metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[1,3-bis(2,4,6-trimethylphenyl)-2,3dihvdro-1H-imidazol-2-vlidene]dinitrosyl(tetrahydroborato- $\kappa^2 H, H'$)tungsten(0)

Javier Fraga-Hernández, Olivier Blacque* and Heinz Berke

Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

Correspondence e-mail: oblacque@aci.uzh.ch

Received 6 December 2010; accepted 14 December 2010

Key indicators: single-crystal X-ray study; T = 183 K; mean σ (C–C) = 0.012 Å; R factor = 0.037; wR factor = 0.113; data-to-parameter ratio = 20.3.

In the title paramagnetic 19-electron neutral complex, $[W(BH_4)(C_{21}H_{24}N_2)_2(NO)_2]$, the W(0) atom is coordinated 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene bv two (IMes) carbene ligands, two NO groups and two H atoms of an η^2 -tetrahydroborate ligand. Depending on the number of coordination sites (n) assigned to the BH_4^- ligand, the coordination geometry of the W atom may either be described as approximately trigonal-bipyramidal (n = 1) or as very distorted octahedral with the bridging H atoms filling two coordination positions (n = 2). In the latter case, the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å) form one octahedral plane, with mutually trans-oriented carbene ligands. In the crystal, molecules are connected via $C-H\cdots O$ interactions.

Related literature

For the synthesis, characterization and reactivity of dinitrosyl tungsten complexes in various oxidation states, see: Fraga-Hernández (2007). For a related complex with the W(NO)(η^2 -BH₄) core, see: van der Zeijden et al. (1991). For tungsten complexes with N-heterocyclic (NHC) carbenes, see: Nonnenmacher et al. (2005); Hahn et al. (2005); Wu et al. (2007); Fraga-Hernández et al. (2011). For an overview of the first organometallic nitrosyls known, see: Enemark & Feltham (1974); Richter-Addo & Legzdins (1988); Berke & Burger (1994).

V = 4139.2 (4) Å³

Mo $K\alpha$ radiation $\mu = 2.83 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.18 \text{ mm}$

48806 measured reflections

9946 independent reflections

5931 reflections with $L > 2\sigma(I)$

Z = 4

T = 183 K

 $R_{\rm int} = 0.072$

Experimental

Crystal data
$W(BH_4)(C_{21}H_{24}N_2)_2(NO)_2]$
$M_r = 867.56$
Monoclinic, $P2_1/c$
a = 24.7322 (13) Å
b = 11.2183 (5) Å
c = 15.0522 (8) Å
$\beta = 97.643 \ (6)^{\circ}$

Data collection

Stoe IPDS diffractometer Absorption correction: numerical (Coppens et al., 1965) $T_{\min} = 0.551, T_{\max} = 0.725$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.113$	independent and constrained
S = 1.02	refinement
9946 reflections	$\Delta \rho_{\rm max} = 2.07 \text{ e } \text{\AA}^{-3}$
490 parameters	$\Delta \rho_{\rm min} = -0.60 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$C2-H2\cdots O1^i$	0.93	2.32	3.040 (8)	134
Symmetry code: (i)	$x, -y - \frac{1}{2}, z - \frac{1}{2}$			

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 1999); cell refinement: CELL in IPDS Software; data reduction: INTE-GRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Financial support by the University of Zürich is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2374).

References

- Berke, H. & Burger, P. (1994). Comments Inorg. Chem. 16, 279-312.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035– 1038.
- Enemark, J. H. & Feltham, R. D. (1974). Coord. Chem. Rev. 13, 339-406.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fraga-Hernández, J. (2007). PhD thesis, University of Zürich, Switzerland.
- Fraga-Hernández, J., Blacque, O. & Berke, H. (2011). Acta Cryst. E67, m31. Hahn, F. E., Langenhahn, V. & Pape, T. (2005). Chem. Commun. pp. 5390– 5392.
- Nonnenmacher, M., Kunz, D., Rominger, F. & Oeser, T. (2005). J. Organomet. Chem. 690, 5647–5653.
- Richter-Addo, G. B. & Legzdins, P. (1988). Chem. Rev. 88, 991-1010.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
 - Stoe & Cie (1999). IPDS Software. Stoe & Cie, Darmstadt, Germany.
 - Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
 - Wu, F., Dioumaev, V. K., Szalda, D. J., Hanson, J. & Bullock, R. M. (2007). Organometallics, 26, 5079–5090.
 - Zeijden, A. A. H. van der, Shklover, V. & Berke, H. (1991). Inorg. Chem. 30, 4393-4396.

supporting information

Acta Cryst. (2011). E67, m94–m95 [https://doi.org/10.1107/S1600536810052426]

Bis[1,3-bis(2,4,6-trimethylphenyl)-2,3-dihydro-1*H*-imidazol-2-ylidene]dinitrosyl(tetrahydroborato- $\kappa^2 H, H'$)tungsten(0)

Javier Fraga-Hernández, Olivier Blacque and Heinz Berke

S1. Comment

In the course of our efforts on the synthesis of novel dinitrosyl hydride and dihydride tungsten derivatives bearing sterically demanding and highly donating phosphine ligands or N-heterocyclic (NHC) carbene ligands (Fraga-Hernández, 2007), the title compound, C₄₂H₅₂BN₆O₂W, (I), was synthesized as an intermediate species.

The reaction of the recently reported compound $W(NO)_2Cl_2(IMes)_2$ (Fraga-Hernández, 2011) with [NBu₄][BH₄] in THF furnished the title complex $W(NO)_2(IMes)_2(\eta^2-BH_4)$. The one-electron reduction of the starting material to yield the title paramagnetic 19-electron neutral complex can be explained considering that [NBu₄][BH₄] can act as a hydride-transfer reagent, as well as a reducing agent. In (I), the oxidation number of the W atom is formally –I. Nevertheless, a density functional theory (DFT) study combined with EPR measurements (Fraga-Hernández, 2007) indicated that the unpaired electron is delocalized on the two N atoms of the nitrosyl groups (and not on the metal center) which become equivalent and the oxidation number of the W atom is in fact 0, considering BH₄⁻ and (NO)₂⁺.

The W metal center is coordinated by two 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) carbene ligands, two NO groups and two H atoms of an η^2 -tetrahydroborate ligand (Fig. 1). Depending on the number of coordination sites (n) occupied by the BH $_{4}$ ligand, the molecular structure of the title compound consists of an approximately trigonal bipyramidal arrangement of the ligands around the W atom (n = 1) or might be referred to a very distorted octahedral environment around the W center with the bridging H atoms filling two coordination positions (n = 2). In the latter case, the *trans* carbene ligands occupy axial positions, and the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å) form the equatorial plane of a *pseudo* octahedron. The two nitrosyl ligands with a N(2)—W(1)—N(1) bond angle of 100.4 (2)° are located *trans* to the bridging borohydride moiety. The N(1)—W(1)—C(1) and N(2)—W(1)—C(1)bond angles show that the carbene ligands are bent toward the bridging borohydride group (98.5 (2) and 96.1 (2) $^{\circ}$) and away from the NO groups. This bending $[C(1)-W(1)-C(22) = 158.4 (2)^{\circ}]$ may be due to the electronic effects caused by the strong π -acceptor groups. In comparison with the dichlorido compound W(NO)₂Cl₂(IMes)₂ (Fraga-Hernández, 2011) where the five-membered rings of the carbene ligands are almost perpendicular to each other, they would be coplanar in (I) without the bending. The W—N—O bond angles $[177.1 (5)^{\circ}$ for O(1)—N(1)—W(1), and 176.0 (5)^{\circ} for O(2)—N(2)—W(1)] are almost linear and indicate the coordination in form of nitrosonium groups (NO⁺). In the structure the two NO ligands are equivalent and the W-N-O bond angles are not far from linearity (average of 176.6°). In the crystal structure, molecules are connected via C-H···O interactions (Table 1).

S2. Experimental

A mixture of $[W(NO)_2Cl_2(IMes)_2]$ (90 mg, 0.097 mmol) (Fraga-Hernández, 2011) and $[NBu_4]BH_4$ (49.7 mg, 0.195 mmol) in 10 ml ether and 5 ml THF was stirred for 21 h. After this time, the black green solution was filtered over celite and dried under vacuum. The residue was extracted with 15 ml of ether/pentane (1:2) and filtered over celite again. Removal

of the solvent left a dark green solid, which was extracted with pentane (3 *x* 8 ml) and dried under vacuum, affording 62 mg of the title compound (0.071 mmol, 74%). Green crystals were obtained from a pentane solution at room temperature. IR (ATR, 22°C, cm⁻¹): 1597 (NO), 1537 (NO). Elemental analysis (%) calculated for $C_{42}H_{52}BN_6O_2W$: C (58.14), H (6.04), N (9.68); found: C (58.40), H (5.86), N (9.78).

S3. Refinement

The H atoms of the tetrahydroborate group were located in difference Fourier maps. Their coordinates were freely refined, except for H1D, with $U_{iso}(H) = 1.2U_{eq}(B)$. All other H positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

View of the title compound showing the labeling of the non-H atoms and 30% probability ellipsoids.

Bis[1,3-bis(2,4,6-trimethylphenyl)-2,3-dihydro-1*H*-imidazol-2- ylidene]dinitrosyl(tetrahydroborato- $\kappa^2 H, H'$)tungsten(0)

Crystal data

$[W(BH_4)(C_{24}H_{24}N_2)(NO)_2]$	F(000) = 1764
$M_r = 867.56$	$D_{\rm x} = 1.392 {\rm Mg m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 7998 reflections
a = 24.7322 (13) Å	$\theta = 2.5 - 28^{\circ}$
b = 11.2183(5)Å	$\mu = 2.83 \text{ mm}^{-1}$
c = 15.0522 (8) Å	T = 183 K
$\beta = 97.643 \ (6)^{\circ}$	Irregular, dark green
V = 4139.2 (4) Å ³	$0.3 \times 0.2 \times 0.18 \text{ mm}$
Z = 4	

Data collection

diffractometer99Radiation source: fine-focus sealed tube59Graphite monochromator R_{ii} φ oscillation scan θ_{rr} Absorption correction: numerical $h =$ (Coppens et al., 1965) $k =$ $T_{min} = 0.551, T_{max} = 0.725$ $l =$ Refinement $l =$	931 reflections with $I > 2\sigma(I)$ $P_{int} = 0.072$ $P_{max} = 28.0^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $= -32 \rightarrow 32$ $= 0 \rightarrow 14$ $= 0 \rightarrow 19$
Refinement on F^2 HLeast-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $w(R(F^2)) = 0.113$ w $S = 1.02$ (ΔP) 9946 reflections ΔP 490 parameters ΔP 0 restraints ΔP	I atoms treated by a mixture of independent and constrained refinement $v = 1/[\sigma^2(F_o^2) + (0.0497P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $\Delta/\sigma)_{max} = 0.001$ $\varphi_{max} = 2.07 \text{ e } \text{Å}^{-3}$ $\varphi_{min} = -0.60 \text{ e } \text{Å}^{-3}$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates an	d isotropic or e	quivalent isotropi	c displacement	parameters	$(Å^2)$)
----------------------------------	------------------	--------------------	----------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
W1	0.252596 (11)	-0.46192 (2)	0.731784 (16)	0.03782 (8)	
B1	0.2475 (4)	-0.5990 (9)	0.6041 (6)	0.058 (2)	
H1A	0.257 (3)	-0.567 (7)	0.539 (5)	0.07*	
H1B	0.208 (3)	-0.538 (8)	0.629 (5)	0.07*	
H1C	0.244 (3)	-0.698 (8)	0.618 (5)	0.07*	
H1D	0.2798	-0.5632	0.6564	0.07*	
N1	0.3114 (2)	-0.4285 (5)	0.8134 (3)	0.0415 (12)	
01	0.34901 (19)	-0.4039 (4)	0.8701 (3)	0.0474 (11)	
N2	0.2018 (2)	-0.3667 (5)	0.7721 (3)	0.0433 (13)	
O2	0.1703 (2)	-0.3013 (5)	0.8032 (3)	0.0550 (13)	
N3	0.3202 (2)	-0.3248 (5)	0.5926 (3)	0.0419 (12)	
N4	0.2357 (2)	-0.2813 (5)	0.5619 (3)	0.0425 (13)	
C1	0.2711 (3)	-0.3409 (5)	0.6230 (4)	0.0370 (14)	
C2	0.3145 (3)	-0.2579 (6)	0.5145 (4)	0.0492 (17)	
H2	0.3423	-0.2353	0.4821	0.059*	
C3	0.2621 (3)	-0.2324 (7)	0.4950 (4)	0.0498 (18)	
H3	0.246	-0.1896	0.4456	0.06*	
C4	0.3720 (3)	-0.3646 (6)	0.6380 (4)	0.0447 (15)	
C5	0.3978 (3)	-0.4602 (8)	0.6032 (5)	0.0566 (17)	
C6	0.4463 (4)	-0.4984 (8)	0.6517 (7)	0.072 (2)	
H6	0.4642	-0.5635	0.6308	0.086*	
C7	0.4687 (3)	-0.4438 (8)	0.7288 (6)	0.069 (2)	

C8	0.4441 (3)	-0.3442 (8)	0.7580 (5)	0.059 (2)
H8	0.4604	-0.3042	0.8087	0.071*
C9	0.3949 (3)	-0.3021 (7)	0.7126 (5)	0.0484 (16)
C10	0.3752 (4)	-0.5222 (8)	0.5180 (6)	0.075 (2)
H10A	0.3969	-0.5029	0.4718	0.112*
H10B	0.3383	-0.4967	0.5002	0.112*
H10C	0.3758	-0.6068	0.5277	0.112*
C11	0.5211 (4)	-0.4909(10)	0.7822 (8)	0.105 (4)
H11A	0.5151	-0.5703	0.8026	0.157*
H11B	0.5315	-0.4401	0.8329	0.157*
H11C	0.5496	-0.4919	0.7447	0.157*
C12	0.3676(3)	-0.1923(7)	0.7442(5)	0.0548(18)
H12A	0 3332	-0.2141	0.7627	0.082*
H12R	0.3616	-0.1356	0.6962	0.082*
H12C	0.3906	-0.1576	0.7939	0.082*
C13	0.1794(3)	-0.2590(7)	0.7555 0.5674 (4)	0.062
C14	0.1395 (3)	-0.3205(7)	0.5074(4) 0.5122(5)	0.0470(10)
C14	0.1395(3) 0.0857(3)	-0.2807(0)	0.5122(5) 0.5158(6)	0.0309(19)
U15	0.0837 (3)	-0.3312	0.3138 (0)	0.071 (2)
C16	0.0383	-0.2005(0)	0.4799	0.085°
C10 C17	0.0707(3) 0.1120(4)	-0.2003(9) -0.1411(8)	0.5702(7)	0.070(2)
U17	0.1120 (4)	-0.1411(6)	0.0230 (3)	0.008 (2)
П1/ С19	0.1020	-0.0814	0.0017	0.081°
C10	0.1005(3)	-0.1009(7)	0.0220(3)	0.0341(18)
U19	0.1535 (3)	-0.4164 (8)	0.4485 (5)	0.066 (2)
HI9A	0.1337	-0.4879	0.4582	0.099*
HI9B	0.1919	-0.4322	0.4589	0.099*
HI9C	0.1436	-0.39	0.3878	0.099*
C20	0.0121 (4)	-0.1635 (13)	0.5706 (9)	0.117 (4)
H20A	-0.0106	-0.2331	0.5681	0.176*
H20B	0.0009	-0.114	0.5194	0.176*
H20C	0.0089	-0.1197	0.6244	0.176*
C21	0.2104 (3)	-0.0944 (7)	0.6778 (5)	0.062 (2)
H21A	0.23	-0.1443	0.7229	0.092*
H21B	0.1939	-0.0296	0.7061	0.092*
H21C	0.2351	-0.0633	0.6395	0.092*
N5	0.2647 (3)	-0.7156 (5)	0.8370 (3)	0.0529 (15)
N6	0.1797 (3)	-0.6770 (6)	0.7943 (4)	0.0559 (16)
C22	0.2305 (3)	-0.6296 (6)	0.7970 (4)	0.0448 (16)
C23	0.2356 (5)	-0.8127 (8)	0.8591 (5)	0.077 (3)
H23	0.2498	-0.8814	0.8878	0.092*
C24	0.1834 (4)	-0.7903 (8)	0.8319 (5)	0.074 (3)
H24	0.1544	-0.8414	0.8371	0.089*
C25	0.3226 (3)	-0.7031 (6)	0.8652 (4)	0.0523 (18)
C26	0.3584 (4)	-0.7573 (7)	0.8163 (5)	0.060 (2)
C27	0.4138 (4)	-0.7520 (8)	0.8493 (5)	0.067 (2)
H27	0.4389	-0.7861	0.816	0.08*
C28	0.4325 (4)	-0.6977 (8)	0.9301 (5)	0.063 (2)
C29	0.3953 (3)	-0.6464 (7)	0.9765 (4)	0.058 (2)

H29	0.4078	-0.6094	1.0307	0.07*
C30	0.3397 (3)	-0.6459 (6)	0.9476 (4)	0.0510 (18)
C31	0.3403 (4)	-0.8205 (9)	0.7283 (6)	0.081 (3)
H31A	0.3033	-0.7989	0.7068	0.122*
H31B	0.3426	-0.9052	0.7374	0.122*
H31C	0.3636	-0.7976	0.6851	0.122*
C32	0.4925 (4)	-0.7018 (10)	0.9671 (6)	0.084 (3)
H32A	0.5136	-0.7165	0.9191	0.127*
H32B	0.4987	-0.7646	1.0106	0.127*
H32C	0.5032	-0.627	0.995	0.127*
C33	0.2994 (4)	-0.5898 (7)	1.0002 (4)	0.062 (2)
H33A	0.3184	-0.5494	1.0513	0.093*
H33B	0.2763	-0.6503	1.0201	0.093*
H33C	0.2776	-0.5335	0.9632	0.093*
C34	0.1293 (3)	-0.6155 (8)	0.7676 (5)	0.0575 (19)
C35	0.0990 (4)	-0.6413 (9)	0.6850 (6)	0.074 (3)
C36	0.0511 (4)	-0.5790 (11)	0.6639 (7)	0.089 (3)
H36	0.0302	-0.5941	0.609	0.106*
C37	0.0321 (4)	-0.4949 (11)	0.7199 (8)	0.092 (3)
C38	0.0629 (4)	-0.4782 (10)	0.8025 (7)	0.082 (3)
H38	0.0504	-0.4247	0.8423	0.098*
C39	0.1115 (3)	-0.5372 (10)	0.8290 (5)	0.068 (2)
C40	0.1164 (4)	-0.7322 (10)	0.6218 (6)	0.089 (3)
H40A	0.1178	-0.8093	0.6497	0.133*
H40B	0.1518	-0.7118	0.6071	0.133*
H40C	0.0907	-0.7337	0.5681	0.133*
C41	-0.0214 (5)	-0.4306 (13)	0.6941 (10)	0.129 (5)
H41A	-0.0506	-0.4773	0.7121	0.193*
H41B	-0.0274	-0.4193	0.6303	0.193*
H41C	-0.0202	-0.3545	0.7234	0.193*
C42	0.1424 (4)	-0.5191 (10)	0.9213 (5)	0.080 (3)
H42A	0.1396	-0.5896	0.9565	0.12*
H42B	0.1271	-0.4526	0.9496	0.12*
H42C	0.18	-0.5035	0.9165	0.12*

Atomic displacement parameters (A^2)	Atomic	displacement	parameters	$(Å^2)$
--	--------	--------------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
W1	0.04481 (14)	0.03601 (12)	0.03189 (11)	-0.00153 (16)	0.00228 (8)	-0.00023 (13)
B1	0.080 (7)	0.055 (5)	0.037 (4)	-0.007 (5)	0.000 (4)	-0.012 (4)
N1	0.051 (3)	0.037 (3)	0.037 (3)	-0.004(2)	0.010 (2)	0.003 (2)
01	0.053 (3)	0.051 (3)	0.036 (2)	-0.005 (2)	-0.005 (2)	-0.002 (2)
N2	0.045 (3)	0.046 (3)	0.036 (3)	-0.012 (3)	-0.004 (2)	0.000(2)
02	0.053 (3)	0.063 (3)	0.050 (3)	0.011 (3)	0.012 (2)	-0.007(2)
N3	0.045 (3)	0.042 (3)	0.039 (3)	0.003 (2)	0.007 (2)	0.004 (2)
N4	0.052 (3)	0.042 (3)	0.032 (3)	0.006 (3)	0.002 (2)	0.004 (2)
C1	0.042 (4)	0.035 (3)	0.034 (3)	0.004 (3)	0.006 (3)	0.001 (2)
C2	0.062 (5)	0.049 (4)	0.038 (3)	0.002 (4)	0.015 (3)	0.008 (3)

supporting information

C3	0.059 (5)	0.055 (5)	0.034 (3)	0.005 (4)	0.003 (3)	0.010 (3)
C4	0.043 (4)	0.047 (4)	0.045 (3)	0.004 (3)	0.011 (3)	0.009 (3)
C5	0.053 (4)	0.049 (4)	0.070 (4)	0.001 (4)	0.017 (3)	-0.002 (4)
C6	0.055 (5)	0.058 (5)	0.105 (7)	0.012 (4)	0.020 (5)	0.011 (4)
C7	0.046 (4)	0.062 (6)	0.098 (6)	0.003 (4)	0.006 (4)	0.017 (5)
C8	0.045 (4)	0.069 (5)	0.063 (4)	-0.009 (4)	0.000 (3)	0.012 (4)
C9	0.045 (4)	0.046 (4)	0.054 (4)	-0.002 (3)	0.009 (3)	0.006 (3)
C10	0.083 (6)	0.061 (6)	0.084 (6)	0.010 (5)	0.023 (5)	-0.020 (5)
C11	0.051 (5)	0.100 (9)	0.154 (10)	0.011 (5)	-0.019 (5)	0.037 (7)
C12	0.059 (5)	0.047 (4)	0.057 (4)	-0.011 (4)	0.000 (3)	-0.005 (3)
C13	0.048 (4)	0.051 (4)	0.043 (4)	0.014 (3)	0.004 (3)	0.012 (3)
C14	0.051 (4)	0.062 (5)	0.054 (4)	0.005 (4)	-0.005 (3)	0.003 (4)
C15	0.045 (5)	0.088 (7)	0.076 (5)	0.007 (4)	-0.007 (4)	0.005 (5)
C16	0.049 (5)	0.084 (7)	0.093 (6)	0.015 (5)	0.004 (4)	0.004 (5)
C17	0.081 (6)	0.063 (5)	0.062 (5)	0.026 (5)	0.021 (4)	0.002 (4)
C18	0.060 (5)	0.050 (4)	0.053 (4)	0.013 (4)	0.010(3)	0.005 (3)
C19	0.069 (5)	0.059 (5)	0.065 (5)	-0.002 (4)	-0.013 (4)	-0.011 (4)
C20	0.059 (6)	0.133 (12)	0.160 (11)	0.030 (7)	0.016 (6)	0.008 (9)
C21	0.073 (5)	0.046 (4)	0.067 (5)	0.009 (4)	0.014 (4)	-0.009 (4)
N5	0.075 (4)	0.038 (3)	0.042 (3)	-0.005 (3)	-0.007 (3)	0.010(2)
N6	0.072 (4)	0.049 (4)	0.044 (3)	-0.022 (3)	-0.004 (3)	0.007 (3)
C22	0.064 (4)	0.038 (4)	0.033 (3)	-0.012 (3)	0.007 (3)	0.001 (3)
C23	0.118 (8)	0.051 (5)	0.055 (5)	-0.024 (5)	-0.009 (5)	0.016 (4)
C24	0.096 (7)	0.059 (5)	0.062 (5)	-0.039 (5)	-0.006 (5)	0.012 (4)
C25	0.067 (5)	0.039 (4)	0.046 (4)	-0.004 (4)	-0.009(3)	0.009 (3)
C26	0.081 (6)	0.046 (4)	0.048 (4)	0.013 (4)	-0.014 (4)	-0.002 (3)
C27	0.083 (6)	0.060 (5)	0.054 (4)	0.020 (5)	-0.001 (4)	0.004 (4)
C28	0.073 (5)	0.060 (5)	0.051 (4)	0.011 (4)	-0.011 (4)	0.007 (4)
C29	0.080 (6)	0.051 (5)	0.038 (4)	-0.007 (4)	-0.013 (4)	0.006 (3)
C30	0.076 (5)	0.039 (4)	0.035 (3)	0.000 (4)	-0.002 (3)	0.007 (3)
C31	0.091 (7)	0.075 (6)	0.070 (5)	0.023 (5)	-0.017 (5)	-0.024 (5)
C32	0.077 (6)	0.091 (7)	0.078 (6)	0.011 (6)	-0.014 (5)	0.006 (5)
C33	0.089 (6)	0.060 (5)	0.034 (3)	-0.010 (4)	-0.003 (3)	0.005 (3)
C34	0.051 (4)	0.060 (5)	0.061 (4)	-0.023 (4)	0.005 (3)	0.003 (4)
C35	0.067 (6)	0.083 (7)	0.067 (5)	-0.027 (5)	-0.003 (4)	-0.003 (5)
C36	0.064 (6)	0.110 (9)	0.086 (6)	-0.021 (6)	-0.013 (5)	-0.011 (6)
C37	0.052 (5)	0.101 (9)	0.120 (9)	-0.023 (5)	0.003 (5)	0.007 (7)
C38	0.067 (6)	0.089 (7)	0.094 (6)	-0.029 (6)	0.026 (5)	-0.014 (6)
C39	0.054 (5)	0.086 (6)	0.065 (5)	-0.032 (5)	0.013 (4)	-0.002 (5)
C40	0.085 (7)	0.100 (8)	0.075 (6)	-0.028 (6)	-0.016 (5)	-0.016 (5)
C41	0.068 (7)	0.136 (14)	0.177 (12)	0.001 (7)	-0.001 (7)	0.010 (9)
C42	0.085 (6)	0.104 (8)	0.055 (4)	-0.027 (6)	0.025 (4)	-0.012 (5)

Geometric parameters (Å, °)

W1-N1	1.813 (5)	C20—H20A	0.96
W1—N2	1.814 (6)	C20—H20B	0.96
W1—C1	2.221 (6)	С20—Н20С	0.96

supporting information

W1-C22	2.223 (6)	C21—H21A	0.96
W1—B1	2.451 (8)	C21—H21B	0.96
W1—H1B	1.98 (8)	C21—H21C	0.96
W1—H1D	1.8	N5—C22	1.371 (9)
B1—H1A	1.11 (8)	N5—C23	1.371 (10)
B1—H1B	1.29 (8)	N5—C25	1.443 (10)
B1—H1C	1.13 (9)	N6—C22	1.358 (9)
B1—H1D	1 12	N6-C24	1 389 (10)
N101	1 209 (6)	N6-C34	1.035(10) 1.436(10)
N2-02	1.207(7)	C^{23} C^{24}	1.326(10) 1.324(13)
N3C1	1.267 (7)	C23_H23	0.93
N3_C2	1 385 (8)	C24_H24	0.93
$N_3 = C_2$	1.303(0)	$C_{24} = 1124$	1.368(11)
NA C1	1.440 (8)	$C_{25} = C_{20}$	1.308(11) 1.411(0)
	1.337(0)	$C_{25} = C_{50}$	1.411(9)
N4—C3	1.384 (9)	$C_{20} = C_{21}$	1.595(12)
	1.428 (9)	C20—C31	1.516 (10)
$C_2 = C_3$	1.322 (10)	C27—C28	1.383 (11)
C2—H2	0.93	С27—Н27	0.93
С3—Н3	0.93	C28—C29	1.356 (12)
C4—C9	1.379 (10)	C28—C32	1.515 (12)
C4—C5	1.386 (10)	C29—C30	1.387 (11)
C5—C6	1.386 (11)	С29—Н29	0.93
C5—C10	1.500 (11)	C30—C33	1.492 (11)
C6—C7	1.363 (13)	C31—H31A	0.96
С6—Н6	0.93	C31—H31B	0.96
C7—C8	1.372 (12)	C31—H31C	0.96
C7—C11	1.526 (11)	С32—Н32А	0.96
C8—C9	1.396 (10)	С32—Н32В	0.96
С8—Н8	0.93	C32—H32C	0.96
C9—C12	1.512 (10)	С33—Н33А	0.96
C10—H10A	0.96	С33—Н33В	0.96
C10—H10B	0.96	С33—Н33С	0.96
C10—H10C	0.96	C34—C39	1.387 (12)
C11—H11A	0.96	C34—C35	1.394 (11)
С11—Н11В	0.96	C35—C36	1.377 (14)
С11—Н11С	0.96	C35—C40	1.496 (14)
C12—H12A	0.96	C36—C37	1.387 (15)
C12—H12B	0.96	C36—H36	0.93
C12 $H12D$	0.96	C_{37} C_{38}	1 382 (14)
C12 - C12	1 386 (10)	C_{37} C_{30} C_{41}	1.502(14) 1 512(15)
$C_{13}^{12} = C_{14}^{18}$	1.380(10) 1.380(10)	C_{3}^{28} C_{30}^{20}	1.312(13) 1.284(12)
$C_{13} = C_{18}$	1.389(10) 1.380(11)	$C_{20} = U_{20}$	1.364 (13)
C14 - C13	1.500 (11)	C30 C42	0.95
C14	1.312(11) 1.275(12)	C_{39} C_{42}	1.507 (11)
C15-U15	1.575(15)	C40 - H40A	0.90
	0.93	C40—H40B	0.96
	1.384 (13)	C40—H40C	0.96
C16—C20	1.508 (13)	C41—H41A	0.96
C17—C18	1.382 (11)	C41—H41B	0.96

С17—Н17	0.93	C41—H41C	0.96
C18—C21	1.514 (11)	C42—H42A	0.96
C19—H19A	0.96	C42—H42B	0.96
C19—H19B	0.96	C42—H42C	0.96
C19—H19C	0.96		
N1-W1-N2	100.4 (2)	H19A—C19—H19C	109.5
N1—W1—C1	98.5 (2)	H19B—C19—H19C	109.5
N2—W1—C1	96.1 (2)	C16—C20—H20A	109.5
N1—W1—C22	95.6 (2)	C16—C20—H20B	109.5
N2—W1—C22	97.3 (3)	H20A—C20—H20B	109.5
C1—W1—C22	158.4 (2)	C16—C20—H20C	109.5
N1—W1—B1	127.9 (3)	H20A—C20—H20C	109.5
N2—W1—B1	131.7 (3)	H20B-C20-H20C	109.5
C1—W1—B1	78.4 (3)	C18—C21—H21A	109.5
C22—W1—B1	80.0 (3)	C18—C21—H21B	109.5
N1—W1—H1B	159 (2)	H21A—C21—H21B	109.5
N2—W1—H1B	100 (2)	C18—C21—H21C	109.5
C1-W1-H1B	80(2)	H21A - C21 - H21C	109.5
C22—W1—H1B	81 (2)	$H_{21B} C_{21} H_{21C}$	109.5
N1—W1—H1D	103	$C^{22} = N^{5} = C^{23}$	109.5 110.5(7)
N2—W1—H1D	156	$C_{22} = N_5 = C_{25}$	126.3 (6)
C1 - W1 - H1D	78	$C_{22} = N_5 = C_{25}$	120.5(0) 122.6(7)
C^{22} W1 HID	83	$C_{23} = N_{5} = C_{23}$	122.0(7) 109.7(7)
HIB WI HID	57	$C_{22} = N_0 = C_{24}$	105.7 (7)
W1H1A	120 (4)	$C_{22} = N_0 = C_{34}$	123.0(0) 124.1(7)
HIA BI HIB	120(4)	N6 C22 N5	124.1(7)
$W_1 = P_1 = H_1C$	110(3) 118(4)	N6 C22 W1	104.0(0) 126.8(5)
$W_1 - B_1 - H_1C$	110 (4)	$N_{0} = C_{22} = W_{1}$	120.8(3)
HIA - BI - HIC	121(0) 112(6)	N_{3} C_{22} W_{1} C_{24} C_{23} N_{5}	120.0(3) 107.2(8)
	112 (0)	$C_{24} = C_{23} = N_{3}$	107.3 (8)
	107	$C_{24} - C_{23} - H_{23}$	120.5
	90	$N_{3} = C_{23} = H_{23}$	120.3 107.0(7)
nic—bi—nid	107	$C_{23} = C_{24} = N_0^2$	107.9(7)
OI = NI = WI	1//.1(5)	C23—C24—H24	120.1
02 - N2 - W1	1/0.0 (5)	N0 - C24 - H24	120.1
CI = N3 = C2	111.2 (5)	$C_{26} = C_{25} = C_{30}$	122.4 (7)
C1 - N3 - C4	125.0 (5)	$C_{20} = C_{25} = N_5$	119.1 (6)
$C_2 = N_3 = C_4$	123.7 (5)	$C_{30} = C_{25} = N_5$	118.2 (/)
CI - N4 - C3	111.3 (5)	$C_{25} = C_{26} = C_{27}$	117.7(7)
CI—N4—C13	126.3 (5)	$C_{25} = C_{26} = C_{31}$	122.8 (8)
C3—N4—C13	122.1 (5)	C27—C26—C31	119.5 (8)
N4—C1—N3	103.3 (5)	C28—C27—C26	122.0 (8)
N4—C1—W1	128.5 (5)	C28—C27—H27	119
N3—C1—W1	127.4 (4)	C26—C27—H27	119
C3—C2—N3	107.0 (6)	C29—C28—C27	118.0 (8)
C3—C2—H2	126.5	C29—C28—C32	121.4 (7)
N3—C2—H2	126.5	C27—C28—C32	120.5 (8)
C2—C3—N4	107.3 (6)	C28—C29—C30	123.5 (7)

C_2 C_2 U_2	106.4	C20 C20 U20	110.2
C2—C3—H3	126.4	C28—C29—H29	118.2
N4—C3—H3	126.4	C30—C29—H29	118.2
C9—C4—C5	122.8 (6)	C29—C30—C25	116.3 (7)
C9—C4—N3	118.2 (6)	C29—C30—C33	122.7 (6)
C5—C4—N3	119.0 (6)	C25—C30—C33	121.0 (7)
C6—C5—C4	116.7 (7)	С26—С31—Н31А	109.5
C6—C5—C10	120.3 (8)	C26—C31—H31B	109.5
C4—C5—C10	122.9 (7)	H31A—C31—H31B	109.5
C7—C6—C5	122.3 (8)	С26—С31—Н31С	109.5
С7—С6—Н6	118.9	H31A—C31—H31C	109.5
С5—С6—Н6	118.9	H31B—C31—H31C	109.5
C6—C7—C8	119.5 (8)	C28—C32—H32A	109.5
C6—C7—C11	120.9 (9)	C28—C32—H32B	109.5
C8—C7—C11	119.7 (9)	H32A—C32—H32B	109.5
C7—C8—C9	120.8 (8)	C28—C32—H32C	109.5
С7—С8—Н8	119.6	H32A—C32—H32C	109.5
С9—С8—Н8	119.6	H32B—C32—H32C	109.5
C4—C9—C8	117.6 (7)	С30—С33—Н33А	109.5
C4—C9—C12	121.2 (6)	C30—C33—H33B	109.5
C8-C9-C12	121.2(7)	H33A—C33—H33B	109.5
C5-C10-H10A	109 5	C30—C33—H33C	109.5
C_5 — C_{10} — H_{10B}	109.5	H33A_C33_H33C	109.5
H10A - C10 - H10B	109.5	H33B_C33_H33C	109.5
C_{5} C_{10} H_{10}	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.5
	109.5	$C_{39} = C_{34} = C_{35}$	123.1(0) 117.2(7)
H10R C10 H10C	109.5	$C_{35} = C_{34} = N_0$	117.2(7) 110.6(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{33} = C_{34} = N_0$	119.0(0) 116.2(0)
C7 C11 U11D	109.5	$C_{30} = C_{33} = C_{34}$	110.5 (9)
C/CIIHIIB	109.5	$C_{30} = C_{35} = C_{40}$	120.8 (8)
HIIA—CII—HIIB	109.5	$C_{34} - C_{35} - C_{40}$	122.9 (9)
C/—CII—HIIC	109.5	$C_{35} = C_{36} = C_{37}$	123.7 (9)
HIIA—CII—HIIC	109.5	С35—С36—Н36	118.1
H11B—C11—H11C	109.5	С37—С36—Н36	118.1
C9—C12—H12A	109.5	C38—C37—C36	116.6 (10)
C9—C12—H12B	109.5	C38—C37—C41	121.7 (12)
H12A—C12—H12B	109.5	C36—C37—C41	121.5 (11)
C9—C12—H12C	109.5	C37—C38—C39	123.3 (10)
H12A—C12—H12C	109.5	С37—С38—Н38	118.4
H12B—C12—H12C	109.5	С39—С38—Н38	118.4
C14—C13—C18	121.7 (7)	C38—C39—C34	116.8 (8)
C14—C13—N4	120.0 (6)	C38—C39—C42	121.0 (9)
C18—C13—N4	117.9 (6)	C34—C39—C42	122.3 (9)
C15—C14—C13	117.7 (8)	С35—С40—Н40А	109.5
C15—C14—C19	120.3 (7)	C35—C40—H40B	109.5
C13—C14—C19	121.9 (7)	H40A—C40—H40B	109.5
C16—C15—C14	122.9 (8)	C35—C40—H40C	109.5
C16—C15—H15	118.6	H40A—C40—H40C	109.5
C14—C15—H15	118.6	H40B—C40—H40C	109.5
C15—C16—C17	117.4 (8)	C37—C41—H41A	109.5
	~ /		

C15—C16—C20	122.6 (9)	C37—C41—H41B	109.5
C17—C16—C20	120.0 (10)	H41A—C41—H41B	109.5
C18—C17—C16	122.5 (8)	C37—C41—H41C	109.5
C18—C17—H17	118.7	H41A—C41—H41C	109.5
C16—C17—H17	118.7	H41B—C41—H41C	109.5
C17—C18—C13	117.7 (7)	C39—C42—H42A	109.5
C17—C18—C21	120.7 (7)	C39—C42—H42B	109.5
C13—C18—C21	121.5 (7)	H42A—C42—H42B	109.5
C14—C19—H19A	109.5	C39—C42—H42C	109.5
C14—C19—H19B	109.5	H42A—C42—H42C	109.5
H19A—C19—H19B	109.5	H42B—C42—H42C	109.5
C14—C19—H19C	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2···O1 ⁱ	0.93	2.32	3.040 (8)	134

Symmetry code: (i) x, -y-1/2, z-1/2.