Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Iminiumyl-1,3-diazepane-4carboxylate

Feng Yang

School of Chemistry and Chemical Engneering, Guangxi Normal University, Guilin 541004, People's Republic of China Correspondence e-mail: jxyangfeng@gmail.com

Received 20 October 2010; accepted 28 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.116; data-to-parameter ratio = 8.3.

The title compound, $C_6H_{11}N_3O_2$, is a cyclized derivative of Larginine and the molecule is a zwitterion with the positive and negative charge residing in the guanidinium and carboxylate groups, respectively. The conformation of 1,3-diazepane ring is close to a twisted chair. One intramolecular and three intermolecular $N-H \cdots O$ hydrogen bonds stabilize the molecular conformation and the crystal structure, respectively.

Related literature

For related structures, see: Karapetyan (2008*a*,*b*).

Experimental

Crystal data $C_6H_{11}N_3O_2$ $M_r = 157.18$

Orthorhombic, $P2_12_12_1$ a = 6.1740 (3) Å

b = 8.7979 (5) Å	
c = 14.2036 (7) Å	
$V = 771.51 (7) \text{ Å}^3$	
Z = 4	

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.773, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 100 parameters $wR(F^2) = 0.116$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.25$ e Å $^{-3}$ 834 reflections $\Delta \rho_{min} = -0.23$ e Å $^{-3}$

Table 1			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1A \cdots O1^{i}$	0.86	2.17	2.918 (3)	146
$N3-H3A\cdots O2^{i}$	0.86	2.06	2.870 (4)	157
$N3-H3B\cdots O2^{ii}$	0.86	1.95	2.788 (4)	163
$N2-H2A\cdots O1$	0.86	2.19	2.601 (3)	109

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.23 \times 0.15 \times 0.10 \text{ mm}$

3426 measured reflections

834 independent reflections

694 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.026$

Symmetry codes: (i) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART* and *SAINT* (Siemens, 1994); data reduction: *XPREP* (Siemens, 1994); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This study was supported by the National Science Foundation of China (C050102).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2320).

References

- Karapetyan, H. A. (2008a). Acta Cryst. E64, o1222.
- Karapetyan, H. A. (2008b). Acta Cryst. E64, 0943.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2011). E67, o10 [https://doi.org/10.1107/S1600536810049676]

2-Iminiumyl-1,3-diazepane-4-carboxylate

Feng Yang

S1. Comment

The title compound (I) was hydrothermally synthesized from *L*-Arginine *via* an unusual annulation reaction. We report here a new annulation product derived from the linear arginine molecule. The title compound is the cyclic form of *L*-Arginine and this molecule is a zwitterion with the positive and negative charge residing in the guanidinium and carboxylate groups respectively. The conformation of 1,3-diazepane ring is close to twisted chair. One intramolecular and three intermolecular N—H···O hydrogen bonds stabilize the molecular conformation and the crystal structure respectively (Fig. 2). The C—N distances in the guanidinium group are obviously shorter than that of the normal C—N single bond, indicating delocalized bond of the guanidinium group.

S2. Experimental

A mixture of $Cu(ClO_4)_2$ · $6H_2O$ (0.186 g, 0.5 mmol), *L*-Arginine (0.087 g, 0.5 mmol) and water (10 ml) was sealed in a 15 ml teflon-lined stainless steel reactor and heated to 423 K for 60 h. Colorless crystals of (I) suitable for X-ray analysis were obtained.

S3. Refinement

All H atoms were placed at calculated positions, and refined with isotropic displacement parameters, using a riding model [C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$, C—H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, N—H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$].

A view of (I) with 50% probability displacement ellipsoids; H atoms are shown as small spheres of arbitrary radii.

Figure 2

The hydrogen bonding interactions between the molecules. The H- atoms not involved in hydrogen bond are omitted for charity

2-iminiumyl-1,3-diazepane-4-carboxylate

Crystal data

C₆H₁₁N₃O₂ $M_r = 157.18$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.1740 (3) Å b = 8.7979 (5) Å c = 14.2036 (7) Å V = 771.51 (7) Å³ Z = 4

Data collection

Siemens SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.773, T_{\max} = 1.000$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
<i>S</i> = 1.08	H-atom parameters constrained
834 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0573P)^2 + 0.2708P]$
100 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.23 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 336

 $\theta = 2.7 - 20.9^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K

Prism. colorless

 $R_{\rm int} = 0.026$

 $h = -7 \rightarrow 5$ $k = -9 \rightarrow 10$ $l = -16 \rightarrow 13$

 $0.23 \times 0.15 \times 0.10$ mm

3426 measured reflections 834 independent reflections 694 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$

 $D_{\rm x} = 1.353 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1112 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

7	
2	$U_{\rm iso} + U_{\rm eq}$
0.67888 (15)	0.0471 (7)
0.64723 (15)	0.0463 (7)
0.97693 (19)	0.0413 (8)
1.0356	0.050*
0.84226 (17)	0.0383 (7)
	<i>z</i> 0.67888 (15) 0.64723 (15) 0.97693 (19) 1.0356 0.84226 (17)

supporting information

H2A	0.8317	0.5757	0.8105	0.046*
N3	0.8387 (5)	0.6355 (3)	0.9771 (2)	0.0492 (8)
H3A	0.8106	0.6559	1.0350	0.059*
H3B	0.9404	0.6835	0.9483	0.059*
C1	0.7420 (6)	0.3583 (4)	0.7926 (2)	0.0352 (8)
H1B	0.8059	0.2765	0.8303	0.042*
C2	0.5046 (7)	0.3203 (4)	0.7748 (2)	0.0486 (10)
H2B	0.4346	0.4071	0.7457	0.058*
H2C	0.4962	0.2359	0.7310	0.058*
C3	0.3829 (7)	0.2787 (4)	0.8645 (3)	0.0558 (11)
H3C	0.2381	0.2455	0.8479	0.067*
H3D	0.4560	0.1940	0.8946	0.067*
C4	0.3667 (6)	0.4072 (4)	0.9331 (3)	0.0510 (10)
H4A	0.3033	0.4936	0.9008	0.061*
H4B	0.2671	0.3775	0.9826	0.061*
C5	0.7260 (5)	0.5309 (4)	0.9325 (2)	0.0348 (8)
C6	0.8659 (6)	0.3684 (4)	0.6983 (2)	0.0372 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0583 (16)	0.0522 (14)	0.0306 (12)	-0.0038 (14)	0.0092 (11)	0.0005 (11)
O2	0.0625 (17)	0.0467 (13)	0.0299 (11)	0.0092 (13)	0.0014 (13)	-0.0071 (10)
N1	0.0450 (18)	0.0527 (17)	0.0261 (13)	-0.0089 (15)	0.0052 (13)	0.0025 (13)
N2	0.0500 (18)	0.0391 (14)	0.0257 (13)	-0.0051 (14)	0.0053 (12)	-0.0024 (12)
N3	0.057 (2)	0.0567 (18)	0.0343 (14)	-0.0191 (17)	0.0114 (15)	-0.0135 (14)
C1	0.043 (2)	0.0356 (15)	0.0264 (16)	0.0019 (16)	-0.0015 (15)	-0.0009 (14)
C2	0.051 (2)	0.057 (2)	0.038 (2)	-0.008(2)	0.0000 (19)	-0.0098 (17)
C3	0.049 (2)	0.061 (2)	0.057 (2)	-0.017 (2)	0.005 (2)	-0.005 (2)
C4	0.042 (2)	0.063 (2)	0.047 (2)	-0.0080 (19)	0.009 (2)	-0.0011 (18)
C5	0.0395 (19)	0.0370 (16)	0.0279 (15)	0.0017 (17)	0.0017 (15)	0.0010 (14)
C6	0.040 (2)	0.046 (2)	0.0256 (16)	0.0110 (18)	-0.0035 (16)	0.0018 (15)

Geometric parameters (Å, °)

01—C6	1.238 (4)	C1—C2	1.524 (6)	
O2—C6	1.265 (4)	C1—C6	1.545 (4)	
N1—C5	1.329 (4)	C1—H1B	0.9800	
N1C4	1.462 (4)	C2—C3	1.523 (5)	
N1—H1A	0.8600	C2—H2B	0.9700	
N2—C5	1.340 (4)	C2—H2C	0.9700	
N2—C1	1.465 (4)	C3—C4	1.496 (5)	
N2—H2A	0.8600	C3—H3C	0.9700	
N3—C5	1.317 (4)	C3—H3D	0.9700	
N3—H3A	0.8600	C4—H4A	0.9700	
N3—H3B	0.8600	C4—H4B	0.9700	
C5—N1—C4	124.6 (3)	H2B—C2—H2C	107.8	

C5 N1 111A	1177	C_{1} C_{2} C_{2}	1122(2)
CJ = MI = HIA	11/./	U4-U3-U2	115.5 (5)
C4—N1—H1A	117.7	C4—C3—H3C	108.9
C5—N2—C1	126.1 (3)	С2—С3—Н3С	108.9
C5—N2—H2A	116.9	C4—C3—H3D	108.9
C1—N2—H2A	116.9	C2—C3—H3D	108.9
C5—N3—H3A	120.0	H3C—C3—H3D	107.7
C5—N3—H3B	120.0	N1—C4—C3	116.5 (3)
H3A—N3—H3B	120.0	N1—C4—H4A	108.2
N2—C1—C2	113.9 (3)	C3—C4—H4A	108.2
N2—C1—C6	107.3 (3)	N1—C4—H4B	108.2
C2—C1—C6	110.2 (3)	C3—C4—H4B	108.2
N2—C1—H1B	108.4	H4A—C4—H4B	107.3
C2—C1—H1B	108.4	N3—C5—N1	120.0 (3)
C6—C1—H1B	108.4	N3—C5—N2	118.1 (3)
C3—C2—C1	112.8 (3)	N1—C5—N2	121.9 (3)
С3—С2—Н2В	109.0	O1—C6—O2	126.2 (3)
C1—C2—H2B	109.0	O1—C6—C1	119.0 (3)
C3—C2—H2C	109.0	O2—C6—C1	114.8 (3)
C1—C2—H2C	109.0		

Hydrogen-bond geometry (Å, °)

D—H	H···A	D····A	D—H··· A
0.86	2.17	2.918 (3)	146
0.86	2.06	2.870 (4)	157
0.86	1.95	2.788 (4)	163
0.86	2.19	2.601 (3)	109
	<i>D</i> —H 0.86 0.86 0.86 0.86	D—H H···A 0.86 2.17 0.86 2.06 0.86 1.95 0.86 2.19	D—H H···A D···A 0.86 2.17 2.918 (3) 0.86 2.06 2.870 (4) 0.86 1.95 2.788 (4) 0.86 2.19 2.601 (3)

Symmetry codes: (i) -x+3/2, -y+1, z+1/2; (ii) -x+2, y+1/2, -z+3/2.