

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Benzyl-2-sulfanylidene-1,3-thiazolidin-4-one

Durre Shahwar,^a M. Nawaz Tahir,^b* Muhammad Asam Raza,^a Naeem Ahmad^a and Saherish Aslam^a

^aDepartment of Chemistry, Government College University, Lahore, Pakistan, and ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 5 December 2010; accepted 9 December 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.079; data-to-parameter ratio = 14.3.

In the title compound, $C_{10}H_9NOS_2$, the five-membered heterocyclic ring and the benzyl moiety are oriented at a dihedral angle of 77.25 (4)°. In the crystal, infinite polymeric C(6) chains extending along [001] are formed due to C-H···O hydrogen bonds. C-H··· π interactions link the chains, building up a three-dimensional network.

Related literature

For background to our interest in the sythesis of thiazolidin derivatives and related structures, see: Shahwar *et al.* (2009*a*,*b*, 2010). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_9 \text{NOS}_2 \\ M_r = 223.30 \\ \text{Monoclinic, } P2_1/c \\ a = 13.3271 \ (4) \ \text{\AA} \\ b = 5.9025 \ (2) \ \text{\AA} \\ c = 13.0396 \ (4) \ \text{\AA} \\ \beta = 92.812 \ (1)^\circ \end{array}$

 $V = 1024.50 (6) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.48 \text{ mm}^{-1}$ T = 296 K 0.25 \times 0.20 \times 0.10 mm

organic compounds

7899 measured reflections

 $R_{\rm int} = 0.023$

1818 independent reflections

1594 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD

```
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
T_{min} = 0.939, T_{max} = 0.950
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.030 & 127 \text{ parameters} \\ wR(F^2) &= 0.079 & \text{H-atom parameters constrained} \\ S &= 1.07 & \Delta\rho_{\text{max}} = 0.22 \text{ e} \text{ Å}^{-3} \\ 1818 \text{ reflections} & \Delta\rho_{\text{min}} = -0.14 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1-C6 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6\cdots O1^{i}$ $C3-H3\cdots Cg^{ii}$ $C9-H9a\cdots Cg^{iii}$	0.93	2.47	3.338 (2)	156
	0.93	2.95	3.674 (2)	136
	0.97	2.66	3.588 (2)	160

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

DS is grateful to the Higher Education Commission (Pakistan) for funding of this project and to Professor Dr Islam Ullah Khan for providing research facilities at Government College University, Lahore, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2634).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Shahwar, D., Tahir, M. N., Ahmad, N., Raza, M. A. & Aslam, S. (2010). Acta Cryst. E66, o2159.
- Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009a). Acta Cryst. E65, o3014.
- Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009b). Acta Cryst. E65, o3016.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o133 [https://doi.org/10.1107/S1600536810051548]

3-Benzyl-2-sulfanylidene-1,3-thiazolidin-4-one

Durre Shahwar, M. Nawaz Tahir, Muhammad Asam Raza, Naeem Ahmad and Saherish Aslam

S1. Comment

The work presented is part of our interest in synthesizing various thiazolidin derivatives and confirming their structures by *x*-ray analysis (Shahwar *et al.*, 2010, 2009*a*,*b*). These compounds will be utilized for the study of comparative bioactivity.

In (I), the benzyl moiety A (C1—C7) and the five membered ring B (N1/C8/S2/C9/C10) of 2-thioxo-1,3-thiazolidin-4one are planar with r. m. s. deviations of 0.0157 and 0.0302 Å, respectively. The dihedral angle between A/B is 77.25 (4)° (Fig. 1). In the 2-thioxo-1,3-thiazolidin-4-one, the attached O and S-atom are at a distance of -0.1070 (25) and 0.0763 (24) Å, respectively from the mean square plane of B.

Polymeric chains [C(6), Bernstein *et al.* (1995)] are formed due to C—H···O hydrogen bonds (Table 1, Fig. 2) and extend along the crystallographic *c* axis. C—H··· π interactions (Table 1) link the chains to build up a three dimensional network.

S2. Experimental

The title compound has been prepared according to the method described (Shahwar et al. 2009a,b)

S3. Refinement

All H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and treated as riding on their parent C atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

View of the title compound with the atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level. H-atoms are represented as small circles of arbitrary radii.

Figure 2

Partial packing showing the formation of the chains through C-H···O hydrogen bonds represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) x, -y+3/2, z+1/2]

3-Benzyl-2-sulfanylidene-1,3-thiazolidin-4-one

Crystal data

C₁₀H₉NOS₂ $M_r = 223.30$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.3271 (4) Å b = 5.9025 (2) Å c = 13.0396 (4) Å $\beta = 92.812$ (1)° V = 1024.50 (6) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD	7899 measured reflections		
diffractometer	1818 independent reflections		
Radiation source: fine-focus sealed tube	1594 reflections with $I > 2\sigma(I)$		
Graphite monochromator	$R_{\rm int} = 0.023$		
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\rm max} = 25.3^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$		
ωscans	$h = -15 \rightarrow 15$		
Absorption correction: multi-scan	$k = -6 \rightarrow 7$		
(SADABS; Bruker, 2005)	$l = -15 \rightarrow 15$		
$T_{\min} = 0.939, \ T_{\max} = 0.950$			
Refinement			
Refinement on F^2	Secondary atom site location: difference Fourier		
Least-squares matrix: full	map		
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from		
$wR(F^2) = 0.079$	neighbouring sites		

F(000) = 464

 $\theta = 3.1 - 25.3^{\circ}$ $\mu = 0.48 \text{ mm}^{-1}$

T = 296 K

 $D_{\rm x} = 1.448 {\rm Mg} {\rm m}^{-3}$

Plate, light yellow

 $0.25 \times 0.20 \times 0.10 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1594 reflections

S = 1.07H-atom parameters constrained1818 reflections $w = 1/[\sigma^2(F_o^2) + (0.031P)^2 + 0.4046P]$ 127 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} < 0.001$ Primary atom site location: structure-invariant
direct methods $\Delta \rho_{min} = -0.14 \text{ e } \text{Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Y		_	IT */IT	
л	У	Z	$U_{\rm iso} V_{\rm eq}$	
0.06040 (4)	0.13455 (10)	0.18585 (4)	0.0638 (2)	
0.09221 (4)	0.28252 (9)	-0.02729 (3)	0.0557 (2)	
0.28194 (12)	0.7373 (2)	0.06176 (11)	0.0697 (5)	
0.18237 (9)	0.4684 (2)	0.12987 (9)	0.0396 (4)	
0.30044 (11)	0.3660 (3)	0.27679 (11)	0.0376 (5)	
	0.06040 (4) 0.09221 (4) 0.28194 (12) 0.18237 (9) 0.30044 (11)	0.06040 (4)0.13455 (10)0.09221 (4)0.28252 (9)0.28194 (12)0.7373 (2)0.18237 (9)0.4684 (2)0.30044 (11)0.3660 (3)	0.06040 (4)0.13455 (10)0.18585 (4)0.09221 (4)0.28252 (9)-0.02729 (3)0.28194 (12)0.7373 (2)0.06176 (11)0.18237 (9)0.4684 (2)0.12987 (9)0.30044 (11)0.3660 (3)0.27679 (11)	

supporting information

C2	0.33354 (12)	0.1781 (3)	0.22537 (13)	0.0443 (5)
C3	0.40774 (14)	0.0402 (3)	0.26955 (15)	0.0565 (6)
C4	0.44939 (15)	0.0897 (4)	0.36558 (16)	0.0632 (7)
C5	0.41747 (15)	0.2765 (4)	0.41688 (15)	0.0625 (7)
C6	0.34380 (14)	0.4147 (3)	0.37321 (13)	0.0509 (6)
C7	0.21689 (12)	0.5173 (3)	0.23542 (12)	0.0424 (5)
C8	0.11439 (12)	0.3010 (3)	0.10525 (13)	0.0437 (5)
C9	0.16998 (14)	0.5229 (3)	-0.05169 (13)	0.0531 (6)
C10	0.21917 (13)	0.5926 (3)	0.04939 (13)	0.0458 (5)
H2	0.30574	0.14374	0.16042	0.0531*
H3	0.42949	-0.08609	0.23425	0.0678*
H4	0.49897	-0.00340	0.39547	0.0758*
Н5	0.44570	0.31047	0.48170	0.0749*
H6	0.32296	0.54169	0.40864	0.0611*
H7A	0.16040	0.50313	0.27915	0.0509*
H7B	0.23972	0.67325	0.23923	0.0509*
H9A	0.22040	0.48311	-0.09975	0.0637*
H9B	0.12960	0.64606	-0.08070	0.0637*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0582 (3)	0.0707 (4)	0.0624 (3)	-0.0218 (3)	0.0027 (2)	0.0073 (3)
S2	0.0562 (3)	0.0648 (3)	0.0451 (3)	-0.0033 (2)	-0.0074 (2)	-0.0115 (2)
01	0.0892 (10)	0.0615 (9)	0.0584 (8)	-0.0281 (8)	0.0049 (7)	0.0054 (7)
N1	0.0425 (7)	0.0405 (7)	0.0354 (7)	-0.0013 (6)	-0.0010 (5)	-0.0012 (5)
C1	0.0404 (8)	0.0379 (8)	0.0347 (8)	-0.0064 (7)	0.0044 (6)	-0.0013 (6)
C2	0.0463 (9)	0.0459 (9)	0.0407 (9)	0.0003 (7)	0.0033 (7)	-0.0057 (7)
C3	0.0555 (10)	0.0499 (11)	0.0648 (12)	0.0086 (9)	0.0100 (9)	-0.0004 (9)
C4	0.0541 (11)	0.0672 (13)	0.0675 (13)	0.0063 (10)	-0.0052 (9)	0.0162 (11)
C5	0.0660 (12)	0.0712 (13)	0.0483 (11)	-0.0066 (10)	-0.0159 (9)	0.0056 (10)
C6	0.0612 (11)	0.0503 (10)	0.0407 (9)	-0.0039 (8)	-0.0029 (8)	-0.0065 (8)
C7	0.0502 (9)	0.0407 (9)	0.0363 (8)	0.0017 (7)	0.0020 (7)	-0.0064 (7)
C8	0.0395 (8)	0.0464 (9)	0.0448 (9)	0.0005 (7)	-0.0018 (7)	-0.0047 (7)
C9	0.0587 (10)	0.0617 (12)	0.0387 (9)	0.0052 (9)	0.0020 (8)	0.0030 (8)
C10	0.0516 (9)	0.0426 (9)	0.0433 (9)	0.0018 (8)	0.0035 (7)	0.0014 (7)

Geometric parameters (Å, °)

S1—C8	1.6315 (18)	C4—C5	1.368 (3)
S2—C8	1.7424 (17)	C5—C6	1.378 (3)
S2—C9	1.7947 (19)	C9—C10	1.501 (2)
O1—C10	1.201 (2)	C2—H2	0.9300
N1—C7	1.459 (2)	С3—Н3	0.9300
N1—C8	1.368 (2)	C4—H4	0.9300
N1-C10	1.389 (2)	C5—H5	0.9300
C1—C2	1.380 (2)	С6—Н6	0.9300
C1—C6	1.388 (2)	С7—Н7А	0.9700

supporting information

C1—C7	1.507 (2)	С7—Н7В	0.9700
C2—C3	1.384 (2)	С9—Н9А	0.9700
C3—C4	1.376 (3)	С9—Н9В	0.9700
C8—S2—C9	93.15 (8)	C1—C2—H2	120.00
C7—N1—C8	122.61 (13)	C3—C2—H2	120.00
C7—N1—C10	120.12 (13)	С2—С3—Н3	120.00
C8—N1—C10	117.27 (13)	C4—C3—H3	120.00
C2—C1—C6	118.55 (15)	C3—C4—H4	120.00
C2—C1—C7	123.43 (14)	C5—C4—H4	120.00
C6—C1—C7	117.98 (15)	C4—C5—H5	120.00
C1—C2—C3	120.62 (16)	C6—C5—H5	120.00
C2—C3—C4	120.13 (18)	C1—C6—H6	120.00
C3—C4—C5	119.66 (19)	С5—С6—Н6	120.00
C4—C5—C6	120.49 (18)	N1—C7—H7A	109.00
C1—C6—C5	120.55 (17)	N1—C7—H7B	109.00
N1-C7-C1	114.46 (13)	C1—C7—H7A	109.00
S1—C8—S2	122.86 (10)	C1—C7—H7B	109.00
S1-C8-N1	126.28 (13)	H7A—C7—H7B	108.00
S2-C8-N1	110.86 (12)	S2—C9—H9A	110.00
S2-C9-C10	106.99 (12)	S2—C9—H9B	110.00
01-C10-N1	122.91 (16)	С10—С9—Н9А	110.00
O1—C10—C9	125.76 (16)	С10—С9—Н9В	110.00
N1—C10—C9	111.33 (14)	Н9А—С9—Н9В	109.00
C9—S2—C8—S1	176.53 (12)	C6—C1—C2—C3	0.6 (2)
C9—S2—C8—N1	-4.19 (13)	C7—C1—C2—C3	-177.17 (16)
C8—S2—C9—C10	5.77 (13)	C2-C1-C6-C5	-0.7 (3)
C8—N1—C7—C1	82.66 (18)	C7—C1—C6—C5	177.15 (17)
C10—N1—C7—C1	-96.82 (17)	C2-C1-C7-N1	-8.0 (2)
C7—N1—C8—S1	0.9 (2)	C6—C1—C7—N1	174.18 (14)
C7—N1—C8—S2	-178.35 (11)	C1—C2—C3—C4	-0.1 (3)
C10-N1-C8-S1	-179.60 (13)	C2—C3—C4—C5	-0.4 (3)
C10—N1—C8—S2	1.15 (18)	C3—C4—C5—C6	0.2 (3)
C7—N1—C10—O1	2.5 (2)	C4—C5—C6—C1	0.4 (3)
C7—N1—C10—C9	-177.06 (14)	S2-C9-C10-O1	174.34 (16)
C8—N1—C10—O1	-177.01 (16)	S2—C9—C10—N1	-6.12 (17)
C8—N1—C10—C9	3.4 (2)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	$H \cdots A$	D···· A	D—H···A	
C6—H6…O1 ⁱ	0.93	2.47	3.338 (2)	156	
C3—H3···· <i>Cg</i> ⁱⁱ	0.93	2.95	3.674 (2)	136	
C9—H9a····Cg ⁱⁱⁱ	0.97	2.66	3.588 (2)	160	

Symmetry codes: (i) *x*, -*y*+3/2, *z*+1/2; (ii) -*x*+1, *y*-1/2, -*z*+1/2; (iii) *x*, -*y*+1/2, *z*-1/2.