

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl (2Z)-3-[(4-nitrophenyl)carbamoyl]prop-2-enoate

Khurram Shahzad Munawar,^a Sagib Ali^a and M. Nawaz Tahir^b*

^aDepartment of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 20 November 2010; accepted 5 December 2010

Key indicators: single-crystal X-ray study: T = 296 K: mean $\sigma(C-C) = 0.002$ Å: R factor = 0.035; wR factor = 0.097; data-to-parameter ratio = 12.3.

In the title compound, $C_{11}H_{10}N_2O_5$, the amide group is nearly coplanar and the ester group approximately perpendicular to the vinyl C-HC=CH-C group [dihedral angles of 5.0(2)] and $88.89(5)^\circ$, respectively]. This results in a short intramolecular O =C···O=C contact of 2.7201 (17) Å between the amide O atom and the ester carbonyl C atom. The prop-2enamide fragment and the nitro group make dihedral angles of 20.42 (6) and 13.54 $(17)^{\circ}$, respectively, with the benzene ring. An intramolecular $C-H \cdots O$ interaction between the benzene ring and the amide group generates an S(6) ring motif. Intermolecular C-H···O and N-H···O hydrogen bonds complete $R_2^2(11)$ ring motifs and join molecules into [100] chains.

Related literature

For crystal structures of N-substituted maleamic acids, see: Lo & Ng (2009); Wardell et al. (2005). For the synthesis of (4-[(4nitrophenyl)amino]-4-oxobut-2-enoic acid, see: Shahid et al. (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data $C_{11}H_{10}N_2O_5$

 $M_r = 250.21$

Triclinic, $P\overline{1}$ a = 6.8382 (2) Å b = 7.7497 (2) Å c = 11.8277(5) Å $\alpha = 97.805 \ (2)^{\circ}$ $\beta = 92.119 \ (2)^{\circ}$ $\gamma = 114.425 (1)^{\circ}$

Data collection

Bruker Kappa APEXII CCD	8150 measured reflections
diffractometer	2021 independent reflections
Absorption correction: multi-scan	1754 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.020$
$T_{\min} = 0.897, \ T_{\max} = 0.922$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	164 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
2021 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2^i$	0.86	2.11	2.9467 (17)	164
$C7 - H7 \cdot \cdot \cdot O3$	0.93	2.33	2.8983 (17)	119
$C11-H12\cdots O3^i$	0.93	2.45	3.3020 (19)	152

Symmetry code: (i) x + 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

SA and KS Munawar are grateful to the Pakistan Science Foundation for financial support, project No. PSF/R and D/C-QU/CHEM (270).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2328).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, 01101.
- Shahid, K., Shahzadi, S., Ali, S. & Mazhar, M. (2006). Bull. Korean Chem. Soc. 27, 44-52.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3849-o3851.

V = 562.39 (3) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.26 \times 0.24$ mm

 $\mu = 0.12 \text{ mm}^{-1}$ T = 296 K

7 - 2

supporting information

Acta Cryst. (2011). E67, o77 [https://doi.org/10.1107/S1600536810050956] Methyl (2Z)-3-[(4-nitrophenyl)carbamoyl]prop-2-enoate

Khurram Shahzad Munawar, Saqib Ali and M. Nawaz Tahir

S1. Comment

The title compound (I, Fig. 1) has been crystallized in an attempt to synthesize the vanadium complex of 3-(4-nitro-phenylaminocarbonyl)prop-2-enoic acid.

The crystal structure of *N*-phenylmaleamic acid (II) (Lo & Ng, 2009) and (*E*)-3-(4-nitrophenylaminocarbonyl)prop-2enoic acid (III) (Wardell *et al.*, 2005) have been published which are related to (I).

In (I), the methyl formate and prop-2-enamide moieties A (C1/O1/C2/O2) and B (C3/C4/C5/N1/O3) are planar with r. m. s. deviations of 0.012 and 0.019 Å, respectively. The benzene ring C (C6—C11) is planar with r. m. s. deviation of 0.008 Å. The nitro group D (N2/O4/O5) is of course planar. The dihedral angle between A/B, A/C, A/D, B/C, B/D and C/D is 88.78 (4), 86.03 (5), 80.82 (14), 20.42 (6), 12.62 (20) and 13.54 (17)°, respectively. In (I) the value of C=C is 1.318 (2) Å. There exists an intramolecular hydrogen bonding of C—H…O type (Table 1, Fig. 1) completing an S(6) ring motif (Bernstein *et al.*, 1995). There exist intermolecular hydrogen bondings of C—H…O and N—H…O types (Table 1, Fig. 2). Due to these H-bondings $R_2^2(11)$ ring motifs are formed and the molecules are finally stabilized in the form of one dimensional polymeric chains extending along the crystallographic *a* axis (Fig. 2).

S2. Experimental

3-(4-Nitrophenylaminocarbonyl)prop-2-enoic acid was prepared according to the procedure reported by Shahid *et al.* (2006). 3-(4-Nitrophenylaminocarbonyl)prop-2-enoic acid (3 mmol) and VCl₃ (1 mmol) were refluxed in methanol for 4 h resulting in greenish solution. Light green prisms of the title compound were formed after two days.

S3. Refinement

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.96 Å) and treated as riding with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figure 1

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii. The dotted line shows intramolecular hydrogen bond.

Figure 2

The partial packing (*PLATON*; Spek, 2009) which shows one dimensional polymeric chain of hydrogen-bonded molecules, extending along the *a*-axis.

Methyl (2Z)-3-[(4-nitrophenyl)carbamoyl]prop-2-enoate

Crystal data

$C_{11}H_{10}N_2O_5$	$\beta = 92.119 \ (2)^{\circ}$
$M_r = 250.21$	$\gamma = 114.425 \ (1)^{\circ}$
Triclinic, $P\overline{1}$	$V = 562.39 (3) Å^3$
Hall symbol: -P 1	Z = 2
a = 6.8382 (2) Å	F(000) = 260
b = 7.7497 (2) Å	$D_{\rm x} = 1.478 {\rm ~Mg} {\rm ~m}^{-3}$
c = 11.8277 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 97.805 \ (2)^{\circ}$	Cell parameters from 1754 reflections

 $\theta = 3.2 - 25.3^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 296 K

Data collection	
Bruker Kappa APEXII CCD	8150 measured reflections
diffractometer	2021 independent reflections
Radiation source: fine-focus sealed tube	1754 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\rm max} = 25.3^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan	$k = -9 \longrightarrow 9$
(SADABS; Bruker, 2005)	$l = -14 \rightarrow 14$
$T_{\min} = 0.897, \ T_{\max} = 0.922$	
Refinement	

Prism, light green $0.35 \times 0.26 \times 0.24$ mm

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
S = 1.08	H-atom parameters constrained
2021 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0475P)^2 + 0.101P]$
164 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 . conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.14198 (15)	0.84577 (15)	0.41306 (9)	0.0545 (3)	
O2	0.10967 (16)	1.06232 (16)	0.31587 (9)	0.0568 (4)	
03	0.34399 (14)	0.84813 (15)	0.17681 (8)	0.0518 (3)	
O4	0.5882 (2)	0.46462 (19)	-0.33243 (11)	0.0766 (5)	
05	0.92706 (19)	0.55754 (18)	-0.28426 (12)	0.0743 (5)	
N1	0.70053 (17)	0.91905 (18)	0.16737 (10)	0.0484 (4)	
N2	0.7481 (2)	0.54311 (18)	-0.26298 (12)	0.0567 (5)	
C1	-0.0900 (3)	0.7351 (3)	0.39699 (17)	0.0670 (6)	
C2	0.2191 (2)	1.0025 (2)	0.36544 (11)	0.0433 (4)	
C3	0.4580 (2)	1.1052 (2)	0.39010 (12)	0.0467 (4)	
C4	0.5981 (2)	1.0757 (2)	0.32569 (12)	0.0467 (4)	
C5	0.5316 (2)	0.9364 (2)	0.21728 (12)	0.0422 (4)	
C6	0.6983 (2)	0.8127 (2)	0.06154 (12)	0.0429 (4)	
C7	0.5276 (2)	0.7463 (2)	-0.02453 (12)	0.0461 (5)	

supporting information

C8	0.5423 (2)	0.6543 (2)	-0.12949 (12)	0.0476 (4)	
C9	0.7270 (2)	0.6289 (2)	-0.14903 (13)	0.0466 (4)	
C10	0.8956 (2)	0.6898 (2)	-0.06399 (14)	0.0542 (5)	
C11	0.8810(2)	0.7806 (2)	0.04099 (14)	0.0537 (5)	
H1	0.82501	0.98188	0.20614	0.0581*	
H1A	-0.15939	0.81926	0.41485	0.1005*	
H1B	-0.13094	0.64057	0.44679	0.1005*	
H1C	-0.13336	0.67204	0.31868	0.1005*	
Н3	0.51277	1.19737	0.45606	0.0560*	
H4	0.74467	1.14518	0.34934	0.0560*	
H7	0.40353	0.76407	-0.01099	0.0553*	
H8	0.42826	0.60944	-0.18708	0.0571*	
H11	1.01806	0.66940	-0.07773	0.0651*	
H12	0.99377	0.82118	0.09894	0.0644*	

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0396 (5)	0.0613 (7)	0.0579 (6)	0.0170 (5)	0.0001 (4)	0.0103 (5)
O2	0.0425 (6)	0.0708 (7)	0.0618 (7)	0.0301 (5)	-0.0034 (5)	0.0087 (5)
O3	0.0288 (5)	0.0674 (7)	0.0542 (6)	0.0187 (5)	-0.0003 (4)	0.0006 (5)
O4	0.0659 (8)	0.0831 (9)	0.0654 (8)	0.0238 (7)	0.0026 (6)	-0.0111 (7)
05	0.0610(7)	0.0715 (8)	0.0904 (9)	0.0299 (6)	0.0290 (6)	0.0013 (7)
N1	0.0273 (5)	0.0678 (8)	0.0473 (7)	0.0184 (5)	-0.0002 (4)	0.0069 (6)
N2	0.0524 (8)	0.0481 (7)	0.0670 (9)	0.0186 (6)	0.0162 (7)	0.0070 (6)
C1	0.0427 (9)	0.0682 (11)	0.0792 (12)	0.0157 (8)	0.0089 (8)	0.0018 (9)
C2	0.0382 (7)	0.0559 (8)	0.0360 (7)	0.0230 (6)	0.0007 (5)	-0.0013 (6)
C3	0.0389 (7)	0.0549 (8)	0.0425 (7)	0.0184 (6)	-0.0043 (5)	0.0032 (6)
C4	0.0312 (7)	0.0570 (8)	0.0477 (8)	0.0145 (6)	-0.0022 (5)	0.0103 (6)
C5	0.0318 (7)	0.0542 (8)	0.0432 (7)	0.0194 (6)	0.0025 (5)	0.0134 (6)
C6	0.0301 (6)	0.0509 (8)	0.0476 (8)	0.0154 (6)	0.0051 (5)	0.0133 (6)
C7	0.0318 (7)	0.0601 (9)	0.0507 (8)	0.0225 (6)	0.0045 (5)	0.0130 (7)
C8	0.0369 (7)	0.0543 (8)	0.0500 (8)	0.0175 (6)	0.0005 (6)	0.0100 (7)
С9	0.0399 (7)	0.0435 (8)	0.0553 (8)	0.0151 (6)	0.0115 (6)	0.0110 (6)
C10	0.0334 (7)	0.0630 (9)	0.0693 (10)	0.0233 (7)	0.0100 (7)	0.0101 (8)
C11	0.0306 (7)	0.0705 (10)	0.0599 (9)	0.0217 (7)	0.0005 (6)	0.0103 (7)

Geometric parameters (Å, °)

01—C1	1.448 (2)	C6—C7	1.392 (2)	
O1—C2	1.3224 (18)	C7—C8	1.374 (2)	
O2—C2	1.2029 (19)	C8—C9	1.379 (2)	
O3—C5	1.2177 (18)	C9—C10	1.378 (2)	
O4—N2	1.220 (2)	C10—C11	1.370 (2)	
O5—N2	1.221 (2)	C1—H1A	0.9600	
N1C5	1.363 (2)	C1—H1B	0.9600	
N1C6	1.3980 (18)	C1—H1C	0.9600	
N2—C9	1.459 (2)	С3—Н3	0.9300	

supporting information

N1—H1	0.8600	C4—H4	0.9300
C2—C3	1.488 (2)	С7—Н7	0.9300
C3—C4	1.318 (2)	C8—H8	0.9300
C4—C5	1.480 (2)	C10—H11	0.9300
C6—C11	1.395 (2)	C11—H12	0.9300
	1.590 (2)		0.9500
01…03	3.1615 (14)	C1····C2 ^{ix}	3.595 (2)
O1…O5 ⁱ	3.1218 (17)	C2…O3	2.7201 (17)
O1···C3 ⁱⁱ	3.3877 (18)	C2…C1 ^{ix}	3.595 (2)
O1···C4 ⁱⁱ	3.3565 (18)	C3…O1 ⁱⁱ	3.3877 (18)
O2…C9 ⁱⁱⁱ	3.1785 (18)	C3…C3 ⁱⁱ	3.400 (2)
O2…O3	3.1114 (16)	C4…O1 ⁱⁱ	3.3565 (18)
O2…N1 ^{iv}	2.9467 (17)	C5····O4 ⁱ	3.363 (2)
O2···N2 ⁱⁱⁱ	2.9652 (17)	C6···C8 ⁱ	3.523 (2)
O2…O5 ⁱⁱⁱ	3.1282 (18)	C7…O3	2.8983 (17)
O3…O1	3.1615 (14)	C8····C6 ⁱ	3.523 (2)
O3…C11 ^{iv}	3.3020 (19)	C9····O2 ⁱⁱⁱ	3.1785 (18)
Q3…C7	2.8983 (17)	C11···C11 ^{vii}	3.404 (2)
03…02	3.1114 (16)	C11···O3 ^{viii}	3.3020 (19)
03…C2	2.7201 (17)	C2···H1A ^{ix}	2.9000
$O3 \cdots N2^{i}$	3.1522 (17)	C5…H7	2.7800
O4···C5 ⁱ	3.363 (2)	H1…O2 ^{viii}	2.1100
O4···C1 ^v	3.116 (3)	H1···H4	2.2000
05…01 ⁱ	3 1218 (17)	H1H12	2 3100
0502.	3 1282 (18)	H1A····O2	2,4900
05···C1 ⁱ	3.089 (3)	H1A····O4 ^v	2.8700
01···H4 ⁱⁱ	2,8700	H1A····C2 ^{ix}	2,9000
O2···H1C	2.7900	H1C···O2	2.7900
02···H1A	2,4900	$H1C\cdots O4^{v}$	2.8600
$O2 \cdots H12^{iv}$	2.8300	$H1C\cdots O5^{i}$	2.6900
O2····H1 ^{iv}	2 1100	H1C···H8 ^v	2.5400
O2····H4 ^{iv}	2.8500	H3···O4 ^x	2.9000
O3···H12 ^{iv}	2,4500	H4····O ² ^{viii}	2.8500
O3···H7	2 3300	H4···H1	2 2000
$O4 \cdots H1 A^{v}$	2.8700	H4…O1 ⁱⁱ	2.8700
$O4\cdots H1C^{v}$	2.8600	H4···O5 ^{vii}	2 7000
$O4\cdots H3^{vi}$	2.9000	H7···O3	2.3300
04H8	2.9000	H7C5	2.3300
O5…H11	2.1000	H7···H11 ^{iv}	2 4900
05···H1C ⁱ	2.6900	H8…O4	2.4600
$05 \cdot H^{vii}$	2.0900	$H_{0} = 0$	2.5400
N1…O2 ^{viii}	2.9467 (17)	H1105	2.4400
N2…O2 ⁱⁱⁱ	2.9 107 (17)	H11···H7 ^{viii}	2 4900
N2O3 ⁱ	2.9032(17) 3 1522 (17)		2.4900
$C1 \cdots O4^{v}$	3.1322 (17)	$H12 \cdots O3^{viii}$	2.0500
$C_1 \cdots O_7$	3 089 (3)	H12.05	2.4300
01 05	5.007 (5)	1112 111	2.3100
C1—O1—C2	116.39 (13)	C8—C9—C10	121.14 (14)

C5—N1—C6	128.61 (13)	C9—C10—C11	119.34 (14)
O4—N2—O5	123.51 (15)	C6—C11—C10	120.46 (14)
O4—N2—C9	118.66 (14)	01—C1—H1A	109.00
O5—N2—C9	117.81 (14)	O1—C1—H1B	109.00
C5—N1—H1	116.00	01—C1—H1C	109.00
C6—N1—H1	116.00	H1A—C1—H1B	109.00
O2—C2—C3	124.08 (13)	H1A—C1—H1C	109.00
O1—C2—O2	124.52 (14)	H1B—C1—H1C	109.00
O1—C2—C3	111.18 (12)	С2—С3—Н3	117.00
C2—C3—C4	125.07 (13)	C4—C3—H3	117.00
C3—C4—C5	122.68 (14)	C3—C4—H4	119.00
O3—C5—C4	122.79 (13)	C5—C4—H4	119.00
N1—C5—C4	113.42 (13)	С6—С7—Н7	120.00
O3—C5—N1	123.79 (13)	С8—С7—Н7	120.00
C7—C6—C11	119.37 (13)	С7—С8—Н8	120.00
N1—C6—C7	122.98 (14)	С9—С8—Н8	120.00
N1-C6-C11	117.58 (13)	C9—C10—H11	120.00
C6—C7—C8	119.98 (14)	C11—C10—H11	120.00
C7—C8—C9	119.67 (14)	C6—C11—H12	120.00
N2-C9-C10	119.33 (14)	C10-C11-H12	120.00
N2—C9—C8	119.49 (13)		
C1 O1 C2 O2	4.0.(2)	C^2 C^4 C^5 O^2	4 5 (2)
C1 = 01 = C2 = 02	4.0(2)	$C_{3} = C_{4} = C_{5} = 0_{3}$	4.3(2)
$C_1 = 0_1 = 0_2 = 0_3$	1/6.62(15)	$C_3 = C_4 = C_3 = N_1$	-176.21(14)
$C_5 N_1 C_6 C_{11}$	17.9(2)	NI = C0 = C7 = C8	1/3.40(14)
$C_{\text{S}} = N_{\text{S}} = C_{\text{S}} = C_{\text{S}}$	-105.10(14)	$C_{11} = C_{0} = C_{11} = C_{10}$	-1.0(2)
$C_{0} = N_{1} = C_{2} = C_{3}$	4.5 (2)	$NI = C_0 = C_{11} = C_{10}$	-1/5.18(13)
$C_0 = N_1 = C_3 = C_4$	-1/4.83(13)	$C_{}^{}C_{}^{0}C_{$	2.0(2)
05 - N2 - C9 - C10	-12.0(2)	$C_{0} - C_{1} - C_{0} - C_{0}$	-0.2(2)
05 - N2 - C9 - C8	165.51 (14)	C/-C8-C9-N2	-1/5./8(13)
04—N2—C9—C10	169.43 (14)	C/=C8=C9=C10	1.7(2)
04 - N2 - C9 - C8	-13.0(2)	$N_2 - C_9 - C_{10} - C_{11}$	1/6.17 (13)
01 - 02 - 03 - 04	90.27 (17)		-1.3(2)
02-C2-C3-C4	-94.83 (19)	C9—C10—C11—C6	-0.5 (2)
C2—C3—C4—C5	1.5 (2)		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) -*x*+1, -*y*+2, -*z*; (iv) *x*-1, *y*, *z*; (v) -*x*, -*y*+1, -*z*; (vi) *x*, *y*-1, *z*-1; (vii) -*x*+2, -*y*+2, -*z*; (viii) *x*+1, *y*, *z*; (ix) -*x*, -*y*+2, -*z*+1; (x) *x*, *y*+1, *z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1····O2 ^{viiii}	0.86	2.11	2.9467 (17)	164
С7—Н7…О3	0.93	2.33	2.8983 (17)	119
C11—H12····O3 ^{viii}	0.93	2.45	3.3020 (19)	152

Symmetry code: (viii) *x*+1, *y*, *z*.