metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[tris(*u*-2-aminobenzene-1,4dicarboxylato)tetrakis(N,N-dimethylformamide)divttrium(III)]

Mathivathani Kandiah, David Stephen Wragg,* Mats Tilset and Karl Petter Lillerud

inGAP Centre for Research Based Innovation, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway Correspondence e-mail: david.wragg@smn.uio.no

Received 25 October 2010; accepted 2 December 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.011 Å; disorder in main residue; R factor = 0.043; wR factor = 0.123; data-to-parameter ratio = 7.9.

The asymmetric unit of the title coordination polymer, $[Y_2(C_8H_5NO_4)_3(C_3H_7NO)_4]_n$, contains one Y^{3+} ion, three half-molecules of the 2-aminobenzene-1,4-dicarboxylate (abz) dianion and two O-bonded N,N-dimethylformamide (DMF) molecules. Each abz half-molecule is completed by crystallographic inversion symmetry and its -NH₂ group is disordered in each case [relative occupancies within the asymmetric unit = 0.462 (18):0.538 (18), 0.93 (2):0.07 (2) and 0.828 (16):0.172 (16)]. The combination of disorder and crystal symmetry means that each of the four C-H atoms of the benzene ring of each of the dianions bears a statistical fraction of an -NH₂ group. The coordination geometry of the yttrium ion is a fairly regular YO₈ square antiprism arising from its coordination by two DMF molecules, four monodentate abz dianions and one O,O-bidentate abz dianion. The polymeric building unit is a dimeric paddle-wheel with two metal ions linked by four bridging abz dianions. Further bridging linkages connect the dimers into a three-dimensional framework containing voids in which highly disordered DMF molecules are presumed to reside.

Related literature

For a related structure containing a similar paddle-wheel motif, see: Braun et al. (2001).

 $\gamma = 101.265 \ (2)^{\circ}$

Z = 1

V = 1318.8 (6) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.22 \times 0.05 \text{ mm}$

2345 independent reflections

2111 reflections with $I > 2\sigma(I)$

 $\mu = 2.25 \text{ mm}^-$

T = 150 K

 $R_{\rm int} = 0.027$

 $\theta_{\rm max} = 19.7^{\circ}$

Experimental

Crystal data

$[Y_2(C_8H_5NO_4)_3(C_3H_7NO)_4]$	
$M_r = 1007.59$	
Triclinic, P1	
a = 10.525 (3) Å	
b = 11.034 (3) Å	
c = 12.855 (3) Å	
$\alpha = 99.359 \ (3)^{\circ}$	
$\beta = 111.301 \ (3)^{\circ}$	

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.575, T_{\max} = 0.894$

7363 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	46 restraints
$wR(F^2) = 0.123$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.71 \ {\rm e} \ {\rm \AA}^{-3}$
2345 reflections	$\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3}$
298 parameters	

Table 1 Selected bond lengths (Å).

Y1-O3	2.252 (5)	Y1-O8	2.358 (6)
Y1-01	2.311 (4)	Y1-O2	2.361 (6)
Y1-O5	2.322 (5)	Y1-O6	2.409 (4)
Y1-07	2.335 (4)	Y1-O4	2.416 (4)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2004); software used to prepare material for publication: PLATON (Spek, 2009).

The authors thank the Research Council of Norway and inGAP for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5707).

References

Braun, M. E., Steffek, C. D., Kim, J., Rasmussen, P. G. & Yaghi, O. M. (2001). *Chem. Commun.* pp. 2532–2533.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Crystal Impact (2004). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2004). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122. Spek, A. L. (2009). *Acta Cryst*. D**65**, 148–155.

Acta Cryst. (2011). E67, m44–m45 [https://doi.org/10.1107/S1600536810050555]

Poly[tris(*µ*-2-aminobenzene-1,4-dicarboxylato)tetrakis(*N*,*N*-dimethyl-formamide)diyttrium(III)]

Mathivathani Kandiah, David Stephen Wragg, Mats Tilset and Karl Petter Lillerud

S1. Comment

The title compound (I) is a metal-organic framework (MOF) which is a weak scatterer of X-rays and data were collected from a very small crystal. These were sufficient for refinement of the framework structure but not the disordered solvent. The asymmetric unit (Fig. 1) of the title compound consists of an yttrium atom coordinated by 8 oxygen atoms, 6 from 2-amino-1,4-benzenedicarboxylic acid (BDC-NH₂) moieties and 2 from coordinated dimethylformamide solvent. The inorganic cornerstone of the MOF is a paddle wheel type unit comprising two yttrium atoms linked by four bridging Y-BDC-NH₂ molecules (Fig. 2). Such units are well known in transition metal MOF structures (Braun, 2001). The paddle wheel carboxylates clearly show one long and one short C—O bond indicating single and double bond character. The single bonded, charge carrying oxygen of the carboxylate group has a shorter Y—O bond distance as would be expected. The axles of the paddle wheel are connected to one BDC-NH₂ and 2 DMF molecules at each end.

The BDC-NH₂ linkers at the ends of the paddle wheel are offset in a *trans*-type conformation and link the units in chains which, when the structure is viewed along the *a*-axis (Fig. 3), bisect the angle of the *b* and *c* axes. When we view the structure along the axis of the paddle wheel unit (Fig. 4) we see that the bridging BDC-NH₂ molecules also link to further units in chains parallel to the *a* and *b*-axes producing a three-dinemsional network. The amino groups are disordered over all four possible positions of the benzene rings of the BDC-NH₂ linker molecules, except in the case of the ring described by C10, C11 and C12, in which the NH₂ was found to be localized on C12. All of the disordered C—N bonds were restrained to have the same bond distance.

1 molecule of DMF solvent per ASU was located in the void space of the MOF using difference Fourier maps but the resulting model gave a poor refinement. The program Squeeze from the *PLATON* suite (Spek, 2009) was used to remove residual electron density from the solvent accessible voids giving a chemically sensible structure and acceptable refinement statistics. The squeeze calculation suggests voids containing 90 electrons or 2.25 DMF molecules in each unit cell. This is in reasonable agreement with the disordered solvent observed in the difference Fourier map.

S2. Experimental

The Title complex Y-BDC-NH₂ was prepared by dissolving Y(NO₃)₃.6H₂O (0.383 g, 1 mmol) and 2-amino 1,4-benzenedicarboxylic acid (H₂N—H₂BDC) (0.181 g, 1 mmol) in N,N-dimethylformamide (DMF) (20 ml) at room temperature in a test tube. The mixture thus obtained was placed in a pre-heated oven at 80°C for 24 hrs. Colourless plates of (I) were selected directly from the mother liquor as prepared and mounted on cryoloops.

S3. Refinement

Most of the non hydrogen atoms positions were obtained from the direct methods solution and the remainder (mainly carbon atoms) were located using difference Fourier maps during refinement. Hydrogen atoms were placed in ideal

positions and refined with a riding model.

ORTEP view of the asymmetric unit of (I) with thermal ellipsoids at 50% probability. Hydrogen atoms are omitted for clarity.

Figure 2

The paddle wheel unit of the MOF structure of (I).

Figure 3

Packing diagram of (I) viewed along the *a*-axis.

Figure 4

Packing diagram of (I) viewed along the axis of the paddle wheel unit.

Poly[tris(µ-2-aminobenzene-1,4-dicarboxylato)tetrakis(N,N- dimethylformamide)diyttrium(III)]

Crystal data

$[Y_2(C_8H_5NO_4)_3(C_3H_7NO)_4]$	Z = 1
$M_r = 1007.59$	F(000) = 505
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.257 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.525 (3) Å	Cell parameters from 3097 reflections
b = 11.034 (3) Å	$\theta = 2.4 - 28.2^{\circ}$
c = 12.855 (3) Å	$\mu = 2.25 \text{ mm}^{-1}$
$\alpha = 99.359 \ (3)^{\circ}$	T = 150 K
$\beta = 111.301 \ (3)^{\circ}$	Plate, colourless
$\gamma = 101.265 \ (2)^{\circ}$	$0.25 \times 0.22 \times 0.05 \text{ mm}$
V = 1318.8 (6) Å ³	
Data collection	
Bruker APEX CCD	7363 measured reflections
diffractometer	2345 independent reflections
Radiation source: sealed tube	2111 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
phi and ω scans	$\theta_{\rm max} = 19.7^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 2004)	$k = -10 \rightarrow 10$
$T_{\min} = 0.575, \ T_{\max} = 0.894$	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 1.11	H-atom parameters constrained
2345 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0707P)^2 + 2.6497P]$
298 parameters	where $P = (F_o^2 + 2F_c^2)/3$
46 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.71$ e Å ⁻³
direct methods	$\Delta \rho_{\min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Y1	0.60986 (6)	0.54621 (5)	0.67714 (5)	0.0325 (3)	
01	0.5003 (5)	0.3303 (4)	0.5952 (4)	0.0458 (12)	
O2	0.7957 (6)	0.4535 (6)	0.7557 (5)	0.0777 (17)	
O3	0.6664 (4)	0.5086 (4)	0.5242 (4)	0.0489 (12)	
O4	0.8360 (5)	0.7070 (5)	0.7643 (5)	0.0628 (15)	
O5	0.5711 (5)	0.7170 (4)	0.5974 (4)	0.0429 (11)	
O6	0.6807 (5)	0.7297 (4)	0.8365 (4)	0.0512 (13)	
07	0.3832 (5)	0.5508 (4)	0.6623 (5)	0.0497 (12)	
08	0.5809 (6)	0.4663 (5)	0.8289 (5)	0.0664 (16)	
C1	0.5309 (7)	0.7437 (6)	0.5023 (7)	0.0425 (18)	
C2	0.5175 (7)	0.8788 (6)	0.5026 (6)	0.0450 (18)	
C3	0.5023 (8)	0.9231 (7)	0.4060 (6)	0.054 (2)	
Н3	0.5042	0.8702	0.3407	0.064*	0.70
C4	0.5155 (8)	0.9569 (6)	0.5979 (6)	0.0504 (19)	
H4	0.5264	0.9278	0.6654	0.060*	0.80
C5	0.8016 (8)	0.7688 (7)	0.8353 (6)	0.0481 (19)	
C6	0.9007 (8)	0.8887 (6)	0.9175 (6)	0.0507 (19)	
C7	1.0407 (9)	0.9239 (8)	0.9287 (7)	0.075 (3)	
H7	1.0708	0.8716	0.8812	0.090*	0.75
C8	0.8620 (8)	0.9631 (8)	0.9897 (7)	0.071 (2)	
H8	0.7680	0.9386	0.9851	0.085*	0.75
С9	0.7040 (8)	0.4813 (6)	0.4410 (8)	0.0452 (18)	
C10	0.8564 (7)	0.4903 (6)	0.4706 (6)	0.0426 (18)	
C11	0.9565 (8)	0.5420 (7)	0.5837 (6)	0.052 (2)	
H11	0.9267	0.5707	0.6424	0.062*	

C12	0.9036 (7)	0.4478 (7)	0.3883 (6)	0.052 (2)	
H12	0.8372	0.4107	0.3106	0.062*	0.50
C13	0.8097 (13)	0.3559 (13)	0.7616 (12)	0.146 (6)	
H13	0.7299	0.2897	0.7062	0.175*	
C14	0.8993 (18)	0.1782 (16)	0.8060 (19)	0.234 (10)	
H14A	0.9844	0.1670	0.8638	0.351*	0.50
H14B	0.8939	0.1452	0.7286	0.351*	0.50
H14C	0.8149	0.1314	0.8132	0.351*	0.50
H14D	0.8111	0.1288	0.7399	0.351*	0.50
H14E	0.9016	0.1505	0.8752	0.351*	0.50
H14F	0.9806	0 1643	0.7905	0.351*	0.50
C15	1.042(3)	0.393(2)	0.903(2)	0.39(2)	0.20
H15A	1 1003	0.3414	0.9425	0.590*	0.50
H15R	1.0311	0.4561	0.9592	0.590*	0.50
H15C	1.0882	0.4364	0.8598	0.590*	0.50
H15D	1.0461	0.4812	0.8985	0.590*	0.50
H15E	1.1153	0.3666	0.8818	0.590*	0.50
H15E	1.0582	0.3862	0.9812	0.590*	0.50
C16	0.4818(15)	0.3945(12)	0.8288 (9)	0.300 0.103 (3)	0.50
H16	0.3967	0.3770	0.7615	0.124*	
C17	0.595(2)	0.3593 (16)	1.0148(12)	0.124	
H17A	0.5719	0.3094	1.0652	0.292*	0.50
H17R	0.6263	0.4506	1.0539	0.292*	0.50
H17C	0.6713	0.3351	0.0074	0.292	0.50
	0.6744	0.3351	1.0125	0.292	0.50
H17E	0.6200	0.4200	1.0125	0.292	0.50
	0.0200	0.2794	1.0237	0.292	0.50
C18	0.3750	0.3349 0.2376 (18)	0.0021 (16)	0.292	0.50
U18A	0.334 (2)	0.2370 (10)	0.9021 (10)	0.244 (11)	0.50
LILOA LILOA	0.3789	0.2133	0.9755	0.366*	0.50
	0.3313	0.1025	0.8373	0.366*	0.50
	0.2707	0.2700	0.8372	0.300*	0.50
	0.2734	0.2170	0.8200	0.300*	0.30
	0.3223	0.2084	0.9020	0.300*	0.50
П10Г N1	0.3830 0.7183 (10)	0.1004	0.9143	0.300°	0.30
	0.7183 (19)	0.939 (3)	0.972(4)	0.137 (12)	0.228(9)
	0.04/4	0.9049	0.9115	0.165*	0.228(9)
	0.7011	1.0097	1.0227	0.103°	0.228(9)
	1.101 (5)	0.837 (3)	0.802 (5)	0.157 (12)	0.272(9)
	1.0465	0.7803	0.8070	0.165*	0.272(9)
HIA2	1.1912	0.8807	0.8752	0.105*	0.272 (9)
NZ	0.8114 (13)	0.38//(1/)	0.2719 (10)	0.111 (/)	0.50
H2A 112D	0.8456	0.3396	0.2226	0.134*	0.50
H2B	0./196	0.3783	0.2487	0.134*	0.50
N3	0.5205 (18)	0.9180 (14)	0.7009(11)	0.079 (6)	0.424 (9)
H3A H2D	0.5124	0.9699	0.7082	0.094*	0.424 (9)
нзв	0.531/	0.8424	0.7082	0.094*	0.424 (9)
N3A	0.499 (10)	0.857(7)	0.299 (4)	0.079 (6)	0.076 (9)
H3A1	0.5078	0.7784	0.2905	0.094*	0.076 (9)

H3A2	0.4890	0.8945	0.2426	0.094*	0.076 (9)
N4	0.4703 (14)	0.3341 (10)	0.9082 (10)	0.143 (4)	
N5	0.9061 (13)	0.3113 (12)	0.8242 (12)	0.157 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Y1	0.0242 (4)	0.0219 (4)	0.0408 (5)	0.0023 (3)	0.0060 (3)	0.0025 (3)
01	0.057 (3)	0.025 (3)	0.043 (3)	0.004 (2)	0.013 (2)	0.002 (2)
O2	0.064 (4)	0.065 (4)	0.100 (5)	0.033 (3)	0.019 (3)	0.027 (4)
O3	0.036 (3)	0.035 (3)	0.073 (4)	0.003 (2)	0.029 (3)	-0.002 (2)
O4	0.038 (3)	0.047 (3)	0.072 (4)	-0.003 (2)	0.010 (3)	-0.020 (3)
O5	0.049 (3)	0.026 (3)	0.040 (3)	0.004 (2)	0.007 (2)	0.005 (2)
O6	0.053 (4)	0.035 (3)	0.045 (3)	-0.007(2)	0.012 (3)	-0.001(2)
O7	0.029 (3)	0.050 (3)	0.058 (4)	0.006 (2)	0.012 (3)	0.003 (3)
08	0.073 (4)	0.043 (3)	0.069 (4)	-0.006 (3)	0.026 (3)	0.013 (3)
C1	0.036 (4)	0.023 (4)	0.054 (6)	-0.003 (3)	0.011 (4)	0.005 (4)
C2	0.048 (4)	0.025 (4)	0.042 (5)	-0.002(3)	0.005 (4)	0.001 (4)
C3	0.075 (5)	0.029 (5)	0.042 (5)	0.005 (4)	0.014 (4)	0.005 (4)
C4	0.074 (5)	0.026 (4)	0.037 (5)	0.005 (4)	0.010 (4)	0.011 (4)
C5	0.034 (5)	0.038 (5)	0.043 (5)	-0.007 (4)	-0.006 (4)	0.006 (4)
C6	0.051 (6)	0.033 (4)	0.050 (5)	-0.004 (4)	0.014 (4)	-0.004 (4)
C7	0.059 (6)	0.061 (6)	0.078 (6)	-0.003(5)	0.022 (5)	-0.014 (5)
C8	0.050 (5)	0.063 (6)	0.071 (6)	-0.008(5)	0.012 (5)	0.003 (5)
C9	0.038 (5)	0.029 (4)	0.068 (6)	0.008 (3)	0.025 (5)	0.003 (4)
C10	0.028 (4)	0.038 (4)	0.055 (5)	0.003 (3)	0.018 (5)	-0.001 (4)
C11	0.038 (5)	0.058 (5)	0.052 (6)	0.006 (4)	0.025 (4)	-0.011 (4)
C12	0.025 (5)	0.064 (5)	0.047 (5)	0.004 (4)	0.008 (4)	-0.009(4)
C13	0.087 (9)	0.096 (10)	0.190 (14)	0.024 (8)	-0.015 (9)	0.038 (10)
C14	0.165 (15)	0.162 (15)	0.39 (3)	0.082 (13)	0.069 (17)	0.181 (18)
C15	0.32 (3)	0.23 (2)	0.36 (3)	0.14 (2)	-0.13 (3)	-0.08(2)
C16	0.146 (11)	0.102 (9)	0.067 (7)	0.034 (8)	0.045 (7)	0.029 (7)
C17	0.26 (2)	0.192 (16)	0.100 (11)	0.050 (15)	0.037 (13)	0.061 (11)
C18	0.23 (2)	0.26 (2)	0.236 (19)	-0.063 (16)	0.147 (17)	0.100 (17)
N1	0.062 (15)	0.114 (19)	0.18 (3)	-0.036 (13)	0.061 (16)	-0.079 (18)
N1A	0.062 (15)	0.114 (19)	0.18 (3)	-0.036(13)	0.061 (16)	-0.079 (18)
N2	0.031 (8)	0.196 (18)	0.066 (10)	0.025 (9)	0.006 (8)	-0.035 (11)
N3	0.116 (14)	0.044 (9)	0.069 (11)	0.041 (9)	0.020 (10)	0.019 (8)
N3A	0.116 (14)	0.044 (9)	0.069 (11)	0.041 (9)	0.020 (10)	0.019 (8)
N4	0.192 (12)	0.124 (8)	0.099 (8)	0.000 (8)	0.063 (8)	0.040 (7)
N5	0.121 (9)	0.149 (11)	0.199 (12)	0.089 (8)	0.016 (8)	0.096 (10)
	(-)					

Geometric parameters (Å, °)

Y1—03	2.252 (5)	C12—N2	1.411 (11)
Y101	2.311 (4)	C12—H12	0.9500
Y1—05	2.322 (5)	C13—N5	1.284 (14)
Y1—07	2.335 (4)	С13—Н13	0.9500

Y1—O8	2.358 (6)	C14—N5	1.433 (18)
Y1—O2	2.361 (6)	C14—H14A	0.9800
Y1—O6	2.409 (4)	C14—H14B	0.9800
Y1—O4	2.416 (4)	C14—H14C	0.9800
Y1—C5	2 775 (7)	C14—H14D	0.9800
V1_C9 ⁱ	3.021(7)	C14—H14F	0.9800
$01-C1^{i}$	1 268 (8)	C14—H14F	0.9800
$O_2 C_{13}$	1.200(0) 1.126(13)	C15 N5	1.42(2)
02 - 013	1.120(13) 1.281(8)	C15 H15A	1.42(2)
04 C5	1.261(0)	C15 H15P	0.9800
04-03	1.231(9)	С15—Н15В	0.9800
05	1.245 (8)	CI5—HISC	0.9800
	1.208 (8)	CIS—HISD	0.9800
$0/-0^{4}$	1.252 (8)	CI5—HI5E	0.9800
08-016	1.179 (13)	CI5—HI5F	0.9800
$C1-O1^1$	1.268 (8)	C16—N4	1.335 (13)
C1—C2	1.524 (9)	C16—H16	0.9500
C2—C3	1.375 (9)	C17—N4	1.451 (17)
C2—C4	1.388 (9)	C17—H17A	0.9800
C3—C4 ⁱⁱ	1.379 (9)	C17—H17B	0.9800
C3—N3A	1.432 (13)	C17—H17C	0.9800
С3—Н3	0.9500	C17—H17D	0.9800
C4—C3 ⁱⁱ	1.379 (9)	С17—Н17Е	0.9800
C4—N3	1.443 (11)	C17—H17F	0.9800
C4—H4	0.9500	C18—N4	1.427 (16)
C5—C6	1.470 (10)	C18—H18A	0.9800
C6—C8	1.364 (11)	C18—H18B	0.9800
C6—C7	1.395 (11)	C18—H18C	0.9800
C7—C8 ⁱⁱⁱ	1.414 (11)	C18—H18D	0.9800
C7—N1A	1436(12)	C18—H18E	0.9800
C7—H7	0.9500	C18—H18F	0.9800
$C8 - C7^{iii}$	1 414 (11)	N1—H1A	0.8800
C8—N1	1.436(13)	N1—H1B	0.8800
C8H8	0.9500	N1A_H1A1	0.8800
$C_0 = O_7^{i}$	1,252 (8)		0.8800
C_{9}	1.232(0) 1.487(10)	NIA-IIIAZ	0.8800
C_{0} V ¹	1.407(10)	N2 H2D	0.8800
C_{9}	5.021(7)		0.8800
	1.377 (9)	N3—H3A	0.8800
	1.390 (9)	N3—H3B	0.8800
	1.359 (9)	N3A—H3A1	0.8800
	0.9500	N3A—H3A2	0.8800
C12—C11 ^{IV}	1.359 (9)		
03—Y1—01	77.48 (15)	H14C—C14—H14D	56.3
O3—Y1—O5	76.70 (16)	N5-C14-H14E	109.5
O1—Y1—O5	128.81 (15)	H14A—C14—H14E	56.3
O3—Y1—O7	123.79 (17)	H14B—C14—H14E	141.1
01—Y1—07	82.81 (16)	H14C—C14—H14E	56.3
O5—Y1—O7	76.18 (16)	H14D—C14—H14E	109.5

O3—Y1—O8	145.22 (18)	N5—C14—H14F	109.5
O1—Y1—O8	75.52 (17)	H14A—C14—H14F	56.3
O5—Y1—O8	137.92 (18)	H14B—C14—H14F	56.3
O7—Y1—O8	73.86 (19)	H14C—C14—H14F	141.1
O3—Y1—O2	81.36 (19)	H14D—C14—H14F	109.5
O1—Y1—O2	77.45 (19)	H14E—C14—H14F	109.5
O5—Y1—O2	139.42 (19)	N5—C15—H15A	109.5
O7—Y1—O2	143.6 (2)	N5—C15—H15B	109.5
O8—Y1—O2	71.7 (2)	H15A—C15—H15B	109.5
O3—Y1—O6	133.34 (16)	N5—C15—H15C	109.5
01—Y1—06	148.63 (17)	H15A—C15—H15C	109.5
O5—Y1—O6	73.50 (15)	H15B—C15—H15C	109.5
O7—Y1—O6	82.41 (18)	N5—C15—H15D	109.5
O8—Y1—O6	73.84 (17)	H15A—C15—H15D	141.1
O2—Y1—O6	99.00 (19)	H15B—C15—H15D	56.3
O3—Y1—O4	84.05 (18)	H15C—C15—H15D	56.3
O1—Y1—O4	144.15 (17)	N5—C15—H15E	109.5
O5—Y1—O4	74.57 (17)	H15A—C15—H15E	56.3
O7—Y1—O4	132.62 (17)	H15B—C15—H15E	141.1
O8—Y1—O4	105.82 (19)	H15C—C15—H15E	56.3
O2—Y1—O4	69.5 (2)	H15D—C15—H15E	109.5
O6—Y1—O4	53.92 (17)	N5—C15—H15F	109.5
C1 ⁱ —O1—Y1	133.9 (4)	H15A—C15—H15F	56.3
C13—O2—Y1	138.5 (8)	H15B—C15—H15F	56.3
C9—O3—Y1	175.4 (5)	H15C—C15—H15F	141.1
C5—O4—Y1	92.8 (4)	H15D—C15—H15F	109.5
C1—O5—Y1	141.0 (4)	H15E—C15—H15F	109.5
C5—O6—Y1	92.7 (4)	O8—C16—N4	130.2 (12)
C9 ⁱ —O7—Y1	111.1 (4)	O8—C16—H16	114.9
C16—O8—Y1	129.7 (7)	N4—C16—H16	114.9
O5-C1-O1 ⁱ	126.5 (6)	N4—C17—H17A	109.5
O5—C1—C2	117.0 (7)	N4—C17—H17B	109.5
O1 ⁱ —C1—C2	116.5 (7)	H17A—C17—H17B	109.5
C3—C2—C4	119.1 (6)	N4—C17—H17C	109.5
C3—C2—C1	119.9 (7)	H17A—C17—H17C	109.5
C4—C2—C1	120.9 (7)	H17B—C17—H17C	109.5
C2—C3—C4 ⁱⁱ	121.2 (7)	N4—C17—H17D	109.5
C2—C3—N3A	127 (3)	H17A—C17—H17D	141.1
C4 ⁱⁱ —C3—N3A	111 (3)	H17B—C17—H17D	56.3
С2—С3—Н3	119.4	H17C—C17—H17D	56.3
C4 ⁱⁱ —C3—H3	119.4	N4—C17—H17E	109.5
C3 ⁱⁱ —C4—C2	119.7 (6)	H17A—C17—H17E	56.3
C3 ⁱⁱ —C4—N3	115.9 (9)	H17B—C17—H17E	141.1
C2—C4—N3	124.3 (8)	H17C—C17—H17E	56.3
C3 ⁱⁱ —C4—H4	120.2	H17D—C17—H17E	109.5
C2—C4—H4	120.2	N4—C17—H17F	109.5
O4—C5—O6	120.5 (6)	H17A—C17—H17F	56.3
O4—C5—C6	120.2 (8)	H17B—C17—H17F	56.3

O6—C5—C6	119.3 (8)	H17C—C17—H17F	141.1
O4—C5—Y1	60.4 (3)	H17D—C17—H17F	109.5
O6—C5—Y1	60.1 (3)	H17E—C17—H17F	109.5
C6—C5—Y1	178.5 (5)	N4—C18—H18A	109.5
C8—C6—C7	118.5 (7)	N4C18H18B	109.5
C8—C6—C5	121.4 (8)	H18A—C18—H18B	109.5
C7—C6—C5	120.0 (8)	N4—C18—H18C	109.5
C6—C7—C8 ⁱⁱⁱ	120.4 (8)	H18A—C18—H18C	109.5
C6—C7—N1A	126.5 (13)	H18B—C18—H18C	109.5
C8 ⁱⁱⁱ —C7—N1A	113.1 (13)	N4—C18—H18D	109.5
С6—С7—Н7	119.8	H18A—C18—H18D	141.1
С8ііі—С7—Н7	119.8	H18B—C18—H18D	56.3
C6—C8—C7 ⁱⁱⁱ	121.1 (8)	H18C—C18—H18D	56.3
C6—C8—N1	124.9 (15)	N4—C18—H18E	109.5
C7 ⁱⁱⁱ —C8—N1	111.8 (15)	H18A—C18—H18E	56.3
С6—С8—Н8	119.4	H18B—C18—H18E	141.1
С7 ^{ііі} —С8—Н8	119.4	H18C—C18—H18E	56.3
07 ⁱ —C9—O3	121.8 (6)	H18D—C18—H18E	109.5
O7 ⁱ —C9—C10	120.3 (7)	N4—C18—H18F	109.5
Q3—C9—C10	117.9 (7)	H18A—C18—H18F	56.3
07 ⁱ —C9—Y1 ⁱ	46.1 (3)	H18B—C18—H18F	56.3
O3—C9—Y1 ⁱ	75.7 (4)	H18C—C18—H18F	141.1
C10—C9—Y1 ⁱ	166.3 (6)	H18D—C18—H18F	109.5
C12—C10—C11	117.7 (6)	H18E—C18—H18F	109.5
C12—C10—C9	121.8 (7)	C8—N1—H1A	120.0
C11—C10—C9	120.5 (7)	C8—N1—H1B	120.0
C12 ^{iv} —C11—C10	121.1 (6)	H1A—N1—H1B	120.0
C12 ^{iv} —C11—H11	119.5	C7—N1A—H1A1	120.0
C10—C11—H11	119.5	C7—N1A—H1A2	120.0
C11 ^{iv} —C12—C10	121.2 (6)	H1A1—N1A—H1A2	120.0
C11 ^{iv} —C12—N2	115.9 (8)	C12—N2—H2A	120.0
C10-C12-N2	122.9 (8)	C12—N2—H2B	120.0
C11 ^{iv} —C12—H12	119.4	H2A—N2—H2B	120.0
C10-C12-H12	119.4	C4—N3—H3A	120.0
O2—C13—N5	136.2 (13)	C4—N3—H3B	120.0
O2—C13—H13	111.9	H3A—N3—H3B	120.0
N5-C13-H13	111.9	C3—N3A—H3A1	120.0
N5-C14-H14A	109.5	C3—N3A—H3A2	120.0
N5-C14-H14B	109.5	H3A1—N3A—H3A2	120.0
H14A—C14—H14B	109.5	C16—N4—C18	129.6 (14)
N5-C14-H14C	109.5	C16—N4—C17	118.0 (12)
H14A—C14—H14C	109.5	C18—N4—C17	112.3 (12)
H14B—C14—H14C	109.5	C13—N5—C15	121.5 (15)
N5-C14-H14D	109.5	C13—N5—C14	123.9 (14)
H14A—C14—H14D	141.1	C15—N5—C14	113.4 (13)
H14B—C14—H14D	56.3		
03—Y1—01—C1 ⁱ	-15.5 (6)	Y1-05-C1-01 ⁱ	-3.7 (11)

O5—Y1—O1—C1 ⁱ	45.7 (6)	Y1—O5—C1—C2	176.1 (4)
07—Y1—01—C1 ⁱ	111.5 (6)	O5—C1—C2—C3	166.7 (6)
08—Y1—01—C1 ⁱ	-173.4 (6)	O1 ⁱ —C1—C2—C3	-13.4(9)
O2—Y1—O1—C1 ⁱ	-99.3 (6)	O5—C1—C2—C4	-15.5(9)
06—Y1—01—C1 ⁱ	173.9 (5)	$O1^{i}$ — $C1$ — $C2$ — $C4$	164.4 (6)
$04 - Y1 - 01 - C1^{i}$	-76.3 (6)	C4—C2—C3—C4 ⁱⁱ	-0.4(12)
$C5-Y1-O1-C1^{i}$	-125.7(8)	$C1-C2-C3-C4^{ii}$	177.5 (6)
$C9^{i}$ Y1 $-O1$ $-C1^{i}$	90.3 (6)	C4—C2—C3—N3A	-179(5)
03 - Y1 - 02 - C13	-90.5(14)	C1-C2-C3-N3A	-1(5)
01 - Y1 - 02 - C13	-11.4(14)	$C_{3}-C_{2}-C_{4}-C_{3}^{ii}$	0.3 (12)
05-Y1-02-C13	-1481(14)	$C1-C2-C4-C3^{ii}$	-1775(6)
07 - Y1 - 02 - C13	47 4 (15)	C_{3} C_{2} C_{4} N_{3}	1755(10)
08 - Y1 - 02 - C13	67 2 (14)	C1 - C2 - C4 - N3	-23(13)
06-Y1-02-C13	1368(14)	$Y_1 - 0_4 - C_5 - 0_6$	0.9(7)
04 - Y1 - 02 - C13	-1773(15)	$Y_1 - 04 - C_5 - C_6$	-1783(6)
C_{5} V_{1} O_{2} C_{13}	159 4 (14)	V1-06-C5-04	-0.9(7)
$C_{0}^{i} - V_{1} - O_{2}^{i} - C_{13}^{i}$	69(16)	V1_06_C5_C6	1783(6)
$03 \times 1 = 04 = 05$	157.9(4)	$03 \times 1 \times 5 \times 04$	-73.3(5)
01 - Y1 - 04 - C5	-1432(4)	01 - Y1 - C5 - 04	23.3 (3) 81 3 (8)
$05 \times 1 = 04 = 05$	80 1 (<i>A</i>)	$05 \times 1 \times 5 \times 04$	-01.7(4)
03 - 11 - 04 - 05	26.3(5)	05 - 11 - 05 - 04	-160.0(4)
07 - 11 - 04 - 05	-561(4)	0^{8} V1 C5 04	100.0(4) 127.0(4)
03-11-04-05	-1191(5)	$0^{2}-1^{1}-0^{2}-0^{4}$	127.0(4) 554(4)
02 - 11 - 04 - 05	-0.5(4)	02 - 11 - 05 - 04	170 1 (7)
C_{0}^{0i} V1 04 C5	0.5 (4) 57 5 (6)	C_{0}^{0} V1 C5 O4	-140.8(4)
$C_{3} = 11 = 04 = C_{3}$	37.5(0)	$C_{3} = 11 = C_{3} = 04$	140.0(4)
03 - 11 - 05 - 01	-281(7)	$01 \times 1 \times 5 \times 06$	-07.8(7)
01 - 11 - 05 - 01	-06.8(7)	01 - 11 - 05 - 06	97.0(7) 80.2(4)
07 - 11 - 05 - 01	-1424(6)	07 X1 C5 06	20.0(4)
03 - 11 - 05 - 01	142.4(0)	$0^{-11} - 0^{-00}$	20.9(4)
02-11-05-01	92.0(7)	03 - 11 - 05 - 06	-1237(4)
00-11-05-01	177.2(7) 120.0(7)	02 - 11 - 05 - 06	123.7(4) -170.1(7)
04-11-05-01	120.9(7) 148.7(7)	C_{1}^{0} V1 C5 O6	-1/9.1(7)
C_{3}^{0i} V1 05 C1	-74.1(7)	$C_{9} = 11 = C_{9} = 00$	-24(14)
$C_{9} = 11 = 03 = C1$	-74.1(7) -20.7(5)	$C_{0} = C_{0} = C_{1} = C_{0}$	-2.4(14) -1778(7)
03 - 11 - 00 - 00	29.7(3)	$C_{3} = C_{6} = C_{7} = C_{8}$	177.0(7)
01 - 11 - 00 - 00 - 00	-82.2(4)	C_{0} C_{0} C_{1} N_{1A}	1/9(2)
03 - 11 - 00 - 00 - 00	-1500(4)	C_{7} C_{6} C_{7} C_{7} C_{7}	+(3)
0/-11-00-05	-139.9(4)	$C_{}C_{-$	2.4(14)
03 - 11 - 00 - 05	124.7 (4) 56.0 (4)	C_{3} C_{6} C_{8} N_{1}	1/7.0(7)
02-11-00-05	50.9(4)	$C_{1} = C_{0} = C_{0} = N_{1}$	104(2)
04-11-00-05	-1465(4)	C_{3} C_{0} C_{10} C_{12}	-20(3)
$C_{3} = 11 = 00 = C_{3}$	140.3(4)	0^{-}_{-} 0^{-	0.9(10)
03 - 1 - 07 - 09	-63.8(4)	$V_{1i}^{1i} = C_{10}^{10} = C_{12}^{12}$	-16(2)
$05 V1 07 C0^{i}$	60 1 <i>(A</i>)	0.7^{i} C0 C10 C11	10(2) 1714(6)
03 - 11 - 07 - 09	-140.8(5)	0^{-}_{-} 0^{-	-80(0)
$02 - 11 - 07 - 0^{01}$	-121 2 (5)	V_{1}^{i} C9 C10 C11	163.8(15)
$02 - 11 - 07 - 0^{i}$	121.2(3) 1439(4)	C_{12} C_{10} C_{11} C_{12} C_{10} C_{11} C_{12} C	11(12)
00 11 0/ 02	17,2,2 (7)	012 - 010 - 011 - 012	1.1 (14)

O4—Y1—O7—C9 ⁱ	122.4 (4)	C9-C10-C11-C12 ^{iv}	-179.2 (7)
C5-Y1-O7-C9 ⁱ	134.4 (4)	C11-C10-C12-C11 ^{iv}	-1.1 (12)
O3—Y1—O8—C16	-84.4 (9)	C9-C10-C12-C11 ^{iv}	179.2 (7)
O1—Y1—O8—C16	-44.2 (8)	C11—C10—C12—N2	176.7 (11)
O5—Y1—O8—C16	88.6 (9)	C9—C10—C12—N2	-3.1 (14)
O7—Y1—O8—C16	42.4 (9)	Y1-02-C13-N5	-162.0 (14)
O2—Y1—O8—C16	-125.5 (9)	Y1	168.8 (9)
O6—Y1—O8—C16	129.0 (9)	O8-C16-N4-C18	-172.8 (16)
O4—Y1—O8—C16	173.0 (8)	O8-C16-N4-C17	2 (2)
C5-Y1-O8-C16	151.0 (9)	O2-C13-N5-C15	-8 (3)
C9 ⁱ —Y1—O8—C16	28.2 (9)	O2-C13-N5-C14	-175.0 (19)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+2, -y+2, -z+2; (iv) -x+2, -y+1, -z+1.