Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$\{2-[6-(1H-Benzimidazol-2-y]-\kappa N^3)-2$ pyridyl- κN]benzimidazolato- κN }- $(dicyanamido-\kappa N)(methanol-\kappa O)$ copper(II)

Jingchun Hu, Jinfang Zhang, Weiming Zhang and Chi Zhang*

Molecular Materials Research Center, Scientific Research Academy, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: chizhang@ujs.edu.cn

Received 16 November 2010; accepted 1 December 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.072; data-to-parameter ratio = 12.4.

In the title compound, $[Cu(C_{19}H_{12}N_5)(C_2N_3)(CH_3OH)]$, the Cu^{II} atom is coordinated by three N atoms from an anionic 2,6-bis(1H-benzimidazol-2-yl)pyridine (bbp) ligand, an O atom from a methanol molecule and one N atom from a dicvanamide anion. The crystal structure is stabilized by O- $H \cdots N$ and $N - H \cdots N$ hydrogen bonds, forming a threedimensional network.

Related literature

For potential applications of benzimidazole derivatives and their metal complexes, see: Khaled (2003); Hay et al. (1998); Petoud et al. (1997); Liu et al. (2005); Boinnard et al. (1990); Mo et al. (2009); Addison & Burke (1981). For examples of other bbp-containing complexes, see: Wang et al. (1994); Bernardinelli et al. (1990).

Experimental

Crystal data $[Cu(C_{19}H_{12}N_5)(C_2N_3)(CH_4O)]$ $M_r = 471.98$

Triclinic, $P\overline{1}$ a = 6.8262 (14) Å

b = 12.189 (2) Å	Z = 2
c = 12.609 (3) Å	Mo $K\alpha$ radiation
$\alpha = 101.74 \ (3)^{\circ}$	$\mu = 1.13 \text{ mm}^{-1}$
$\beta = 99.03 \ (3)^{\circ}$	T = 293 K
$\gamma = 97.12 \ (3)^{\circ}$	$0.20 \times 0.16 \times 0.12 \text{ mm}$
V = 1001.2 (4) Å ³	

Data collection

Rigaku Saturn724 diffractometer	7787 measured reflections
Absorption correction: multi-scan	3591 independent reflections
(CrystalClear; Rigaku, 2007)	3294 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.806, \ T_{\max} = 0.874$	$R_{\rm int} = 0.020$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.030$	290 parameters

 $wR(F^2) = 0.072$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$ S = 1.02 $\Delta \rho_{\rm min} = -0.28~{\rm e}~{\rm \AA}^{-3}$ 3591 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D1 - H1 \cdots N5^{i}$	0.82	1.93	2.743 (3)	172
$N3 - H3A \cdots N8^{ii}$	0.86	1.96	2.807 (3)	166

Symmetry codes: (i) -x, -y, -z; (ii) x, y + 1, z.

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China for Distinguished Young Scholars Fund (to CZ; 50925207), the Ministry of Science and Technology of China for the International Science Linkages Program (2009DFA50620), the Special Fund for International Collaboration & Exchange of Jiangsu Province (BZ2008049) and the UJS who are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5405).

References

Addison, A. W. & Burke, P. J. (1981). J. Heterocycl. Chem. 18, 803-805.

- Bernardinelli, G., Hopfgartner, G. & Williams, A. F. (1990). Acta Cryst. C46, 1642-1645.
- Boinnard, D., Cassoux, P., Petrouleas, V., Savariault, J. M. & Tuchagues, J. P. (1990). Inorg. Chem. 29, 4114-4122.
- Hay, R. W., Clifford, T. & Lightfoot, P. (1998). Polyhedron, 17, 3575-3581.
- Khaled, K. F. (2003). Electrochim. Acta, 48, 2493-2503.
- Liu, S. G., Zuo, J. L., Wang, Y., Li, Y. Z. & You, X. Z. (2005). J. Phys. Chem. Solids, 66, 735-740.
- Mo, H. J., Zhong, Y. R., Cao, M. L., Ou, Y. C. & Ye, B. H. (2009). Cryst. Growth. Des. 9, 488-496.
- Petoud, S., Bünzli, J. C. G., Schenk, K. J. & Piguet, C. (1997). Inorg. Chem. 36, 1345-1353.
- Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, S. X., Yu, S. Y., Luo, Q. H., Wang, Q. Y., Shi, J. Q. & Wu, Q. J. (1994). Transition Met. Chem. 19, 205-208.

supporting information

Acta Cryst. (2011). E67, m61 [https://doi.org/10.1107/S1600536810050178]

{2-[6-(1*H*-Benzimidazol-2-yl- κN^3)-2-pyridyl- κN]benzimidazolato- κN } (dicyanamido- κN)(methanol- κO)copper(II)

Jingchun Hu, Jinfang Zhang, Weiming Zhang and Chi Zhang

S1. Comment

Benzimidazole derivatives and their metal complexes have attracted considerable interest over several decades, because many of these materials have been applied to various fields such as biological systems (Khaled, 2003; Hay *et al.*, 1998), Luminescent (Petoud *et al.*, 1997; Liu *et al.*, 2005), and magnetic properties (Boinnard *et al.*, 1990; Mo *et al.*, 2009). 2,6-bis(2-benzimidazol-2-yl)pyridine(bbp) (Addison *et al.*, 1981) as a benzimidazole derivative, is a tridentate ligand with two benzimidazole and one pyridine nitrogen atoms. In this paper, we report the structue of a new Cu^{II} complex based on bbp ligand.

Figure 1 shows that the Cu^{II} atom is coordinated by N1, N2 and N4 from the tridentate bbp ligand and N6 from the dicyanamide anion, and O1 from one methanol molecule. The distance of Cu-N bonds range from 1.9528 (19) to 2.0364 (2) Å. While the Cu-N1, Cu-N2 and Cu-N4 distances are 1.9763 (18), 2.0364 (19), 1.9955 (19) Å, respectively; and the N1-Cu-N2 and N1-Cu-N4 angles are 79.36 (7), 79.51 (7)°, respectively, these parameters are similar to those reported for other bbp-containing complexes (Wang *et al.*, 1994; Bernardinelli *et al.*, 1990). Due to intermolecular hydrogen-bonding interactions, the crystal structure is extended to a three-dimensional network (Figure 2).

S2. Experimental

The bbp (0.1 mmol) and CuClO₄.6H₂O (0.1 mmol) were added to 3 ml dimethylformamide with thorough stirring for 2 minutes. After filtering, the filtrate was carefully layered with 0.5 ml dimethylformamide and 5 ml methanol solution of Sodium dicyanamide (0.2 mol L⁻¹), in turn. Green crystals suitable for X-ray analysis were obtained after one week. Elemental analysis found: C 55.56, H 3.33, N 23.46%; calculated for $C_{22}H_{16}CuN_8O$: C 55.98, H 3.42, N 23.75%.

S3. Refinement

H atoms were positioned geometrically with C-H(phenyl, pyridyl) = 0.93 Å or 0.96 Å (methyl) and N-H = 0.8601 Å and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)_{phenyl}$, $1.2U_{eq}(N)$ or $1.5U_{eq}(C)_{methyl}$.

Figure 1

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.

Figure 2

The packing diagram of the title compound.

{2-[6-(1*H*-Benzimidazol-2-yl- κN^3)-2-pyridyl- κN]benzimidazolato- κN }(dicyanamido- κN)(methanol- κO)copper(II)

Z = 2

F(000) = 482

 $\theta = 3.5 - 29.1^{\circ}$

 $\mu = 1.13 \text{ mm}^{-1}$

Block, green

 $0.2 \times 0.16 \times 0.12$ mm

T = 293 K

 $D_{\rm x} = 1.566 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 4368 reflections

Crystal data

 $\begin{bmatrix} \text{Cu}(\text{C}_{19}\text{H}_{12}\text{N}_5)(\text{C}_2\text{N}_3)(\text{CH}_4\text{O}) \end{bmatrix}$ $M_r = 471.98$ Triclinic, $P\overline{1}$ a = 6.8262 (14) Å b = 12.189 (2) Å c = 12.609 (3) Å $a = 101.74 \text{ (3)}^{\circ}$ $\beta = 99.03 \text{ (3)}^{\circ}$ $\gamma = 97.12 \text{ (3)}^{\circ}$ $V = 1001.2 \text{ (4) Å}^3$

Data collection

Duia concention	
Rigaku Saturn724	7787 measured reflections
diffractometer	3591 independent reflections
Radiation source: fine-focus sealed tube	3294 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
ω scans	$\theta_{\rm max} = 25.3^\circ, \ \theta_{\rm min} = 3.4^\circ$
Absorption correction: multi-scan	$h = -8 \rightarrow 7$
(CrystalClear; Rigaku, 2007)	$k = -14 \longrightarrow 14$
$T_{\min} = 0.806, \ T_{\max} = 0.874$	$l = -15 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.072$	neighbouring sites
S = 1.02	H-atom parameters constrained
3591 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0326P)^2 + 0.7506P]$
290 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.40402 (4)	0.04545 (2)	0.20901 (2)	0.01736 (10)	
01	0.1127 (2)	0.03746 (13)	0.27080 (12)	0.0254 (4)	
H1	0.0241	0.0546	0.2282	0.030*	

NT1	0.2511 (2)	0 14654 (14)	0 10710 (14)	0.01(0.(4)
NI	0.3511 (3)	0.14654 (14)	0.10/18 (14)	0.0168 (4)
N2	0.5225 (3)	0.19964 (14)	0.31068 (14)	0.0196 (4)
N3	0.5742 (3)	0.38708 (14)	0.32891 (15)	0.0225 (4)
H3A	0.5/19	0.4521	0.3125	0.02/*
N4	0.28/6 (3)	-0.06889 (14)	0.068/8 (14)	0.01/8 (4)
N5	0.1565 (3)	-0.09661 (14)	-0.11513 (14)	0.0188 (4)
N6	0.5284 (3)	-0.05076 (15)	0.29/17 (15)	0.0246 (4)
N7	0.7320 (3)	-0.19234 (16)	0.34181 (17)	0.0307 (5)
N8	0.6356 (4)	-0.39938 (18)	0.2773 (2)	0.0430 (6)
C1	0.2400 (3)	-0.18446 (17)	0.02561 (17)	0.0171 (4)
C2	0.2565 (3)	-0.27628 (17)	0.07551 (19)	0.0203 (5)
H2A	0.3067	-0.2652	0.1505	0.024*
C3	0.1956 (3)	-0.38377 (18)	0.0091 (2)	0.0247 (5)
H3B	0.2048	-0.4464	0.0401	0.030*
C4	0.1200 (3)	-0.40094 (19)	-0.1044 (2)	0.0260 (5)
H4A	0.0827	-0.4747	-0.1469	0.031*
C5	0.0996 (3)	-0.31132 (19)	-0.15430 (19)	0.0238 (5)
H5B	0.0478	-0.3233	-0.2292	0.029*
C6	0.1599 (3)	-0.20125 (17)	-0.08783 (17)	0.0181 (4)
C7	0.2323 (3)	-0.02371 (17)	-0.01919 (17)	0.0166 (4)
C8	0.2646 (3)	0.10090 (17)	0.00213 (17)	0.0172 (4)
С9	0.2181 (3)	0.17004 (18)	-0.07045 (18)	0.0203 (5)
H9A	0.1545	0.1389	-0.1431	0.024*
C10	0.2695 (3)	0.28666 (18)	-0.03130 (19)	0.0225 (5)
H10A	0.2409	0.3345	-0.0785	0.027*
C11	0.3629 (3)	0.33284 (18)	0.07713 (19)	0.0211 (5)
H11A	0.3985	0.4110	0.1033	0.025*
C12	0.4016 (3)	0.25952 (17)	0.14528 (18)	0.0185 (5)
C13	0.4982 (3)	0.28491 (17)	0.26130 (18)	0.0186 (5)
C14	0.6564 (3)	0.36794 (18)	0.42919 (19)	0.0240 (5)
C15	0.7569 (4)	0.4417 (2)	0.5265 (2)	0.0351 (6)
H15A	0.7786	0.5200	0.5337	0.042*
C16	0.8230 (4)	0.3930 (2)	0.6122 (2)	0.0400 (7)
H16A	0.8917	0.4398	0.6788	0.048*
C17	0.7900 (4)	0.2751 (2)	0.6023 (2)	0.0343 (6)
H17A	0.8374	0.2457	0.6621	0.041*
C18	0.6886 (4)	0.2019 (2)	0.50539 (19)	0.0272 (5)
H18A	0.6655	0.1238	0.4991	0.033*
C19	0.6224 (3)	0.24939 (18)	0.41759 (18)	0.0209 (5)
C20	0.6166 (3)	-0.12164 (18)	0.31518 (17)	0.0205 (5)
C21	0.6717 (4)	-0.3023(2)	0.3061 (2)	0.0273(5)
C22	0.1031 (4)	0.0833 (2)	0.3824 (2)	0.0383 (6)
H22A	0.1013	0.1634	0.3931	0.057*
H22B	0.2185	0.0705	0.4297	0.057*
H22C	-0.0169	0.0470	0 3999	0.057*
11220	0.0107	0.07/0	0.5777	0.007

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cu1	0.02205 (16)	0.01322 (14)	0.01587 (15)	0.00307 (10)	0.00051 (11)	0.00332 (10)
01	0.0220 (8)	0.0372 (9)	0.0165 (8)	0.0072 (7)	0.0009 (7)	0.0057 (7)
N1	0.0174 (9)	0.0157 (9)	0.0182 (9)	0.0033 (7)	0.0042 (7)	0.0049 (7)
N2	0.0220 (10)	0.0169 (9)	0.0190 (10)	0.0037 (7)	0.0017 (8)	0.0033 (7)
N3	0.0276 (10)	0.0132 (9)	0.0256 (11)	0.0029 (8)	0.0044 (8)	0.0026 (7)
N4	0.0181 (9)	0.0161 (9)	0.0180 (9)	0.0017 (7)	0.0021 (8)	0.0031 (7)
N5	0.0165 (9)	0.0222 (9)	0.0171 (9)	0.0033 (7)	0.0029 (8)	0.0029 (7)
N6	0.0330 (11)	0.0158 (9)	0.0234 (10)	0.0036 (8)	-0.0005 (9)	0.0055 (8)
N7	0.0317 (12)	0.0227 (10)	0.0371 (12)	0.0092 (9)	-0.0029 (9)	0.0101 (9)
N8	0.0559 (16)	0.0243 (12)	0.0550 (16)	0.0137 (11)	0.0164 (13)	0.0145 (10)
C1	0.0143 (10)	0.0155 (10)	0.0203 (11)	0.0013 (8)	0.0048 (9)	0.0007 (8)
C2	0.0178 (11)	0.0203 (11)	0.0225 (12)	0.0026 (9)	0.0031 (9)	0.0045 (9)
C3	0.0220 (12)	0.0171 (11)	0.0344 (14)	0.0023 (9)	0.0060 (10)	0.0047 (9)
C4	0.0228 (12)	0.0175 (11)	0.0318 (13)	-0.0002 (9)	0.0029 (10)	-0.0037 (9)
C5	0.0195 (12)	0.0258 (12)	0.0214 (12)	0.0005 (9)	0.0028 (10)	-0.0027 (9)
C6	0.0145 (11)	0.0201 (11)	0.0194 (11)	0.0019 (8)	0.0057 (9)	0.0026 (8)
C7	0.0142 (10)	0.0195 (10)	0.0166 (11)	0.0039 (8)	0.0030 (9)	0.0044 (8)
C8	0.0133 (11)	0.0200 (11)	0.0186 (11)	0.0021 (8)	0.0048 (9)	0.0040 (8)
C9	0.0188 (11)	0.0266 (12)	0.0176 (11)	0.0048 (9)	0.0047 (9)	0.0080 (9)
C10	0.0218 (12)	0.0249 (12)	0.0272 (12)	0.0087 (9)	0.0083 (10)	0.0145 (9)
C11	0.0211 (12)	0.0170 (11)	0.0281 (12)	0.0063 (9)	0.0074 (10)	0.0079 (9)
C12	0.0170 (11)	0.0172 (10)	0.0222 (12)	0.0041 (9)	0.0061 (9)	0.0040 (8)
C13	0.0203 (11)	0.0143 (10)	0.0217 (11)	0.0032 (8)	0.0066 (9)	0.0029 (8)
C14	0.0231 (12)	0.0228 (11)	0.0241 (12)	0.0029 (9)	0.0052 (10)	0.0006 (9)
C15	0.0378 (15)	0.0275 (13)	0.0315 (14)	-0.0026 (11)	0.0034 (12)	-0.0057 (10)
C16	0.0400 (16)	0.0421 (15)	0.0256 (14)	-0.0023 (13)	-0.0029 (12)	-0.0080 (11)
C17	0.0317 (14)	0.0474 (16)	0.0207 (13)	0.0069 (12)	-0.0010 (11)	0.0051 (11)
C18	0.0277 (13)	0.0302 (13)	0.0228 (13)	0.0058 (10)	0.0022 (10)	0.0053 (10)
C19	0.0188 (11)	0.0222 (11)	0.0195 (12)	0.0026 (9)	0.0028 (9)	0.0009 (9)
C20	0.0255 (12)	0.0174 (11)	0.0157 (11)	-0.0016 (9)	0.0006 (9)	0.0023 (8)
C21	0.0322 (14)	0.0256 (13)	0.0295 (13)	0.0108 (10)	0.0080 (11)	0.0128 (10)
C22	0.0356 (15)	0.0572 (17)	0.0196 (13)	0.0053 (13)	0.0073 (11)	0.0028 (12)

Geometric parameters (Å, °)

Cu1—N6	1.9528 (19)	С3—Н3В	0.9300
Cu1—N1	1.9763 (18)	C4—C5	1.378 (3)
Cu1—N4	1.9955 (19)	C4—H4A	0.9300
Cu1—N2	2.0364 (19)	C5—C6	1.403 (3)
Cu1—O1	2.2452 (16)	С5—Н5В	0.9300
O1—C22	1.420 (3)	С7—С8	1.470 (3)
O1—H1	0.8200	C8—C9	1.392 (3)
N1—C8	1.336 (3)	C9—C10	1.387 (3)
N1—C12	1.344 (3)	С9—Н9А	0.9300
N2—C13	1.330 (3)	C10—C11	1.384 (3)

N2—C19	1.388 (3)	C10—H10A	0.9300
N3—C13	1.348 (3)	C11—C12	1.381 (3)
N3—C14	1.378 (3)	C11—H11A	0.9300
N3—H3A	0.8601	C12—C13	1.461 (3)
N4—C7	1.358 (3)	C14—C15	1.386 (3)
N4—C1	1.380 (3)	C14—C19	1.408 (3)
N5—C7	1.331 (3)	C15—C16	1.377 (4)
N5—C6	1.389 (3)	C15—H15A	0.9300
N6—C20	1.151 (3)	C16—C17	1.404 (4)
N7—C20	1.296 (3)	C16—H16A	0.9300
N7—C21	1.315 (3)	C17—C18	1.380(3)
N8—C21	1.148 (3)	C17—H17A	0.9300
C1—C2	1.399 (3)	C18—C19	1.390 (3)
C1—C6	1.412 (3)	C18—H18A	0.9300
C2—C3	1.378 (3)	C22—H22A	0.9600
C2—H2A	0.9300	C22—H22B	0.9600
C3—C4	1 406 (3)	C22—H22C	0.9600
	1.100 (3)	022 11220	0.9000
N6—Cu1—N1	164.13 (8)	N5-C7-C8	127.12 (19)
N6—Cu1—N4	100 45 (8)	N4-C7-C8	$116\ 10\ (18)$
N1—Cu1—N4	79 51 (7)	N1-C8-C9	120.47(19)
N6—Cu1—N2	98 73 (8)	N1-C8-C7	120.17(19) 110.70(18)
N1 - Cu1 - N2	79.36 (7)	C9 - C8 - C7	128 83 (19)
N4 $Cu1$ $N2$	158 46 (7)	C_{10} C_{9} C_{8}	120.03(17)
N6 Cu1 O1	130.40(7)	C_{10} C_{9} H_{9A}	121.0
N1 - Cu1 - O1	98.82 (7)		121.0
$N_{1} = Cu_{1} = O_{1}$	93.62 (7)	C_{11} C_{10} C_{9}	121.0 120.9(2)
$N_{-}C_{1} = 01$	93.65 (7)	$C_{11} = C_{10} = C_{10}$	120.9 (2)
$C_{22} = C_{11} = C_{11}$	33.04(7)	$C_{1} = C_{10} = H_{10A}$	119.0
$C_{22} = 01 = C_{11}$	122.14 (14)	C_{12} C_{11} C_{10}	119.0 118.1(2)
C_{22} O_1 H_1	111.3	$C_{12} = C_{11} = C_{10}$	110.1(2)
$C_{1} = 01 = 111$	111.4 121 54 (18)	C_{12} C_{11} H_{11A}	121.0
C_{0} N1 C_{12}	121.34(18) 110.15(14)	NIL CI2 CI1	121.0 120.0(2)
$C_0 = N_1 = C_{01}$	119.13(14) 110.21(14)	NI = C12 = C12	120.9(2)
C12— $N1$ — $C10$	119.31(14) 105.85(17)	NI = C12 = C13	109.09(18)
C13 - N2 - C19	103.83(17) 112.46(14)	$\begin{array}{c} C11 - C12 - C13 \\ N2 - C12 - N2 \end{array}$	129.39 (19)
C13 - N2 - Cu1	112.40(14) 141.60(15)	N2 - C12 - C12	112.33 (19)
C19 = N2 = C14	141.09(13) 107.20(18)	$N_2 = C_{13} = C_{12}$	119.10 (18)
C13 - N3 - C14	107.20 (18)	N_{3} $-C_{13}$ $-C_{12}$	128.30(19)
C13 - N3 - H3A	126.4	N_{3} $-C_{14}$ $-C_{15}$	131.6 (2)
C14—N3—H3A	126.4	N3-C14-C19	106.14 (19)
C/-N4-CI	103.53 (17)		122.3(2)
C/—N4—Cul	114.48 (13)	C10-C15-C14	116.4 (2)
CI—N4—Cul	141.98 (15)	C16—C15—H15A	121.8
C/—N5—C6	102.69 (17)	C14—C15—H15A	121.8
C20—N6—Cul	156.97 (18)	C15—C16—C17	122.1 (2)
C20—N7—C21	120.2 (2)	C15—C16—H16A	118.9
N4—C1—C2	131.1 (2)	C17—C16—H16A	118.9
N4—C1—C6	107.57 (18)	C18—C17—C16	121.3 (2)

C2—C1—C6	121.29 (19)	С18—С17—Н17А	119.4
C3—C2—C1	117.4 (2)	С16—С17—Н17А	119.4
C3—C2—H2A	121.3	C17—C18—C19	117.5 (2)
C1—C2—H2A	121.3	C17—C18—H18A	121.3
C2—C3—C4	121.5 (2)	C19—C18—H18A	121.3
С2—С3—Н3В	119.2	N2-C19-C18	131.3 (2)
С4—С3—Н3В	119.2	N2-C19-C14	108.28 (19)
C5—C4—C3	121.7 (2)	C18—C19—C14	120.5 (2)
C5—C4—H4A	119.1	N6-C20-N7	173.5 (2)
C3—C4—H4A	119.1	N8—C21—N7	174.3 (3)
C4—C5—C6	117.5 (2)	O1—C22—H22A	109.5
C4—C5—H5B	121.2	O1—C22—H22B	109.5
С6—С5—Н5В	121.2	H22A—C22—H22B	109.5
N5—C6—C5	130.0 (2)	O1—C22—H22C	109.5
N5—C6—C1	109.42 (18)	H22A—C22—H22C	109.5
C5—C6—C1	120.6 (2)	H22B—C22—H22C	109.5
N5—C7—N4	116.78 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1···N5 ⁱ	0.82	1.93	2.743 (3)	172
N3—H3A···N8 ⁱⁱ	0.86	1.96	2.807 (3)	166

Symmetry codes: (i) –*x*, –*y*, –*z*; (ii) *x*, *y*+1, *z*.