

 $\nu = 67.212 \ (2)^{\circ}$ V = 1949.7 (3) Å³

Mo $K\alpha$ radiation

 $0.16 \times 0.15 \times 0.10 \ \mathrm{mm}$

25423 measured reflections

8942 independent reflections

6714 reflections with $I > 2\sigma(I)$

 $\mu = 0.58 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.075$

Z = 2

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dicarbonylchlorido(phenoxythiocarbonyl- $\kappa^2 C$,S)bis(triphenylphosphane*κP*)molybdenum(II)

Gene-Hsiang Lee,^a* Hsiao-Fen Wang,^b Kuang-Hway Yih^b* and Shou-Ling Huang^a

^aInstrumentation Center, College of Science, National Taiwan University, Taipei 106, Taiwan, and ^bDepartment of Applied Cosmetology, Hungkuang University, Shalu 433, Taichung, Taiwan

Correspondence e-mail: ghlee@ntu.edu.tw, khyih@sunrise.hk.edu.tw

Received 25 October 2010; accepted 14 December 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.006 Å; R factor = 0.053; wR factor = 0.128; data-to-parameter ratio = 18.7.

In the title complex, $[Mo(C_7H_5OS)Cl(C_{18}H_{15}P)_2(CO)_2]$, the geometry around the metal atom is a capped octahedron. The phenoxythiocarbonyl ligand coordinates the Mo^{II} atom through the C and S atoms. A one-dimensional structure is formed by $\pi - \pi$ intermolecular interactions and a supramolecular aggregation is determined by intermolecular C-H···O, C-H···Cl, C-H··· π (arene) hydrogen bonds and $CO \cdots \pi(arene)$ interactions $[O \cdots centroid distances =$ 3.485 (4) and 3.722 (3) Å].

Related literature

For the use of metallocarboxylic acids as intermediates in the homogeneous catalysis of the water gas shift reaction, see: Yoshida et al. (1978). For O-Aryl thiocarbonate, benzoxazoline-2-thione, chromene-2-thione and N,N-dimethylthiocarbamate metal complexes, see: Chen et al. (1978); McFarlane et al. (1998); Zheng et al. (2006) and Zhang & Shi (2004), respectively. For phenoxylcarbonyl metal complexes, see: Anderson et al. (2001). We are interested in the synthesis of dithiocarbamate, pyridine-2-thionate (Yih et al., 2010) and N,N-dimethyldithiocarbarmoyl (Yih & Lee, 2010) metal complexes. For a phenoxythiocarbonyl-palladium complex, see: Yih & Lee (2004). For $C-H \cdots O$ interactions, see: Strasser et al. (2009); Arumugam et al. (2010). For C-H··· π interactions, see: Suresh *et al.* (2007). For π - π interactions, see: Bartholomä et al. (2009); Hu et al. (2009). For the C-H···Cl interactions, see: Shawkataly et al. (2010); Qi et al. (2009). For $C-H \cdots S$ interactions, see: Asad et al. (2010); Goh et al. (2010). For C-H···acceptor interactions, see: Steiner (1996). For typical C–O and C–S bond lengths, see: Huheey (1983). For Mo-CO and C-O bond lengths in other molybdenumcarbonyl complexes, see: Yih & Lee (2008) and references therein.

Experimental

Crystal data [Mo(C₇H₅OS)Cl(C₁₈H₁₅P)₂(CO)₂] $M_r = 849.12$ Triclinic, $P\overline{1}$ a = 10.5685 (10) Åb = 12.5224 (11) Å c = 16.3983 (14) Å $\alpha = 82.088 \ (2)^{\circ}$ $\beta = 77.476 \ (2)^{\circ}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min} = 0.913, \ T_{\max} = 0.944$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	3 restraints
$wR(F^2) = 0.128$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3}$
8942 reflections	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$
478 parameters	

Table 1

Hydrogen-bond geometry (Å, °). Cg1, Cg2, Cg3 and Cg7 are the centroids of the C4-C9, C10-C15, C16-C21 and

C40–C45 rings, respectively.							
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$			

					-
C23-H23···O3	0.95	2.31	3.208 (5)	157	
$C24-H24\cdots O1^{i}$	0.95	2.58	3.199 (5)	123	
C39−H39···Cl1	0.95	2.80	3.573 (4)	139	
$C9-H9\cdots Cg3$	0.95	2.97	3.896 (5)	165	
$C14 - H14 \cdot \cdot \cdot Cg7^{ii}$	0.95	2.83	3.663 (5)	147	
$C20-H20\cdots Cg1^{iii}$	0.95	2.97	3.802 (4)	147	
$C27 - H27 \cdots Cg2$	0.95	2.84	3.636 (5)	141	
Symmetry codes:	(i) - <i>x</i> +	1, -y + 2, -z +	-1; (ii) x, y	v + 1, z; (ii	i)
-x + 1, -y + 2, -z + 2	2.				

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the National Science Council of the Republic of China for financial support (NSC98-2113-M-241-011-MY2).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2377).

References

- Anderson, S., Cook, D. J. & Hill, A. F. (2001). *Organometallics*, **20**, 2468–2476. Arumugam, N., Abdul Rahim, A. S., Osman, H., Yeap, C. S. & Fun, H.-K.
- (2010). Acta Cryst. E66, 01214–01215. Asad, M., Oo, C.-W., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst.
- E**66**, o2861–o2862.
- Bartholomä, M. D., Ouellette, W. & Zubieta, J. (2009). Acta Cryst. E65, o61. Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,
- Wisconsin, USA. Chen, H. W., Fackler, J. P., Schussler, D. P. & Thompson, L. D. (1978). J. Am.
- Chem. Soc. 100, 2370–2375.
- Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66, 01233–01234.
- Hu, D.-Y., Chu, X.-W. & Qu, Z.-R. (2009). Acta Cryst. E65, o2463.
- Huheey, J. E. (1983). *Inorganic Chemistry: Principles of Structure and Reactivity*, 3rd ed., p. A-37. New York: Harper & Row.
- McFarlane, W., Akrivos, P. D., Aslanudis, P., Karagiannidis, P., Atzisymeon, C., Numan, M. & Kokkou, S. (1998). *Inorg. Chim. Acta*, **281**, 121–125.

- Qi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507–m1508.
- Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m90-m91.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, Th. (1996). Crystallogr. Rev. 6, 1-57.
- Strasser, C. E., Cronje, S. & Raubenheimer, H. G. (2009). Acta Cryst. E65, m914.
- Suresh, J., Kumar, R. S., Perumal, S. & Natarajan, S. (2007). Acta Cryst. E63, 01375–01376.
- Yih, K. H. & Lee, G. H. (2004). J. Chin. Chem. Soc. 51, 265–270.
- Yih, K. H. & Lee, G. H. (2008). J. Organomet. Chem. 693, 3303-3311.
- Yih, K. H. & Lee, G. H. (2010). Organometallics, 29, 3397-3403.
- Yih, K.-H., Wang, H.-F. & Lee, G.-H. (2010). Acta Cryst. E66, m1189-m1190.
- Yoshida, T., Ueda, Y. & Otsuka, S. (1978). J. Am. Chem. Soc. 100, 3941-3942.
- Zhang, W. & Shi, M. (2004). Tetrahedron Lett. 45, 8921-8924.
- Zheng, Z., Chen, J., Luo, N., Yu, Z. & Han, X. (2006). Organometallics, 25, 5301–5310.

supporting information

Acta Cryst. (2011). E67, m117–m118 [https://doi.org/10.1107/S1600536810052530] Dicarbonylchlorido(phenoxythiocarbonyl-κ²C,S)bis(triphenylphosphaneκP)molybdenum(II)

Gene-Hsiang Lee, Hsiao-Fen Wang, Kuang-Hway Yih and Shou-Ling Huang

S1. Comment

The interest in the M—C(S)OPh moiety is due to its analogy with metallocarboxylic acid esters (M—C(O)OR) and metallocarboxylic acids themselves. Metallocarboxylic acids have been proposed to be the key intermediates in the homogeneous catalysis of the water gas shift reaction (Yoshida *et al.*, 1978). *O*-Aryl thiocarbonate (Chen *et al.*, 1978), benzoxazoline-2-thione (McFarlane *et al.*, 1998), chromene-2-thione (Zheng *et al.*, 2006), and *N*,*N*-dimethylthio-carbamate (Zhang *et al.*, 2004) metal complexes have been reported but few phenoxylcarbonyl metal complexes have been studied (Anderson *et al.*, 2001). We are interested in the synthesis of dithiocarbamate, pyridine-2-thionate (Yih *et al.*, 2010) and *N*,*N*-dimethyldithiocarbarmoyl (Yih & Lee, 2010) metal complexes. To our knowledge, no chelating phenoxythiocarbonyl crystal structure has been described so far.

The molecular structure of the title compound $[Mo(CO)_2(SCOPh)(PPh_3)_2CI]$, (I),is shown in Fig. 1. The geometry around the metal atom is midway a capped trigonal prism and a capped octahedron. The capped trigonal prism consist of a phosphorus atom, P2, in the unique capping position [Mo1-P2 = 2.5509 (10) Å]. Two carbonyl groups, C1-O1 and C2-O2, C11, and the sulfur atom S1 of the phenoxythiocarbonyl ligand are present in the capped quadrilateral face [Mo-C1 = 1.938 (4) Å; Mo-C2 = 1.998 (4) Å; Mo-C11 = 2.5160 (9) Å; Mo-S1 = 2.6553 (10) Å] and the phenoxythiocarbonyl ligand is at the unique edge [Mo-S1 = 2.6553 (10) Å; Mo-C3 = 2.025 (4) Å]. In contrast the capped octahedron is made up of C3 in the capping position, C1, S1, and P2 in the capped face, and P1, C2, and C11 in the uncapped face. Two PPh₃ ligands are in *trans* position: P1-Mo-P2, 173.19 (3)°, while the sulfur atom of the phenoxythiocarbonyl ligand, chloride and two carbonyl groups are *trans* to each other: C2-Mo-S1, 170.67 (11)°, C1-Mo-C11, 154.93 (12)°. The mean Mo-C-O angle of (I) (176.4 (3)°) shows the group to be essentially linear, similarly to other terminal carbonyls of Mo. The Mo-CO (1.938 (4), 1.998 (4) Å) and C-O (1.163 (4), 1.146 (4) Å) distances are both consistent with the range of values reported for the other molybdenum carbonyl complexes (Yih & Lee, 2008 and references therein). The Mo-C1 bond distance is clearly shorter than that of Mo-C2 due to the larger *trans* influence of the sulfur atom of phenoxythiocarbonyl ligand than that of the chlorine ligand.

Within the SCOPh ligand, the C—S (1.650 (4) Å) and SC—O (1.319 (4) Å) bond distances are typical for C—O and C —S bonds having partial double bond character and are certainly much shorter than typical C—O (1.43 Å) and C—S (1.82 Å) single bonds (Huheey, 1983). The S1—C3—O3 group shows a geometrical environment characteristic of sp^2 hybridization of the carbon atom. In addition, the S1—C3—O3 angle of 129.0 (3)° is larger than that found in the palladium phenoxythiocarbonyl complex (125.2 (6)°) (Yih *et al.*, 2004). To our knowledge, the title complex is the first chelating phenoxythiocarbonyl-metal complex in the literature.

Three weak intramolecular hydrogen bonds and one intermolecular hydrogen bond are present in the structure (Table 1, entries 1-4). In addition, the phenyl ring (C4—C9) of the phenoxythiocarbonyl ligand and a phenyl ring (C10—C15)

from the triphenylphosphane are nearly parallel, with an intercentroid distance of 3.938 (3)Å and a shortest inter-ring distance of 3.160 (2) Å. The resulting π - π interaction links molecules into a 1-D chain structure (Fig. 2).Finally, a supramolecular aggregation is determined by four C—H··· π (arene) hydrogen bonds (Fig. 3 and Table 1, entries 5-8). The structure also presents some short CO··· π (arene) contacts, O1···*Cg*5: 3.485 (4) and O2···*Cg*2^{iv}:3.722 (3)Å, (iv = -x + 2, -y_2, -z + 1)

In the ¹H NMR spectrum of (I), 35 protons of the seven phenyl exhibit multiple resonances in the region of δ 7.12–7.73. In the ¹³C {¹H} NMR spectrum of (I), two triplet resonances appear at δ 229.3 and δ 238.6 with ²J_{P-C} = 12.95, 11.95 Hz couplings for the two inequivalent carbonyl groups, respectively. The ³¹P {¹H} NMR spectrum of (I) shows one resonance at δ 34.2.

It is also noted that the IR spectrum of the title complex (I) shows four stretching bands, two at 1965, 1891 cm⁻¹ for C=O and two at 1483, 1434 cm⁻¹ for C-OPh groups. In the FAB mass spectra, the base peak with the typical Mo isotope distribution is in agreement with the $[M^+]$ molecular mass of (I).

S2. Experimental

The synthesis of the title compound (I) was carried out as follows. PhOCSCl (0.135 g, 1.1 mmol) was added to a flask (100 ml) containing CH₂Cl₂ (10 ml) and [Mo(CH₃CN)₂(CO)₂(PPh₃)₂] (0.758 g, 1.0 mmol) at room temperature. The color of the solution was changed from yellow to red immediately. The solution was concentrated under vacuum and n-hexane (10 ml) was added to initiate a yellow-brown precipitation. The resulting bright-yellow solid was isolated by filtration (G4), washed with diethyl ether (2 *x* 10 ml) and subsequently dried under vacuum, yielding [Mo(CO)₂(SCOPh)(PPh₃)₂Cl] (0.764 g, 90%). Further purification was accomplished by recrystallization from 1/10 CH₂Cl₂/n-hexane. The orange crystals of (I) for X-ray structure analysis were obtained by slow diffusion of n-hexane into the CH₂Cl₂ solution of the title compound at room temperature for 3 days. Spectroscopic analysis: ¹H NMR (CDCl₃, 298 K, δ , p.p.m.): δ 7.12–7.73 (m, 35H, Ph). ³¹P {¹H} NMR (CDCl₃, 298 K, δ , p.p.m.): δ 34.3. ¹³C {¹H} NMR (CDCl₃, 298 K, δ , p.p.m.): δ 127.9- 134.2 (m, C of Ph), 159.7 (s, O—Ph), 229.3, 238.6 (t, CO, ²J_{P-C} = 12.95, 11.95 Hz). MS (m/z): 850 (*M*⁺). Anal. Calcd for C₄sH₃₅ClO₃P₂SMo: C, 63.65; H, 4.16. Found: C, 63.50; H, 4.05.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figure 1

The molecular structure of (I), with atom labels and the 50% probability displacement ellipsoids.

The packing diagram of (I), showing the π - π interaction and 1-D chain structure.

The packing diagram of (I), showing the intermolecular C—H···O, C—H··· π (arene) hydrogen bonds and CO··· π (arene) interactions.

Dicarbonylchlorido(phenoxythiocarbonyl- $\kappa^2 C$,S)bis(triphenylphosphane- κP)molybdenum(II)

Crystal data

$[Mo(C_7H_5OS)Cl(C_{18}H_{15}P)_2(CO)_2]$	Z = 2
$M_r = 849.12$	F(000) = 868
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.446 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.5685 (10) Å	Cell parameters from 2285 reflections
b = 12.5224 (11) Å	$\theta = 2.2 - 20.7^{\circ}$
c = 16.3983 (14) Å	$\mu = 0.58 \text{ mm}^{-1}$
$\alpha = 82.088 \ (2)^{\circ}$	T = 150 K
$\beta = 77.476 \ (2)^{\circ}$	Block, orange
$\gamma = 67.212 \ (2)^{\circ}$	$0.16 \times 0.15 \times 0.10 \text{ mm}$
V = 1949.7 (3) Å ³	

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007) $T_{min} = 0.913, T_{max} = 0.944$ Refinement	25423 measured reflections 8942 independent reflections 6714 reflections with $I > 2\sigma(I)$ $R_{int} = 0.075$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.3^{\circ}$ $h = -13 \rightarrow 13$ $k = -16 \rightarrow 16$ $l = -21 \rightarrow 21$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.00	H-atom parameters constrained $1/(-2/(T^2)) + (0.05/(CD)^2)$
478 monometers	$W = 1/[\sigma^{2}(F_{0}^{2}) + (0.0566P)^{2}]$
476 parameters	where $F = (F_0 + 2F_c)/5$ (Λ/σ) = 0.001
Drimory atom site location: structure invariant	$(\Delta/\sigma)_{\text{max}} = 0.001$ $\Lambda_{0} = -1.02 \text{ s} ^{-3}$
direct methods	$\Delta \rho_{\text{max}} = 1.02 \text{ C A}^{-3}$
uneu menious	$\Delta p_{\rm min} = -0.81 \ {\rm e \ A}^{-1}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Mol	0.77982 (3)	0.84316 (3)	0.741327 (19)	0.01739 (10)
C11	1.00258 (9)	0.78068 (8)	0.79778 (6)	0.0237 (2)
P1	0.77983 (9)	1.04763 (8)	0.71651 (6)	0.0187 (2)
P2	0.80792 (10)	0.63059 (8)	0.77147 (6)	0.0218 (2)
S1	0.61369 (10)	0.87871 (8)	0.88984 (6)	0.0247 (2)
C1	0.6626 (4)	0.8368 (3)	0.6676 (2)	0.0246 (8)
C2	0.8831 (4)	0.8414 (3)	0.6237 (2)	0.0259 (8)
C3	0.5806 (4)	0.9314 (3)	0.7956 (2)	0.0212 (8)
C4	0.3344 (4)	1.0250 (3)	0.8332 (2)	0.0261 (9)
C5	0.2484 (4)	0.9681 (3)	0.8282 (2)	0.0284 (9)
Н5	0.2768	0.9084	0.7905	0.034*
C6	0.1185 (4)	1.0009 (4)	0.8801 (3)	0.0338 (10)
H6	0.0563	0.9636	0.8782	0.041*
C7	0.0797 (4)	1.0870 (4)	0.9344 (3)	0.0381 (10)
H7	-0.0100	1.1102	0.9688	0.046*
C8	0.1699 (5)	1.1401 (4)	0.9392 (3)	0.0389 (11)

H8	0.1431	1.1980	0.9780	0.047*
C9	0.3002 (4)	1.1094 (4)	0.8875 (3)	0.0337 (10)
H9	0.3631	1.1458	0.8899	0.040*
C10	0.9438 (4)	1.0723 (3)	0.6985 (2)	0.0213 (8)
C11	1.0648 (4)	0.9969 (3)	0.6529 (2)	0.0260 (8)
H11	1.0672	0.9253	0.6382	0.031*
C12	1.1829 (4)	1.0261 (4)	0.6287 (3)	0.0362 (10)
H12	1.2651	0.9746	0.5970	0.043*
C13	1.1808 (4)	1.1293 (4)	0.6504 (3)	0.0367 (10)
H13	1.2611	1.1491	0.6332	0.044*
C14	1.0628 (4)	1.2033 (4)	0.6969 (3)	0.0390 (11)
H14	1.0618	1.2738	0.7129	0.047*
C15	0.9447 (4)	1.1748 (3)	0.7206 (3)	0.0317 (9)
H15	0.8631	1.2265	0.7526	0.038*
C16	0.6791 (4)	1.1418 (3)	0.8016 (2)	0.0190 (7)
C17	0.5762 (4)	1.2503 (3)	0.7907 (2)	0.0257 (8)
H17	0.5522	1.2773	0.7370	0.031*
C18	0.5087 (4)	1.3192 (3)	0.8585 (3)	0.0319 (9)
H18	0.4391	1.3936	0.8506	0.038*
C19	0.5411 (4)	1.2812 (3)	0.9366 (2)	0.0296 (9)
H19	0.4936	1.3285	0.9827	0.036*
C20	0.6439 (4)	1.1730 (3)	0.9479 (2)	0.0269 (9)
H20	0.6674	1.1465	1.0017	0.032*
C21	0.7121 (4)	1.1037 (3)	0.8810 (2)	0.0233 (8)
H21	0.7820	1.0296	0.8893	0.028*
C22	0.7063 (4)	1.1261 (3)	0.6235 (2)	0.0208 (8)
C23	0.5875 (4)	1.1172 (3)	0.6072 (2)	0.0258 (8)
H23	0.5432	1.0723	0.6451	0.031*
C24	0.5325 (4)	1.1720 (3)	0.5373 (2)	0.0292 (9)
H24	0.4511	1.1644	0.5274	0.035*
C25	0.5952 (4)	1.2384 (3)	0.4810 (2)	0.0293 (9)
H25	0.5569	1.2767	0.4328	0.035*
C26	0.7136 (4)	1.2480 (4)	0.4960 (3)	0.0349 (10)
H26	0.7577	1.2925	0.4577	0.042*
C27	0.7684 (4)	1.1931 (3)	0.5667 (2)	0.0298 (9)
H27	0.8495	1.2011	0.5766	0.036*
C28	0.6717 (4)	0.5957 (3)	0.7413 (2)	0.0262 (9)
C29	0.6950 (5)	0.5153 (3)	0.6840 (3)	0.0330 (10)
H29	0.7876	0.4705	0.6591	0.040*
C30	0.5822 (6)	0.5006 (4)	0.6631 (3)	0.0454 (13)
H30	0.5983	0.4467	0.6229	0.054*
C31	0.4482 (6)	0.5630 (4)	0.6998 (3)	0.0488 (14)
H31	0.3720	0.5528	0.6846	0.059*
C32	0.4239 (5)	0.6405 (4)	0.7588 (3)	0.0418 (12)
H32	0.3313	0.6822	0.7853	0.050*
C33	0.5353 (4)	0.6575 (4)	0.7793 (3)	0.0333 (10)
H33	0.5185	0.7115	0.8195	0.040*
C34	0.8098 (4)	0.5616 (3)	0.8780 (2)	0.0250 (8)

C35	0.7853 (5)	0.4590 (4)	0.8978 (3)	0.0403 (11)
H35	0.7664	0.4240	0.8563	0.048*
C36	0.7882 (5)	0.4078 (4)	0.9780 (3)	0.0437 (12)
H36	0.7733	0.3368	0.9908	0.052*
C37	0.8122 (4)	0.4579 (4)	1.0391 (3)	0.0352 (10)
H37	0.8138	0.4223	1.0941	0.042*
C38	0.8340 (4)	0.5609 (4)	1.0196 (2)	0.0317 (9)
H38	0.8488	0.5972	1.0619	0.038*
C39	0.8346 (4)	0.6120 (3)	0.9393 (2)	0.0267 (8)
H39	0.8522	0.6819	0.9264	0.032*
C40	0.9734 (4)	0.5414 (3)	0.7104 (3)	0.0301 (9)
C41	1.0837 (4)	0.4694 (4)	0.7479 (3)	0.0394 (11)
H41	1.0720	0.4585	0.8072	0.047*
C42	1.2122 (5)	0.4129 (4)	0.6989 (4)	0.0572 (16)
H42	1.2880	0.3632	0.7251	0.069*
C43	1.2308 (6)	0.4275 (5)	0.6144 (4)	0.0636 (18)
H43	1.3191	0.3879	0.5816	0.076*
C44	1.1228 (6)	0.4992 (5)	0.5763 (4)	0.0601 (16)
H44	1.1361	0.5092	0.5169	0.072*
C45	0.9937 (5)	0.5577 (4)	0.6235 (3)	0.0417 (11)
H45	0.9194	0.6087	0.5967	0.050*
01	0.5958 (3)	0.8323 (3)	0.62133 (18)	0.0408 (8)
O2	0.9334 (3)	0.8416 (3)	0.55439 (18)	0.0425 (8)
03	0.4605 (3)	0.9978 (2)	0.77308 (16)	0.0340 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.01565 (16)	0.02145 (17)	0.01619 (16)	-0.00996 (12)	-0.00020 (11)	0.00036 (12)
Cl1	0.0189 (4)	0.0264 (5)	0.0288 (5)	-0.0124 (4)	-0.0075 (4)	0.0054 (4)
P1	0.0146 (4)	0.0212 (5)	0.0189 (5)	-0.0077 (4)	0.0006 (4)	0.0003 (4)
P2	0.0221 (5)	0.0220 (5)	0.0231 (5)	-0.0111 (4)	-0.0021 (4)	-0.0015 (4)
S1	0.0223 (5)	0.0310 (5)	0.0189 (4)	-0.0107 (4)	-0.0001 (4)	0.0018 (4)
C1	0.025 (2)	0.034 (2)	0.0206 (19)	-0.0184 (17)	-0.0052 (14)	0.0052 (16)
C2	0.026 (2)	0.033 (2)	0.0200 (13)	-0.0162 (17)	0.0028 (13)	-0.0023 (16)
C3	0.0212 (19)	0.0235 (19)	0.0226 (19)	-0.0149 (16)	-0.0007 (15)	0.0014 (15)
C4	0.0122 (17)	0.039 (2)	0.022 (2)	-0.0074 (16)	0.0004 (15)	0.0017 (17)
C5	0.023 (2)	0.033 (2)	0.028 (2)	-0.0094 (17)	-0.0037 (17)	-0.0026 (17)
C6	0.023 (2)	0.047 (3)	0.034 (2)	-0.020 (2)	-0.0021 (18)	0.002 (2)
C7	0.023 (2)	0.048 (3)	0.037 (3)	-0.014 (2)	0.0089 (19)	-0.005 (2)
C8	0.040 (3)	0.037 (2)	0.040 (3)	-0.017 (2)	0.003 (2)	-0.012 (2)
C9	0.029 (2)	0.042 (3)	0.035 (2)	-0.022 (2)	0.0000 (18)	-0.0013 (19)
C10	0.0200 (19)	0.0242 (19)	0.0209 (19)	-0.0115 (16)	-0.0033 (15)	0.0044 (15)
C11	0.0203 (19)	0.033 (2)	0.027 (2)	-0.0147 (17)	0.0024 (16)	-0.0052 (17)
C12	0.021 (2)	0.043 (3)	0.039 (3)	-0.0114 (19)	0.0069 (18)	-0.006 (2)
C13	0.027 (2)	0.044 (3)	0.043 (3)	-0.024 (2)	0.0030 (19)	0.005 (2)
C14	0.034 (2)	0.031 (2)	0.056 (3)	-0.021 (2)	0.002 (2)	-0.006 (2)
C15	0.021 (2)	0.030 (2)	0.043 (3)	-0.0130 (17)	0.0035 (18)	-0.0036 (18)

supporting information

C16	0.0162 (17)	0.0236 (19)	0.0172 (18)	-0.0119 (15)	0.0047 (14)	-0.0001 (14)
C17	0.022 (2)	0.025 (2)	0.027 (2)	-0.0099 (16)	0.0016 (16)	0.0030 (16)
C18	0.027 (2)	0.026 (2)	0.035 (2)	-0.0070 (17)	0.0031 (18)	-0.0023 (18)
C19	0.029 (2)	0.031 (2)	0.027 (2)	-0.0135 (18)	0.0081 (17)	-0.0092 (17)
C20	0.025 (2)	0.036 (2)	0.0205 (19)	-0.0168 (18)	0.0035 (16)	-0.0015 (17)
C21	0.0209 (19)	0.0223 (19)	0.028 (2)	-0.0113 (16)	-0.0017 (16)	0.0010 (16)
C22	0.0177 (18)	0.0218 (19)	0.0194 (18)	-0.0062 (15)	0.0018 (14)	-0.0017 (15)
C23	0.0180 (19)	0.032 (2)	0.026 (2)	-0.0099 (16)	-0.0023 (16)	0.0037 (17)
C24	0.023 (2)	0.034 (2)	0.028 (2)	-0.0105 (18)	-0.0026 (17)	0.0015 (17)
C25	0.036 (2)	0.029 (2)	0.0159 (19)	-0.0071 (18)	-0.0046 (17)	0.0042 (16)
C26	0.039 (3)	0.036 (2)	0.030(2)	-0.021 (2)	-0.0022 (19)	0.0094 (19)
C27	0.027 (2)	0.035 (2)	0.027 (2)	-0.0164 (18)	0.0008 (17)	0.0050 (17)
C28	0.033 (2)	0.028 (2)	0.024 (2)	-0.0200 (18)	-0.0096 (17)	0.0094 (16)
C29	0.046 (3)	0.031 (2)	0.033 (2)	-0.025 (2)	-0.013 (2)	0.0047 (18)
C30	0.074 (4)	0.042 (3)	0.041 (3)	-0.040 (3)	-0.029 (3)	0.015 (2)
C31	0.068 (4)	0.049 (3)	0.056 (3)	-0.048 (3)	-0.039 (3)	0.030 (3)
C32	0.036 (3)	0.044 (3)	0.054 (3)	-0.027 (2)	-0.016 (2)	0.018 (2)
C33	0.033 (2)	0.036 (2)	0.038 (2)	-0.022 (2)	-0.0061 (19)	0.0023 (19)
C34	0.023 (2)	0.025 (2)	0.025 (2)	-0.0087 (16)	-0.0032 (16)	-0.0002 (16)
C35	0.054 (3)	0.035 (2)	0.041 (3)	-0.024 (2)	-0.017 (2)	0.008 (2)
C36	0.052 (3)	0.035 (3)	0.048 (3)	-0.027 (2)	-0.013 (2)	0.019 (2)
C37	0.031 (2)	0.040 (3)	0.030 (2)	-0.013 (2)	-0.0043 (19)	0.0127 (19)
C38	0.028 (2)	0.040 (2)	0.024 (2)	-0.0104 (19)	-0.0035 (17)	-0.0001 (18)
C39	0.022 (2)	0.026 (2)	0.028 (2)	-0.0077 (16)	-0.0016 (16)	0.0017 (16)
C40	0.030 (2)	0.029 (2)	0.035 (2)	-0.0169 (18)	0.0023 (18)	-0.0126 (18)
C41	0.024 (2)	0.037 (2)	0.062 (3)	-0.0143 (19)	-0.005 (2)	-0.015 (2)
C42	0.026 (2)	0.042 (3)	0.112 (5)	-0.017 (2)	-0.002 (3)	-0.030 (3)
C43	0.037 (3)	0.052 (3)	0.102 (5)	-0.027 (3)	0.032 (3)	-0.046 (3)
C44	0.066 (4)	0.056 (3)	0.061 (4)	-0.039 (3)	0.036 (3)	-0.037 (3)
C45	0.048 (3)	0.039 (3)	0.038 (3)	-0.023 (2)	0.011 (2)	-0.012 (2)
01	0.052 (2)	0.056 (2)	0.0298 (17)	-0.0332 (17)	-0.0188 (15)	0.0068 (14)
O2	0.0468 (19)	0.059 (2)	0.0250 (16)	-0.0300 (16)	0.0082 (14)	-0.0066 (14)
O3	0.0160 (14)	0.0525 (18)	0.0246 (15)	-0.0089 (13)	-0.0003 (11)	0.0103 (13)

Geometric parameters (Å, °)

Mol—Cl	1.938 (4)	C20—C21	1.381 (5)
Mo1—C2	1.998 (4)	C20—H20	0.9500
Mo1—C3	2.025 (4)	C21—H21	0.9500
Mo1—Cl1	2.5160 (9)	C22—C23	1.387 (5)
Mo1—P1	2.5368 (10)	C22—C27	1.397 (5)
Mo1—P2	2.5509 (10)	C23—C24	1.373 (5)
Mo1—S1	2.6553 (10)	С23—Н23	0.9500
P1-C16	1.819 (4)	C24—C25	1.391 (5)
P1-C10	1.831 (4)	C24—H24	0.9500
P1—C22	1.845 (4)	C25—C26	1.378 (6)
P2—C40	1.829 (4)	С25—Н25	0.9500
P2—C28	1.834 (4)	C26—C27	1.383 (5)

supporting information

P2—C34	1.840 (4)	C26—H26	0.9500
S1—C3	1.650 (4)	C27—H27	0.9500
C1—01	1.163 (4)	C28—C29	1.388 (5)
C2—O2	1.146 (4)	C28—C33	1.394 (6)
C3—O3	1.319 (4)	C29—C30	1.392 (6)
C4—C9	1.365 (6)	C29—H29	0.9500
C4—C5	1.375 (5)	C30—C31	1.372 (7)
C403	1.427 (4)	C30—H30	0.9500
C5—C6	1.390 (5)	C31—C32	1.379(7)
С5—Н5	0.9500	C31—H31	0.9500
C6-C7	1 374 (6)	C32 - C33	1 389 (5)
С6—Н6	0.9500	C32—H32	0.9500
C7 - C8	1 376 (6)	C33—H33	0.9500
С7—Н7	0.9500	C34 - C39	1 377 (5)
C8 - C9	1 392 (6)	C_{34} C_{35}	1.377(5) 1 390(5)
C8—H8	0.9500	$C_{35} - C_{36}$	1 382 (6)
C9H9	0.9500	C35—H35	0.9500
C_{10}	1 385 (5)	C36-C37	1 367 (6)
C10-C11	1.389 (5)	C36—H36	0.9500
	1.305(5)	C_{37} C_{38}	1 380 (6)
C11_H11	0.9500	C37—H37	0.9500
C_{12}	1 378 (6)	C_{38} C_{39}	1 383 (5)
C12—H12	0.9500	C38—H38	0.9500
C12 $C13$ $C14$	1 372 (6)	C39—H39	0.9500
C13H13	0.9500	C40-C41	1 377 (6)
C14— $C15$	1 391 (5)	C40-C45	1.397 (6)
C14—H14	0.9500	C41-C42	1.392 (0)
C15—H15	0.9500	C41—H41	0.9500
C16-C17	1 391 (5)	C42 - C43	1 354 (8)
C_{16} C_{21}	1.391(5) 1.393(5)	C42 - H42	0.9500
C_{17} C_{18}	1 391 (5)	C43 - C44	1 364 (8)
C17—H17	0.9500	C43—H43	0.9500
C18— $C19$	1.372(5)	C44— $C45$	1 386 (6)
C18—H18	0.9500	C44—H44	0.9500
C_{19} C_{20}	1 388 (5)	C45—H45	0.9500
C19—H19	0.9500		0.9200
	0.7500		
C1 - Mo1 - C2	71 73 (15)	C17—C18—H18	119.6
C1 - Mo1 - C3	73,73 (15)	$C_{18} - C_{19} - C_{20}$	119.5 (4)
C^2 —Mo1—C3	132.98 (15)	C18 - C19 - H19	120.3
C1 - Mo1 - C11	154 93 (12)	C_{20} C_{19} H_{19}	120.3
C^2 —Mo1—Cl1	91 25 (11)	$C_{21} - C_{20} - C_{19}$	120.3 (4)
C3-Mo1-C11	130.01 (10)	C21—C20—H20	119.9
C1—Mo1—P1	104.78 (11)	C19—C20—H20	119.9
C2—Mo1—P1	78.19 (11)	C20-C21-C16	120.4 (3)
C3—Mo1—P1	80.87 (10)	C20—C21—H21	119.8
Cl1—Mo1—P1	88.95 (3)	C16—C21—H21	119.8
C1—Mo1—P2	81.36 (11)	C23—C22—C27	117.9 (3)
	,		

C2—Mo1—P2	101.33 (11)	C23—C22—P1	119.9 (3)
C3—Mo1—P2	103.97 (10)	C27—C22—P1	122.2 (3)
Cl1—Mo1—P2	84.26 (3)	C24—C23—C22	121.3 (4)
P1—Mo1—P2	173.19 (3)	С24—С23—Н23	119.3
C1—Mo1—S1	104.16 (11)	С22—С23—Н23	119.3
C2-Mo1-S1	170.67 (11)	C_{23} C_{24} C_{25}	120.4 (4)
C_3 —Mo1—S1	38 38 (10)	C_{23} C_{24} H_{24}	119.8
C11—Mo1—S1	95 19 (3)	C_{25} C_{24} H24	119.8
P1—Mo1—S1	95 15 (3)	$C_{25} = C_{25} = C_{24}$	119.1 (4)
P2—Mo1—S1	86.06.(3)	$C_{26} = C_{25} = H_{25}$	120.4
C_{16} P1_C10	100.80(16)	C_{24} C_{25} H_{25}	120.1
$C_{16} = P_{1} = C_{22}$	104.60 (16)	$C_{24} = C_{25} = C_{25}$	120.4 120.4(4)
$C_{10} = P_1 = C_{22}$	104.00(10) 101.17(16)	$C_{25} = C_{26} = C_{27}$	110.8
$C_{10} = 1 = 0.22$	101.17(10) 114.53(11)	$C_{25} = C_{20} = H_{20}$	119.8
C_{10} P_1 M_{01}	114.33(11) 120.45(12)	$C_{27} = C_{20} = 1120$	119.0 120.0(4)
C_{10} D_{11} M_{01}	120.43(12) 112.17(12)	$C_{20} = C_{27} = C_{22}$	120.9 (4)
C_{22} FI-MOI	113.17(12) 106.20(18)	$C_{20} = C_{27} = H_{27}$	119.5
C40 - P2 - C28	100.39(18) 104.26(18)	$C_{22} = C_{27} = H_{27}$	119.5
C40 - P2 - C34	104.30 (18)	$C_{29} = C_{28} = C_{33}$	119.2(4)
$C_{28} = P_2 = C_{34}$	100.80(17)	$C_{29} = C_{28} = P_2$	125.1(5)
C40—P2—Mol	108.48 (13)	C33—C28—P2	115.7(3)
C28—P2—Mol	113.81 (12)	$C_{28} = C_{29} = C_{30}$	119.7 (4)
C34—P2—Mol	121.70 (12)	C28—C29—H29	120.1
C3—SI—Mol	49.67 (13)	С30—С29—Н29	120.1
O1—C1—Mo1	177.8 (3)	C31—C30—C29	120.7 (5)
O2—C2—Mo1	175.0 (3)	С31—С30—Н30	119.6
O3—C3—S1	129.0 (3)	С29—С30—Н30	119.6
O3—C3—Mo1	138.8 (3)	C30—C31—C32	120.1 (4)
S1—C3—Mo1	91.95 (16)	С30—С31—Н31	120.0
C9—C4—C5	123.6 (4)	С32—С31—Н31	120.0
C9—C4—O3	120.1 (3)	C31—C32—C33	119.8 (5)
C5—C4—O3	116.1 (3)	С31—С32—Н32	120.1
C4—C5—C6	117.7 (4)	С33—С32—Н32	120.1
C4—C5—H5	121.2	C32—C33—C28	120.4 (4)
С6—С5—Н5	121.2	С32—С33—Н33	119.8
C7—C6—C5	120.2 (4)	С28—С33—Н33	119.8
С7—С6—Н6	119.9	C39—C34—C35	119.2 (4)
С5—С6—Н6	119.9	C39—C34—P2	120.0 (3)
C6—C7—C8	120.5 (4)	C35—C34—P2	120.7 (3)
С6—С7—Н7	119.7	C36—C35—C34	120.0 (4)
С8—С7—Н7	119.7	С36—С35—Н35	120.0
C7—C8—C9	120.4 (4)	С34—С35—Н35	120.0
С7—С8—Н8	119.8	C37—C36—C35	120.9 (4)
С9—С8—Н8	119.8	С37—С36—Н36	119.5
C4—C9—C8	117.6 (4)	С35—С36—Н36	119.5
С4—С9—Н9	121.2	C36—C37—C38	119.0 (4)
С8—С9—Н9	121.2	C36—C37—H37	120.5
C15—C10—C11	118.5 (3)	С38—С37—Н37	120.5
C15—C10—P1	120.0 (3)	C37—C38—C39	120.9 (4)
	× /		· · ·

C11—C10—P1	121.0 (3)	С37—С38—Н38	119.6
C10—C11—C12	120.2 (4)	С39—С38—Н38	119.6
C10—C11—H11	119.9	C34—C39—C38	120.0 (4)
C12—C11—H11	119.9	С34—С39—Н39	120.0
C13—C12—C11	120.3 (4)	С38—С39—Н39	120.0
C13—C12—H12	119.9	C41—C40—C45	119.0 (4)
C11—C12—H12	119.9	C41—C40—P2	121.7 (3)
C14—C13—C12	120.1 (4)	C45—C40—P2	118.7 (3)
C14—C13—H13	120.0	C40—C41—C42	119.8 (5)
C12—C13—H13	120.0	C40—C41—H41	120.1
C13—C14—C15	119.7 (4)	C42—C41—H41	120.1
C13—C14—H14	120.1	C43—C42—C41	120.9 (5)
C15—C14—H14	120.1	C43—C42—H42	119.5
C10-C15-C14	121.2 (4)	C41—C42—H42	119.5
C10—C15—H15	119.4	C42—C43—C44	120.0 (5)
C14—C15—H15	119.4	C42—C43—H43	120.0
C17—C16—C21	119.1 (3)	C44—C43—H43	120.0
C17—C16—P1	123.5 (3)	C43—C44—C45	120.4 (5)
C21—C16—P1	117.4 (3)	C43—C44—H44	119.8
C18—C17—C16	119.8 (4)	C45—C44—H44	119.8
С18—С17—Н17	120.1	C44—C45—C40	119.8 (5)
С16—С17—Н17	120.1	C44—C45—H45	120.1
C19—C18—C17	120.9 (4)	C40—C45—H45	120.1
C19—C18—H18	119.6	C3—O3—C4	120.2 (3)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg7 are the centroids of the C4–C9, C10–C15, C16–C21 and C40–C45 rings, respectively.

D—H···A	D—H	H···A	D···A	D—H···A
С23—Н23…О3	0.95	2.31	3.208 (5)	157
C24—H24…O1 ⁱ	0.95	2.58	3.199 (5)	123
C39—H39…Cl1	0.95	2.80	3.573 (4)	139
C39—H39…S1	0.95	2.87	3.361 (4)	114
С9—Н9…Сg3	0.95	2.97	3.896 (5)	165
C14—H14…Cg7 ⁱⁱ	0.95	2.83	3.663 (5)	147
С20—Н20…Сд1 ^{ііі}	0.95	2.97	3.802 (4)	147
C27—H27····Cg2	0.95	2.84	3.636 (5)	141

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, -*y*+2, -*z*+2.