

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Bromo-2-[1-(4-ethoxyphenyl)-1methylethyl]-1-methylbenzene

Yan Li, Xue Kong, Guan-Hong Chen, Jian-Guo Chi and Jia-Ning Wang*

Biology Institute of Shandong Academy of Sciences, Jinan 250014, People's Republic of China

Correspondence e-mail: wangjianning2010@yahoo.cn

Received 25 November 2010; accepted 26 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.051; wR factor = 0.130; data-to-parameter ratio = 15.3.

In title compound, C₁₈H₂₁BrO, the dihedral angle between two rings is 85.72°. No classical hydrogen bonds are found and only van der Waals forces stabilize the crystal packing.

Related literature

For details of the biological activity of SGLT2 inhibitors, a class of promising anti-hyperglycemic agents, see: Meng et al. (2008); Gao et al. (2010a,b). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data C18H21BrO

 $M_r = 333.26$

Monoclinic, $P2_1/n$ a = 11.164 (2) Å b = 9.5142 (19) Å c = 16.135 (3) Å $\beta = 110.21 \ (3)^{\circ}$ V = 1608.2 (6) Å³

Data collection **D**: 1 C / 1:00

Rigaku Saturn diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\min} = 0.630, \ T_{\max} = 0.822$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	186 parameters
$wR(F^2) = 0.130$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$
2839 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrvstalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2759).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Gao, Y. L., Zhao, G. L., Liu, W., Shao, H., Wang, Y. L., Xu, W. R., Tang, L. D. & Wang, J. W. (2010b). Indian J. Chem. Sect. B, 49, 1499-1508.
- Gao, Y. L., Zhao, G. L., Liu, W., Wang, Y. L., Xu, W. R. & Wang, J. W. (2010a). Chin. J. Chem. 28, 605-612.
- Meng, M., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Morrison, E. P., Biller, S. A., Zahler, R., Deshpande, P. P., Pullockaran, A., Hagan, D. L., Morgan, N., Taylor, J. R., Obermeier, M. T., Humphreys, W. G., Khanna, A., Discenza, L., Robertson, J. M., Wang, A., Han, S., Wetterau, J. R., Janovitz, E. B., Flint, O. P., Whaley, J. M. & Washburn, W. N. (2008). J. Med. Chem. 51, 1145-1149.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Z = 4

Mo $K\alpha$ radiation

 $0.20 \times 0.16 \times 0.08 \; \rm mm$

13056 measured reflections

2839 independent reflections 2101 reflections with $I > 2\sigma(I)$

 $\mu = 2.55 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.054$

supporting information

Acta Cryst. (2011). E67, o21 [https://doi.org/10.1107/S1600536810049445]

4-Bromo-2-[1-(4-ethoxyphenyl)-1-methylethyl]-1-methylbenzene

Yan Li, Xue Kong, Guan-Hong Chen, Jian-Guo Chi and Jia-Ning Wang

S1. Comment

SGLT2 inhibitors are a class of promising anti-hyperglycemic agents, and a variety of SGLT2 inhibitors are now in clinical trials (Meng *et al.*, 2008). The title compound was a crucial intermediate, the aglycon of the C-glucoside SGLT2 inhibitors, for the synthesis of novel C-glucoside SGLT2 inhibitors during the development of our own SGLT2 inhibitors (Gao *et al.*, 2010*a*,*b*).

In title compound, $C_{18}H_{21}BrO$, bond lengths are normal (Allen *et al.*, 1987). The dihedral angle between two phenyl ring (C2—C7 and C11—C16) is 85.72 °. No classic hydrogen bonds found, only Van der Waals forces stabilize the crystal packing.

S2. Experimental

A dried 100-ml round-bottomed flask was charged with 2.29 g (10 mmol) of 1-(5-bromo-2-methylphenyl)-1-methylethanol, 1.22 g (10 mmol) of phenetol and 15 ml of dried dichloromethane, and the clear solution thus obtained was stirred on an ice bath followed by addition of 1.33 g (10 mmol) of anhydrous aluminium chloride in a portionwise manner. After addition, the reaction mixture was stirred at room temperature for another one hour when TLC analysis indicated that all the starting materials were consumed completely. The reaction mixture was poured into 300 ml of icewater and exacted with three 50-ml portions of dichloromethane, and the combined exacts were washed with saturated brine, dried over sodium sulfate and evaporated on a rotary evaporator to afford the crude product as a colorless oil, which was purified by column chromatography to yield the pure product as colorless crystals. Single crystals suitable for X-ray diffraction were obtained from slow evaporation of a solution of the pure title compound in dichloromethane/petroleum ether (1/4) at room temperature.

S3. Refinement

All H atoms were found on difference maps, with C—H = 0.93–0.97 and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C)$ for the methyl H atoms.

Figure 1

View of the title compound, with displacement ellipsoids drawn at the 40% probability level.

4-Bromo-2-[1-(4-ethoxyphenyl)-1-methylethyl]-1-methylbenzene

Crystal data

C₁₈H₂₁BrO $M_r = 333.26$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.164 (2) Å b = 9.5142 (19) Å c = 16.135 (3) Å $\beta = 110.21$ (3)° V = 1608.2 (6) Å³ Z = 4

Data collection

Rigaku Saturn
diffractometer
Radiation source: rotating anode
Confocal monochromator
ω scans
Absorption correction: multi-scan
(CystalClear; Rigaku, 2005)
$T_{\rm min} = 0.630, T_{\rm max} = 0.822$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.130$ S = 1.052839 reflections 186 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 688 $D_x = 1.376 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3726 reflections $\theta = 2.1-27.1^{\circ}$ $\mu = 2.55 \text{ mm}^{-1}$ T = 293 KPrism, colorless $0.20 \times 0.16 \times 0.08 \text{ mm}$

13056 measured reflections 2839 independent reflections 2101 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -13 \rightarrow 12$ $k = -11 \rightarrow 11$ $l = -17 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.070P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.52$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³ Extinction correction: *SHELXTL* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc²\lambda³/sin(2 θ)]^{-1/4} Extinction coefficient: 0.026 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm ea}$ х Ζ v Br1 0.02586 (4) 0.72212 (4) 0.15240 (3) 0.0665 (3) 01 -0.2600(3)0.39327(19)0.0644(8)0.1869(3)C1 -0.1877(4)0.1214(4)0.1522(3)0.0751 (13) H1A -0.22760.0963 0.0912 0.113* H1B -0.24960.1180 0.1812 0.113* H1C -0.11980.0566 0.1802 0.113* C2 -0.1338(4)0.2691 (4) 0.1586 (3) 0.0545 (10) C3 -0.1463(4)0.3354(5)0.0805(3)0.0647 (11) 0.078* H3 -0.18720.2878 0.0279 C4 -0.1010(4)0.4700 (4) 0.0762(3)0.0635(11) H4 0.076* -0.11200.5129 0.0222 C5 -0.0388(3)0.5377(4)0.1551(2)0.0497(9)C6 -0.0249(3)0.4749 (4) 0.0491 (9) 0.2352(2)0.059* H6 0.0166 0.5236 0.2872 0.2397 (2) C7 -0.0716(3)0.3405(4)0.0467 (8) 0.0501 (9) C8 -0.0623(4)0.2769 (4) 0.3297(3)C9 -0.1980(4)0.2698 (4) 0.0736 (13) 0.3348(3)H9A -0.24500.1953 0.2975 0.110* H9B -0.24100.3575 0.3153 0.110* H9C 0.3946 0.110* -0.19210.2522 C10 0.0203(4)0.3690(4)0.4079(3)0.0723 (12) 0.0296 0.108* H10A 0.3226 0.4626 H10B -0.02060.4583 0.4062 0.108* H10C 0.1029 0.4034 0.108* 0.3831 C11 0.0025(3)0.1309(4)0.3436(2)0.0471 (9) C12 -0.0460(4)0.0150 (4) 0.3738(2)0.0575 (10) -0.1226 0.0235 0.3843 0.069* H12 C13 0.0171 (4) -0.1130(4)0.3887(3)0.0628 (11) H13 -0.0187-0.18950.4075 0.075* -0.1283(4)0.0513 (9) C14 0.1324(4)0.3759(2)C15 0.1832(3)-0.0141(4)0.3464(2)0.0525(9)H15 0.2603 -0.02250.3367 0.063* C16 0.1182 (3) 0.1130 (4) 0.3314(2)0.0543 (10) H16 0.1539 0.1893 0.3123 0.065* C17 0.3065(4)-0.2787(4)0.3818 (3) 0.0673 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H17A	0.3699	-0.2168	0.4211	0.081*
H17B	0.2990	-0.2568	0.3215	0.081*
C18	0.3460 (4)	-0.4312 (5)	0.4026 (3)	0.0896 (15)
H18A	0.3480	-0.4533	0.4611	0.134*
H18B	0.4292	-0.4454	0.3991	0.134*
H18C	0.2856	-0.4913	0.3608	0.134*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Brl	0.0704 (4)	0.0471 (3)	0.0812 (4)	-0.00704 (19)	0.0251 (3)	0.01185 (19)
01	0.068 (2)	0.0553 (17)	0.076 (2)	0.0164 (13)	0.0322 (16)	0.0155 (13)
C1	0.086 (3)	0.056 (3)	0.068 (3)	-0.020 (2)	0.009 (2)	-0.001 (2)
C2	0.054 (2)	0.042 (2)	0.055 (2)	-0.0056 (17)	0.004 (2)	0.0034 (17)
C3	0.068 (3)	0.055 (2)	0.056 (2)	-0.009 (2)	0.003 (2)	0.000 (2)
C4	0.063 (3)	0.065 (3)	0.054 (2)	0.001 (2)	0.008 (2)	0.012 (2)
C5	0.044 (2)	0.044 (2)	0.061 (2)	-0.0016 (16)	0.0181 (18)	0.0061 (17)
C6	0.050 (2)	0.046 (2)	0.050(2)	-0.0002 (17)	0.0151 (17)	0.0002 (16)
C7	0.0421 (19)	0.039 (2)	0.058 (2)	-0.0014 (16)	0.0158 (17)	0.0028 (17)
C8	0.057 (2)	0.041 (2)	0.058 (2)	0.0041 (17)	0.0268 (19)	0.0062 (16)
C9	0.079 (3)	0.053 (3)	0.109 (4)	0.014 (2)	0.057 (3)	0.015 (2)
C10	0.114 (4)	0.054 (3)	0.053 (2)	-0.003 (2)	0.034 (2)	-0.0004 (19)
C11	0.053 (2)	0.042 (2)	0.047 (2)	-0.0014 (17)	0.0175 (17)	0.0036 (15)
C12	0.061 (2)	0.048 (2)	0.073 (3)	0.0085 (19)	0.037 (2)	0.0136 (19)
C13	0.072 (3)	0.046 (2)	0.080 (3)	0.006 (2)	0.037 (2)	0.018 (2)
C14	0.058 (2)	0.049 (2)	0.045 (2)	0.0076 (18)	0.0151 (18)	0.0053 (16)
C15	0.043 (2)	0.056 (2)	0.059 (2)	0.0039 (18)	0.0194 (18)	0.0040 (18)
C16	0.053 (2)	0.051 (2)	0.057 (2)	-0.0035 (18)	0.0159 (19)	0.0081 (17)
C17	0.066 (3)	0.059 (3)	0.073 (3)	0.009(2)	0.020 (2)	-0.001 (2)
C18	0.082 (3)	0.064 (3)	0.120 (4)	0.024 (2)	0.032 (3)	0.007 (3)

Geometric parameters (Å, °)

Br1—C5	1.904 (4)	С9—Н9В	0.9600
O1-C14	1.379 (4)	С9—Н9С	0.9600
O1—C17	1.421 (6)	C10—H10A	0.9600
C1—C2	1.518 (5)	C10—H10B	0.9600
C1—H1A	0.9600	C10—H10C	0.9600
C1—H1B	0.9600	C11—C16	1.384 (5)
C1—H1C	0.9600	C11—C12	1.389 (5)
C2—C3	1.373 (5)	C12—C13	1.386 (5)
C2—C7	1.423 (5)	C12—H12	0.9300
C3—C4	1.388 (6)	C13—C14	1.380 (5)
С3—Н3	0.9300	C13—H13	0.9300
C4—C5	1.381 (5)	C14—C15	1.385 (5)
C4—H4	0.9300	C15—C16	1.388 (5)
C5—C6	1.382 (5)	C15—H15	0.9300
C6—C7	1.393 (5)	C16—H16	0.9300

С6—Н6	0.9300	C17—C18	1.520 (5)
C7—C8	1.543 (5)	C17—H17A	0.9700
C8—C11	1.545 (5)	C17—H17B	0.9700
C8—C9	1.546 (6)	C18—H18A	0.9600
C8—C10	1.552 (6)	C18—H18B	0.9600
С9—Н9А	0.9600	C18—H18C	0.9600
C14—O1—C17	117.1 (3)	C8—C10—H10A	109.5
C2—C1—H1A	109.5	C8—C10—H10B	109.5
C2—C1—H1B	109.5	H10A—C10—H10B	109.5
H1A—C1—H1B	109.5	C8—C10—H10C	109.5
C2—C1—H1C	109.5	H10A—C10—H10C	109.5
H1A—C1—H1C	109.5	H10B-C10-H10C	109.5
H1B—C1—H1C	109.5	C16—C11—C12	116.7 (3)
C3—C2—C7	119.2 (3)	C16—C11—C8	120.2 (3)
C3—C2—C1	116.8 (3)	C12—C11—C8	123.0 (3)
C7—C2—C1	124.1 (3)	C13—C12—C11	121.5 (3)
C2—C3—C4	123.2 (4)	C13—C12—H12	119.3
С2—С3—Н3	118.4	C11—C12—H12	119.3
С4—С3—Н3	118.4	C14—C13—C12	120.8 (4)
C5—C4—C3	117.4 (3)	C14—C13—H13	119.6
C5—C4—H4	121.3	C12—C13—H13	119.6
C3—C4—H4	121.3	O1—C14—C13	115.8 (3)
C4—C5—C6	121.3 (3)	O1—C14—C15	125.4 (3)
C4—C5—Br1	118.8 (3)	C13—C14—C15	118.9 (3)
C6—C5—Br1	119.9 (3)	C14—C15—C16	119.5 (3)
C5—C6—C7	121.5 (3)	C14—C15—H15	120.3
С5—С6—Н6	119.3	C16—C15—H15	120.3
С7—С6—Н6	119.3	C11—C16—C15	122.7 (3)
C6—C7—C2	117.6 (3)	C11—C16—H16	118.6
C6—C7—C8	120.3 (3)	C15—C16—H16	118.6
C2—C7—C8	122.0 (3)	O1—C17—C18	107.7 (4)
C7—C8—C11	111.5 (3)	O1—C17—H17A	110.2
C7—C8—C9	108.5 (3)	C18—C17—H17A	110.2
C11—C8—C9	111.8 (3)	O1—C17—H17B	110.2
C7—C8—C10	111.8 (3)	C18—C17—H17B	110.2
C11—C8—C10	105.8 (3)	H17A—C17—H17B	108.5
C9—C8—C10	107.4 (3)	C17—C18—H18A	109.5
С8—С9—Н9А	109.5	C17—C18—H18B	109.5
С8—С9—Н9В	109.5	H18A—C18—H18B	109.5
H9A—C9—H9B	109.5	C17—C18—H18C	109.5
С8—С9—Н9С	109.5	H18A—C18—H18C	109.5
Н9А—С9—Н9С	109.5	H18B—C18—H18C	109.5
Н9В—С9—Н9С	109.5		
C7—C2—C3—C4	0.1 (6)	C7—C8—C11—C16	50.9 (5)
C1—C2—C3—C4	-179.6 (4)	C9—C8—C11—C16	172.5 (4)
C2—C3—C4—C5	1.0 (6)	C10-C8-C11-C16	-70.9 (4)

C3—C4—C5—C6	-1.4 (6)	C7—C8—C11—C12	-133.2 (4)
C3-C4-C5-Br1	179.7 (3)	C9—C8—C11—C12	-11.6 (5)
C4—C5—C6—C7	0.7 (5)	C10-C8-C11-C12	105.0 (4)
Br1C5C6C7	179.6 (3)	C16—C11—C12—C13	-1.6 (6)
C5—C6—C7—C2	0.4 (5)	C8—C11—C12—C13	-177.6 (4)
C5—C6—C7—C8	-176.1 (3)	C11—C12—C13—C14	1.6 (6)
C3—C2—C7—C6	-0.8 (6)	C17—O1—C14—C13	-179.2 (4)
C1—C2—C7—C6	178.8 (4)	C17—O1—C14—C15	1.6 (5)
C3—C2—C7—C8	175.7 (4)	C12—C13—C14—O1	179.6 (4)
C1—C2—C7—C8	-4.7 (6)	C12—C13—C14—C15	-1.2 (6)
C6—C7—C8—C11	-127.0 (4)	O1-C14-C15-C16	179.9 (3)
C2C7C8C11	56.7 (5)	C13—C14—C15—C16	0.8 (5)
C6—C7—C8—C9	109.5 (4)	C12-C11-C16-C15	1.2 (5)
C2—C7—C8—C9	-66.8 (4)	C8—C11—C16—C15	177.3 (3)
C6—C7—C8—C10	-8.8 (5)	C14-C15-C16-C11	-0.8 (6)
C2C7C8C10	174.9 (4)	C14—O1—C17—C18	-178.8 (3)