Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,4-Bis(3-chloropropoxy)benzene

Yufei Wang

Faculty of Science, Rm No 207, Carslow Building F07, The University of Sydney, NSW 2006, Australia
Correspondence e-mail: wyuf2010@126.com
Received 18 November 2010; accepted 1 December 2010

Key indicators: single-crystal X-ray study; $T=113 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.031 ; w R$ factor $=0.078 ;$ data-to-parameter ratio $=20.6$.

The molecule of the title compound, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2}$, has a center of inversion at the centroid of the benzene ring and the asymmetric unit contains one half-molecule. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions stabilize the crystal structure.

Related literature

For general background to the use of alkoxybenzene derivatives as intermediates in organic synthesis, see: Dudones \& Pearson et al. (2000); Chen \& Chao (1996); Jin et al. (2010; Rabindranath et al. (2006); Zhang \& Tieke (2008); Zhu et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \\
& M_{r}=263.15 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=4.9813(8) \AA \\
& b=8.3200(14) \AA \\
& c=15.273(2) \AA \\
& \beta=93.156(6)^{\circ}
\end{aligned}
$$

Data collection

Rigaku Saturn diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)
$T_{\min }=0.899, T_{\max }=0.916$
5847 measured reflections 1502 independent reflections 1273 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031 \quad 73$ parameters
$w R\left(F^{2}\right)=0.078$
$S=1.07$
1502 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\mathrm{A}} \AA^{-3}$
$\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).
$C g 1$ is the centroid of the phenyl ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 A \cdots C g 1^{\mathrm{i}}$	0.99	2.74	$3.577(2)$	143
Symmetry code: (i) $x+1,-y+\frac{1}{2}, z-\frac{1}{2}$.				

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2000); software used to prepare material for publication: CrystalStructure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2255).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Chen, S. A. \& Chao, C. I. (1996). Synth. Met. 79, 93-96.
Dudones, J. D. \& Pearson, A. J. (2000). Tetrahedron Lett. 41, 8037-8040.
Jin, Y., Xu, Y., Qiao, Z., Peng, J., Wang, B. \& Cao, D. (2010). Polymer, 51, 57265733.

Rabindranath, A. R., Zhu, Y., Heim, I. \& Tieke, B. (2006). Macromolecules, 39, 8250-8256.
Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, K. \& Tieke, B. (2008). Macromolecules, 41, 7287-7295.
Zhu, Y., Rabindranath, A. R., Beyerlein, T. \& Tieke, B. (2007). Macromolecules, 40, 6981-6989.

supporting information

Acta Cryst. (2011). E67, o42 [https://doi.org/10.1107/S1600536810050348]

1,4-Bis(3-chloropropoxy)benzene

Yufei Wang

S1. Comment

Alkoxybenzene derivatives are useful intermediates in organic synthesis (Dudones \& Pearson, 2000; Chen et al., 1996). Especially, halogenoalkoxybenzenes are used to synthesize diketopyrrolopyrrole derivatives which are a class of strongly fluorescent heterocyclic pigments and their structures could be easily optimized through variations of substituents at the 2,5- and 3,6-positions (Jin et al., 2010; Rabindranath et al., 2006; Zhang et al., 2008; Zhu et al., 2007). In this paper, the structure of the title compound synthesized, (I), and we report herein its crystal structure. In the molecule of (I) (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). The asymmetric unit of the title compound contains a half of the molecule situated on a two-fold rotational axis. Intermolecular $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 1$ interactions (Cg 1 is the centroid of the phenyl ring ring) stabilize the crystal structure.

S2. Experimental

For the preparation of the title compound, p-dihydroxybenzene ($11.0 \mathrm{~g}, 0.1 \mathrm{~mol}$) was dissolved in dry acetone (100 ml). 1-Bromo-3-chloropropane ($31.5 \mathrm{~g}, 0.2 \mathrm{~mol}$) and potassium carbonate ($138 \mathrm{~g}, 1 \mathrm{~mol}$) were added to this solution, the reaction was stirred under reflux for 11 h , The reaction mixture was filtered, the filtrate was concentrated, then washed with sodium hydroxide solution and extracted with ethyl acetate. After concentration, the residue was purified by recrystallization from chloroform (yield; $20.1 \mathrm{~g}, 76 \%$, m.p. 339 K). Spectroscopic analysis: IR (KBr, $v, \mathrm{~cm}^{-1}$): 3085, 2957, 1541, 1351, 1032, 814. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): 2.21(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{t}, 4 \mathrm{H}), 4.06(\mathrm{t}, 4 \mathrm{H}), 6.84(\mathrm{~d}, 4 \mathrm{H})$.

S3. Refinement

All H atoms were positioned geometrically and refined as riding $(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA)$ and allowed to ride on their parent atoms, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}$ (parent).

Figure 1
The molecular structure of the title molecule, with the atom-numbering scheme, symmetry code: $-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+1$.
Displacement ellipsoids are drawn at the 75% probability level.

Figure 2
Part of the crystal structure of the title compound showing molecules being stacked along the c-axis.

1,4-Bis(3-chloropropoxy)benzene

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=263.15$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=4.9813$ (8) \AA
$b=8.3200(14) \AA$
$c=15.273$ (2) \AA
$\beta=93.156(6)^{\circ}$
$V=632.02(17) \AA^{3}$
$Z=2$

Data collection

Rigaku Saturn

diffractometer
Radiation source: rotating anode
Multilayer monochromator
Detector resolution: 14.222 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
$T_{\text {min }}=0.899, T_{\text {max }}=0.916$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.078$
$S=1.07$
1502 reflections
73 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=276$
$D_{\mathrm{x}}=1.383 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 339 K
Mo $K \alpha$ radiation, $\lambda=0.71075 \AA$
Cell parameters from 2060 reflections
$\theta=2.7-27.9^{\circ}$
$\mu=0.50 \mathrm{~mm}^{-1}$
$T=113 \mathrm{~K}$
Prism, colorless
$0.22 \times 0.20 \times 0.18 \mathrm{~mm}$

5847 measured reflections
1502 independent reflections
1273 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.9^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-4 \rightarrow 6$
$k=-10 \rightarrow 9$
$l=-20 \rightarrow 20$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0407 P)^{2}+\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
C11	$0.22691(7)$	$0.61216(4)$	$0.66618(2)$	$0.02618(13)$
O1	$0.16835(18)$	$0.17363(11)$	$0.60468(6)$	$0.0199(2)$
C1	$0.5063(2)$	$-0.01858(15)$	$0.59005(8)$	$0.0186(3)$
H1	0.5102	-0.0314	0.6519	0.022^{*}
C2	$0.3281(3)$	$0.09041(14)$	$0.54960(8)$	$0.0167(3)$
C3	$0.3213(3)$	$0.10898(15)$	$0.45872(9)$	$0.0185(3)$
H3	0.1997	0.1829	0.4304	0.022^{*}
C4	$-0.0045(3)$	$0.29417(15)$	$0.56500(9)$	$0.0194(3)$
H4A	-0.1349	0.2444	0.5218	0.023^{*}
H4B	0.1027	0.3745	0.5342	0.023^{*}
C5	$-0.1508(3)$	$0.37389(16)$	$0.63743(9)$	$0.0226(3)$
H5A	-0.2664	0.2930	0.6644	0.027^{*}
H5B	-0.2697	0.4587	0.6114	0.027^{*}
C6	$0.0331(3)$	$0.44827(16)$	$0.70864(9)$	$0.0250(3)$
H6A	0.1569	0.3651	0.7337	0.030^{*}
H6B	-0.0759	0.4887	0.7562	0.030^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0298(2)$	$0.0224(2)$	$0.0265(2)$	$-0.00092(14)$	$0.00272(15)$	$-0.00187(14)$
O1	$0.0221(5)$	$0.0210(5)$	$0.0167(5)$	$0.0060(4)$	$0.0016(4)$	$0.0003(4)$
C1	$0.0212(7)$	$0.0210(7)$	$0.0135(6)$	$-0.0013(5)$	$0.0005(5)$	$0.0011(5)$
C2	$0.0159(7)$	$0.0165(6)$	$0.0178(7)$	$-0.0012(5)$	$0.0015(5)$	$-0.0018(5)$
C3	$0.0184(7)$	$0.0174(6)$	$0.0193(7)$	$0.0010(5)$	$-0.0021(5)$	$0.0016(5)$
C4	$0.0199(7)$	$0.0191(6)$	$0.0190(7)$	$0.0029(5)$	$-0.0014(5)$	$0.0003(5)$
C5	$0.0224(7)$	$0.0224(7)$	$0.0234(8)$	$0.0019(5)$	$0.0043(6)$	$0.0004(6)$
C6	$0.0318(8)$	$0.0227(7)$	$0.0210(7)$	$-0.0005(6)$	$0.0056(6)$	$-0.0005(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 11-\mathrm{C} 6$	$1.8113(14)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.5111(17)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.3762(14)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
$\mathrm{O} 1-\mathrm{C} 4$	$1.4342(15)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9900
$\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$1.3887(17)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.5151(19)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.3897(17)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9900

C1-H1	0.9500	C5-H5B	0.9900
C2-C3	1.3951 (18)	C6-H6A	0.9900
C3-C1 ${ }^{\text {i }}$	1.3886 (17)	C6-H6B	0.9900
C3-H3	0.9500		
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 4$	116.58 (10)	C5-C4-H4B	110.2
C3i- $\mathrm{C} 1-\mathrm{C} 2$	120.91 (12)	H4A-C4-H4B	108.5
C3 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{H} 1$	119.5	C4-C5-C6	114.07 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.5	C4-C5-H5A	108.7
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	115.67 (11)	C6-C5-H5A	108.7
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	124.69 (12)	C4-C5-H5B	108.7
C1-C2-C3	119.63 (11)	C6-C5-H5B	108.7
C1- ${ }^{\text {i }} 3-\mathrm{C} 2$	119.46 (12)	H5A-C5-H5B	107.6
C1- $\mathrm{C}^{\text {i }}$ - H 3	120.3	C5-C6- Cl 1	111.33 (9)
C2-C3-H3	120.3	C5-C6-H6A	109.4
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	107.47 (11)	C11-C6-H6A	109.4
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	110.2	C5-C6-H6B	109.4
C5-C4-H4A	110.2	Cl1-C6-H6B	109.4
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.2	H6A-C6-H6B	108.0
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	176.07 (11)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	-0.2 (2)
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	-3.86 (18)	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	-177.69 (10)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	-179.68 (10)	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	57.71 (14)
C3i-C1-C2-C3	0.2 (2)	C4-C5-C6-Cl1	64.36 (13)

Symmetry code: (i) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the phenyl ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 A \cdots C g 1^{\mathrm{ii}}$	0.99	2.74	$3.577(2)$	143

Symmetry code: (ii) $x+1,-y+1 / 2, z-1 / 2$.

