14-C15-H15	119.8
C_{6} C_{7} C_{2}	118 85 (16)	C_{15} C_{16} C_{17}	119.0 119.9(2)
C6 $C7$ $C8$	120.32(15)	C_{15} C_{16} H_{16}	120.0
$C_{0} = C_{7} = C_{8}$	120.32(15) 120.78(16)	C17 C16 H16	120.0
$C_2 - C_3 - C_8$	120.76(10) 114.20(14)	$C_{1}^{-1} = C_{10}^{-110} = 110$	120.0
$C_{-}C_{8}$	114.30 (14)	C16 - C17 - C12	120.5 (2)
$C = C = H \delta A$	108.7	C10C17H17	119.8
C9—C8—H8A	108.7	C12—C1/—H1/	119.8
С7—С8—Н8В	108.7		
C9-N1-C1-C2	47 47 (18)	C11-N1-C9-C8	170 53 (14)
$C_{11} = N_{1} = C_{1} = C_{2}$	178 80 (14)	C7-C8-C9-N1	46 10 (19)
N1 C1 C2 C3	163 47 (15)	C7 C8 C9 C10	-80.80(18)
N1 = C1 = C2 = C3	-188(2)	$N_{1} = C_{0} = C_{10} = C_{10}$	15(2)
11 - 1 - 2 - 27	-1.2(2)	11 - 03 - 010 - 01	1.5(2) 126.28(10)
$C_{1} = C_{2} = C_{3} = C_{4}$	-1.5(3) 176 48 (18)	$C_{0} = C_{0} = C_{10} = O_{1}$	120.28(19) 170.67(14)
C1 - C2 - C3 - C4	1/0.46 (16)	$NI = C_9 = C_{10} = O_2$	1/9.0/(14)
$C_2 = C_3 = C_4 = C_5$	1.1 (3)	C8-C9-C10-02	-55.54 (19)
C3—C4—C5—C6	-0.7(3)	C9—N1—C11—C12	-37.9 (2)
C4—C5—C6—C7	0.5 (3)	C1—N1—C11—C12	-167.86 (14)
C5—C6—C7—C2	-0.7 (3)	N1—C11—C12—C13	-65.2 (2)
C5—C6—C7—C8	176.86 (17)	N1-C11-C12-C17	115.34 (18)
C3—C2—C7—C6	1.1 (2)	C17—C12—C13—C14	0.0 (3)
C1—C2—C7—C6	-176.63 (16)	C11—C12—C13—C14	-179.48 (18)
C3—C2—C7—C8	-176.46 (16)	C12—C13—C14—C15	1.0 (3)
C1—C2—C7—C8	5.9 (2)	C13—C14—C15—C16	-0.8(3)

supporting information

C6—C7—C8—C9	162.44 (15)	C14—C15—C16—C17	-0.3 (3)
C2—C7—C8—C9	-20.1 (2)	C15-C16-C17-C12	1.3 (3)
C1—N1—C9—C10	66.57 (17)	C13—C12—C17—C16	-1.1 (3)
C11—N1—C9—C10	-61.44 (18)	C11—C12—C17—C16	178.37 (18)
C1—N1—C9—C8	-61.46 (17)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 ring.

	D—H	H···A	$D \cdots A$	D—H···A
N1—H1···Cl1 ⁱ	0.97 (2)	2.09 (2)	3.0521 (15)	176 (1)
O2—H2…O3 ⁱⁱ	0.96 (2)	1.59 (2)	2.533 (2)	167 (3)
O3—H3A···Cl1 ⁱ	0.96 (2)	2.21 (2)	3.1615 (15)	172 (2)
O3—H3 <i>B</i> ···Cl1	0.96 (2)	2.20 (2)	3.1434 (16)	165 (2)
С9—Н9…О1 ^{ііі}	1.00	2.30	3.169 (2)	145
C15—H15…Cg ⁱⁱⁱ	0.95	2.78	3.386 (3)	122

Symmetry codes: (i) -x+1, y+1/2, -z+1; (ii) x, y, z-1; (iii) -x+1, y+1/2, -z.