organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,4-Bis(1H-benzimidazol-2-yl)benzene methanol monosolvate

Jiang-Bo Su, Shen Lin,* Li-Juan Chen, Ming-Xing Yang and Hua Huang

College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China Correspondence e-mail: shenlin@fjnu.edu.cn;_jiangbosu@163.com

Received 30 September 2010; accepted 25 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.119; data-to-parameter ratio = 13.1.

The asymmetric unit of the title compound, $C_{20}H_{14}N_4 \cdot CH_4O$, contains two independent half-molecules, each located on an inversion centre, and a methanol solvent molecule. The benzimidazolyl groups form different dihedral angles $[24.0 (1) \text{ and } 11.6 (1)^{\circ}]$ with the plane of the central benzene ring in the two molecules. In the crystal, a two-dimensional network is formed through N-H··· N, N-H···O and O-H...N hydrogen-bonding interactions between the benzimidazole units and methanol solvent molecules. $\pi - \pi$ stacking interactions also occur between the benzimidazole rings of adjacent molecules, with centroid-centroid distances of 3.720 (14) Å and interplanar distances of 3.53 (1) Å.

Related literature

For the synthesis of the title compound see: Wu et al. (2009). For the properties and applications of benzimidazoles, see: Tidwell et al. (1993); Salunke et al. (1994); Hoorn et al. (1995); van Berkel et al. (1995); Dinolfo et al. (2005); Yang et al. (2008). For structures of 1,4-bis(benzimidazol-2-yl)benzene analogues, see: Bei et al. (2000); Wu et al. (2009). For bond lengths and angles in similar structures, see: Matthews et al. (1996); Ozbey et al. (1998).

Experimental

Crystal	date	1
---------	------	---

$C_{20}H_{14}N_4 \cdot CH_4O$	c = 12.260 (3) Å
$M_r = 342.39$	$\alpha = 76.21 \ (3)^{\circ}$
Triclinic, P1	$\beta = 88.37 \ (3)^{\circ}$
$a = 7.1730 (14) \text{\AA}$	$\gamma = 77.01 \ (3)^{\circ}$
b = 10.599 (2) Å	V = 881.7 (3) Å ³

Z =	2				
Mo	Κα	r	adi	iati	ion
$\mu =$	0.0	8	mı	n [–]	1

Data collection

Rigaku Mercury CCD
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
$T_{\min} = 0.432, \ T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ H atoms treated by a mixture of $wR(F^2) = 0.119$ independent and constrained S = 1.04refinement $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$ 3139 reflections $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 240 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1 \cdots N1$ $N2 - H2A \cdots N3$	0.93 (3) 0.86	1.93 (3) 2.03	2.829 (2) 2.873 (2)	162 (2) 168
$N4 - H4A \cdots O1^{i}$	0.86	1.99	2.855 (2)	179

T = 293 K

 $R_{\rm int}=0.016$

 $0.31 \times 0.16 \times 0.12 \text{ mm}$

4565 measured reflections 3139 independent reflections

2577 reflections with $I > 2\sigma(I)$

Symmetry code: (i) x, y, z + 1.

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (No. 20771024), the Natural Science Foundation of Fujian Province (No. 2008 J0142) and the Key Project Fund of Science and Technology of Fujian Province (No. 2008I0013).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2370).

References

- Bei, F.-L., Jian, F., Yang, X., Lu, L., Wang, X., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 718-719.
- Berkel, P. M. van, Dijkstra, D. J., Driessen, W. L., Reedijk, J. & Sherrington, D. C. (1995). React. Funct. Polym. 28, 39-54.
- Dinolfo, P. H., Benkstein, K. D., Stern, C. L. & Hupp, J. T. (2005). Inorg. Chem. 44 8707-8714
- Hoorn, H. J., Joode, P., Driessen, W. L. & Reedijk, J. (1995). React. Funct. Polym. 27, 223-235.
- Matthews, C. C., Elsegood, J. W., Leese, M. R. J., Thorp, T. A., Thornton, D. P. & Lockhart, J. C. (1996). J. Chem. Soc. Dalton Trans. pp. 1531-1538.
- Ozbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23-30.
- Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Salunke, N. M., Revankar, V. K. & Mahale, V. B. (1994). Transition Met. Chem. 19. 53-56.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tidwell, R. R., Jones, S. K., Naiman, N. A., Berger, L. C., Brake, W. B., Dykstra, C. C. & Hall, J. E. (1993). Antimicrob. Agents Chemother. 37, 1713–1716. Wu, D.-H. & Hu, L. (2009). Acta Cryst. E65, 0522.
- Yang, Q. F., Cui, X. B., Yu, J. H., Lu, J., Yu, X. Y., Zhang, X., Xu, J. Q., Hou, Q.
 - & Wang, T. G. (2008). CrystEngComm, 10, 1534-1541.

supporting information

Acta Cryst. (2011). E67, o90 [https://doi.org/10.1107/S1600536810049238]

1,4-Bis(1H-benzimidazol-2-yl)benzene methanol monosolvate

Jiang-Bo Su, Shen Lin, Li-Juan Chen, Ming-Xing Yang and Hua Huang

S1. Comment

In earlier communications (Tidwell, *et al.*, 1993; Salunke, *et al.*, 1994; Hoorn, *et al.*, 1995; van Berkel, *et al.*, 1995; Dinolfo *et al.*, 2005; Yang *et al.*, 2008;) it has been reported that the benzimidazole moiety is an important heterocyclic ring not only because of its wide-ranging antivirus activity, its importance in selective ion-exchange resin, but also because of the interest in the coordination chemistry of azoles acting as ligands in transition metal compounds. However, the crystal structure of 1,4-bis(benzimidazol-2-yl)benzene analogues have rarely been reported (Bei, *et al.*, 2000; Wu, *et al.*, 2009;). Herein, we report the crystal structure of the title compound, 1,4-bis(benzimidazol-2-yl)benzene methanol solvate (1).

The structure of title compound is illustrated in Fig. 1. The asymmetric unit contains two different molecules halved by inversion centres at (1/2, 1/2, 1/2) and (0, 1, 0), respectively, and a methanol solvent. Bond lengths and angles have normal values and are comparable to those reported in similar structures (Matthews *et al.*, 1996; Ozbey *et al.*, 1998). The benzimidazoyl moieties form different dihedral angles with the plane of the central benzene ring (24.0 (1)°, 11.6 (1)° for A and B, respectively, Fig. 1). C—N bond lengths in the imidazole ring are in the range 1.328 (2)–1.391 (2) Å, shorter than typical single C—N bond lengths (*ca* 1.48 Å) and longer than typical C=N ones (*ca* 1.28 Å), indicating partial double-bond character. This can be interpreted in terms of conjugation in the heterocycle(Fig. 1, Table 1).

In the solid state the 1,4-bis(Benzimidazol-2-yl)benzene moieties are connected to form a two-dimensional network through intermolecular N—H··· N, N—H··· O and O—H··· N hydrogen bonds (Fig.2, Table 2). Moreover, there exists π - π stacking interactions between the aromatic and imidazole rings of adjacent molecules, with intercentroid/interplanar distances of about 3.72 (1) Å /3.53 (1) Å, respectively.

S2. Experimental

All reagents were of AR grade available commercially and used without further purification. To a mixed solvent of polyphosphoric acid (5 ml) and Phosphoric acid (15 ml, 85%) was added benzene-1,4-dicarboxylic acid (1.67 g, 10.0 mmol) and 1,2-diaminobenzene (2.16 g, 20.0 mmol). The mixture was heated slowly to 398 K, and the resulting solution was stirred at 453 K for five hours, and was poured into 300 ml water. Then the mixture was neutralized with 50% sodium hydroxide solution. The crude product was collected by filtration, dried and recrystallized (yield 67%). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution.

S3. Refinement

The (C)H and (N)H atoms of the title compound were placed in calculated positions (C—H = 0.93 and N—H = 0.86 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N)$. The (C)H atoms of the methanol molecule were placed geometrically (C—H = 0.96 Å) and refined as riding, with $U_{iso}(H) = 1.5U_{eq}(C)$. The (O)H atom of the methanol molecule was located in a difference Fourier map and refined with restrained O—H = 0.93 (3) Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

A molecular drawing of (1), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

A packing diagram for (1). Broken lines indicate the intermolecular N—H…N hydrogen bonds, N—H…O hydrogen bonds and N—H…O interactions.

1,4-Bis(1H-benzimidazol-2-yl)benzene methanol monosolvate

Crystal data	
$C_{20}H_{14}N_4$ ·CH ₄ O	Z = 2
$M_r = 342.39$	F(000) = 360
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.290 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.1730 (14) Å	Cell parameters from 3188 reflections
b = 10.599 (2) Å	$\theta = 3.0-27.5^{\circ}$
c = 12.260 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 76.21 \ (3)^{\circ}$	T = 293 K
$\beta = 88.37 \ (3)^{\circ}$	Prism, yellow
$\gamma = 77.01 \ (3)^{\circ}$	$0.31 \times 0.16 \times 0.12 \text{ mm}$
V = 881.7 (3) Å ³	

Data collection

Rigaku Mercury CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2002) $T_{min} = 0.432, T_{max} = 1.000$ <i>Refinement</i>	4565 measured reflections 3139 independent reflections 2577 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -8 \rightarrow 8$ $k = -12 \rightarrow 11$ $l = -12 \rightarrow 14$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.119$ S = 1.04 3139 reflections 240 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.058P)^2 + 0.2072P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.15$ e Å ⁻³ $\Delta\rho_{min} = -0.19$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.4353 (2)	0.72851 (15)	-0.20907 (11)	0.0655 (4)	
H1	0.466 (4)	0.773 (3)	-0.157 (2)	0.099 (9)*	
N1	0.5137 (2)	0.81332 (14)	-0.01667 (11)	0.0462 (4)	
N2	0.4593 (2)	0.81243 (13)	0.16469 (11)	0.0431 (4)	
H2A	0.3999	0.8285	0.2236	0.052*	
N3	0.3135 (2)	0.86666 (13)	0.37352 (11)	0.0404 (3)	
N4	0.34446 (19)	0.84695 (13)	0.55855 (11)	0.0388 (3)	
H4A	0.3731	0.8106	0.6283	0.047*	
C1	0.6775 (3)	0.74325 (16)	0.04753 (14)	0.0438 (4)	
C2	0.8563 (3)	0.67915 (19)	0.01578 (17)	0.0569 (5)	
H2B	0.8818	0.6801	-0.0592	0.068*	
C3	0.9931 (3)	0.6147 (2)	0.09908 (19)	0.0624 (6)	
H3B	1.1126	0.5717	0.0795	0.075*	
C4	0.9576 (3)	0.61209 (19)	0.21223 (18)	0.0584 (5)	
H4B	1.0536	0.5670	0.2660	0.070*	

C5	0 7826 (2)	0 67512 (19)	0.24601 (16)	0.0502 (5)
	0.7820 (5)	0.07313 (18)	0.24001 (10)	0.0302 (3)
H5A	0./584	0.6/33	0.3212	0.060*
C6	0.6448 (2)	0.74142 (16)	0.16162 (14)	0.0412 (4)
C7	0.3870 (3)	0.85267 (16)	0.05676 (13)	0.0403 (4)
C8	0.1892 (2)	0.92809 (15)	0.02858 (13)	0.0394 (4)
C9	0.1321 (3)	0.98685 (17)	-0.08376 (14)	0.0456 (4)
H9A	0.2204	0.9784	-0.1401	0.055*
C10	-0.0540 (3)	1.05739 (17)	-0.11194 (13)	0.0451 (4)
H10A	-0.0896	1.0955	-0.1870	0.068*
C11	0.2500 (2)	0.99128 (16)	0.39671 (14)	0.0394 (4)
C12	0.1739 (3)	1.11565 (18)	0.32434 (16)	0.0541 (5)
H12A	0.1647	1.1252	0.2472	0.065*
C13	0.1133 (3)	1.22324 (18)	0.37161 (18)	0.0590 (5)
H13A	0.0613	1.3065	0.3254	0.071*
C14	0.1282 (3)	1.21002 (18)	0.48749 (18)	0.0551 (5)
H14A	0.0844	1.2846	0.5164	0.066*
C15	0.2059 (3)	1.08975 (17)	0.55992 (16)	0.0484 (4)
H15A	0.2173	1.0816	0.6368	0.058*
C16	0.2667 (2)	0.98057 (16)	0.51249 (13)	0.0379 (4)
C17	0.3672 (2)	0.78377 (15)	0.47268 (13)	0.0358 (4)
C18	0.4362 (2)	0.63846 (15)	0.48859 (13)	0.0356 (4)
C19	0.5493 (2)	0.55926 (16)	0.58125 (13)	0.0421 (4)
H19C	0.5829	0.5982	0.6360	0.063*
C20	0.3879 (3)	0.57685 (16)	0.40750 (14)	0.0426 (4)
H20B	0.3125	0.6281	0.3452	0.064*
C21	0.3492 (5)	0.6260 (3)	-0.1553 (2)	0.0971 (9)
H21A	0.2685	0.6545	-0.0979	0.117*
H21B	0.4481	0.5516	-0.1190	0.117*
H21C	0.2739	0.5965	-0.2043	0.174 (16)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1004 (12)	0.0687 (9)	0.0363 (7)	-0.0341 (8)	0.0012 (7)	-0.0157 (7)
N1	0.0571 (9)	0.0468 (8)	0.0349 (8)	-0.0070 (7)	-0.0014 (7)	-0.0143 (6)
N2	0.0505 (9)	0.0457 (8)	0.0305 (7)	-0.0023 (7)	-0.0035 (6)	-0.0115 (6)
N3	0.0500 (8)	0.0365 (7)	0.0327 (7)	-0.0029 (6)	-0.0045 (6)	-0.0097 (6)
N4	0.0495 (8)	0.0389 (8)	0.0280 (7)	-0.0082 (6)	-0.0005 (6)	-0.0093 (6)
C1	0.0525 (11)	0.0401 (9)	0.0406 (9)	-0.0095 (8)	0.0004 (8)	-0.0138 (7)
C2	0.0608 (13)	0.0566 (12)	0.0539 (12)	-0.0086 (10)	0.0084 (10)	-0.0195 (9)
C3	0.0517 (12)	0.0574 (12)	0.0775 (15)	-0.0048 (10)	0.0052 (11)	-0.0226 (11)
C4	0.0532 (12)	0.0514 (11)	0.0690 (14)	-0.0085 (9)	-0.0142 (10)	-0.0125 (10)
C5	0.0556 (12)	0.0501 (11)	0.0451 (10)	-0.0100 (9)	-0.0089 (8)	-0.0126 (8)
C6	0.0481 (10)	0.0373 (9)	0.0392 (9)	-0.0085 (7)	-0.0028 (7)	-0.0117 (7)
C7	0.0546 (10)	0.0354 (8)	0.0315 (8)	-0.0086 (7)	-0.0031 (7)	-0.0100 (7)
C8	0.0524 (10)	0.0336 (8)	0.0320 (9)	-0.0073 (7)	-0.0060 (7)	-0.0087 (7)
C9	0.0550 (11)	0.0481 (10)	0.0310 (9)	-0.0064 (8)	0.0005 (7)	-0.0090 (7)
C10	0.0585 (11)	0.0451 (10)	0.0281 (8)	-0.0057 (8)	-0.0069 (8)	-0.0063 (7)

supporting information

C11	0.0417 (9)	0.0366 (9)	0.0400 (9)	-0.0066 (7)	-0.0033 (7)	-0.0108 (7)
C12	0.0682 (13)	0.0429 (10)	0.0471 (11)	-0.0068 (9)	-0.0139 (9)	-0.0063 (8)
C13	0.0660 (13)	0.0350 (10)	0.0711 (14)	-0.0029 (9)	-0.0159 (10)	-0.0092 (9)
C14	0.0553 (12)	0.0420 (10)	0.0718 (14)	-0.0055 (9)	-0.0010 (10)	-0.0254 (9)
C15	0.0542 (11)	0.0471 (10)	0.0491 (10)	-0.0115 (8)	0.0049 (8)	-0.0222 (8)
C16	0.0392 (9)	0.0377 (9)	0.0386 (9)	-0.0096 (7)	0.0021 (7)	-0.0118 (7)
C17	0.0380 (9)	0.0388 (9)	0.0313 (8)	-0.0075 (7)	-0.0006 (6)	-0.0109 (7)
C18	0.0380 (9)	0.0366 (8)	0.0313 (8)	-0.0063 (7)	-0.0011 (7)	-0.0082 (7)
C19	0.0541 (11)	0.0405 (9)	0.0332 (9)	-0.0089(8)	-0.0084 (7)	-0.0122 (7)
C20	0.0526 (10)	0.0392 (9)	0.0337 (9)	-0.0063 (8)	-0.0122 (7)	-0.0064 (7)
C21	0.141 (3)	0.107 (2)	0.0643 (16)	-0.072 (2)	0.0164 (16)	-0.0224 (15)

Geometric parameters (Å, °)

01—C21	1.391 (3)	C9—C10	1.384 (3)
01—H1	0.93 (3)	С9—Н9А	0.9300
N1—C7	1.331 (2)	C10-C8 ⁱ	1.400 (2)
N1—C1	1.391 (2)	C10—H10A	0.9300
N2—C7	1.368 (2)	C11—C16	1.403 (2)
N2—C6	1.378 (2)	C11—C12	1.403 (2)
N2—H2A	0.8600	C12—C13	1.380 (3)
N3—C17	1.328 (2)	C12—H12A	0.9300
N3—C11	1.391 (2)	C13—C14	1.399 (3)
N4—C17	1.3640 (19)	C13—H13A	0.9300
N4—C16	1.385 (2)	C14—C15	1.376 (3)
N4—H4A	0.8600	C14—H14A	0.9300
C1—C2	1.401 (3)	C15—C16	1.395 (2)
C1—C6	1.408 (2)	C15—H15A	0.9300
C2—C3	1.377 (3)	C17—C18	1.475 (2)
C2—H2B	0.9300	C18—C19	1.395 (2)
C3—C4	1.398 (3)	C18—C20	1.402 (2)
С3—Н3В	0.9300	C19—C20 ⁱⁱ	1.386 (2)
C4—C5	1.385 (3)	C19—H19C	0.9300
C4—H4B	0.9300	C20—C19 ⁱⁱ	1.386 (2)
C5—C6	1.393 (2)	C20—H20B	0.9300
С5—Н5А	0.9300	C21—H21A	0.9600
С7—С8	1.469 (2)	C21—H21B	0.9600
C8-C10 ⁱ	1.400 (2)	C21—H21C	0.9600
C8—C9	1.400 (2)		
C21—O1—H1	109.8 (16)	C8 ⁱ —C10—H10A	119.7
C7—N1—C1	104.98 (14)	N3—C11—C16	110.02 (14)
C7—N2—C6	107.32 (14)	N3-C11-C12	130.11 (16)
C7—N2—H2A	126.3	C16—C11—C12	119.85 (16)
C6—N2—H2A	126.3	C13—C12—C11	117.72 (18)
C17—N3—C11	104.91 (13)	C13—C12—H12A	121.1
C17—N4—C16	107.26 (13)	C11—C12—H12A	121.1
C17—N4—H4A	126.4	C12—C13—C14	121.53 (18)

C16—N4—H4A	126.4	C12—C13—H13A	119.2
N1—C1—C2	130.63 (17)	C14—C13—H13A	119.2
N1—C1—C6	109.80 (15)	C15—C14—C13	121.84 (17)
C2—C1—C6	119.57 (17)	C15—C14—H14A	119.1
C3—C2—C1	117.88 (19)	C13—C14—H14A	119.1
С3—С2—Н2В	121.1	C14—C15—C16	116.80 (17)
C1—C2—H2B	121.1	C14—C15—H15A	121.6
C2—C3—C4	121.92 (19)	C16—C15—H15A	121.6
С2—С3—Н3В	119.0	N4—C16—C15	132.62 (16)
С4—С3—Н3В	119.0	N4	105.12 (14)
C5—C4—C3	121.46 (19)	C15—C16—C11	122.22 (16)
C5—C4—H4B	119.3	N3—C17—N4	112.68 (14)
C3—C4—H4B	119.3	N3—C17—C18	123.53 (14)
C4—C5—C6	116.64 (18)	N4—C17—C18	123.74 (14)
C4—C5—H5A	121.7	C19—C18—C20	118.34 (15)
С6—С5—Н5А	121.7	C19—C18—C17	122.54 (14)
N2—C6—C5	132.09 (16)	C20-C18-C17	119.12 (14)
N2—C6—C1	105.38 (15)	C20 ⁱⁱ —C19—C18	120.63 (15)
C5—C6—C1	122.52 (17)	C20 ⁱⁱ —C19—H19C	119.7
N1—C7—N2	112.51 (15)	C18—C19—H19C	119.7
N1—C7—C8	125.12 (15)	C19 ⁱⁱ —C20—C18	121.03 (15)
N2—C7—C8	122.36 (15)	C19 ⁱⁱ —C20—H20B	119.5
C10 ⁱ —C8—C9	118.54 (16)	C18—C20—H20B	119.5
C10 ⁱ —C8—C7	121.45 (15)	O1—C21—H21A	109.0
C9—C8—C7	120.00 (16)	O1—C21—H21B	108.1
С10—С9—С8	120.80 (16)	H21A—C21—H21B	107.6
С10—С9—Н9А	119.6	O1—C21—H21C	114.6
С8—С9—Н9А	119.6	H21A—C21—H21C	108.7
C9—C10—C8 ⁱ	120.66 (15)	H21B—C21—H21C	108.7
С9—С10—Н10А	119.7		

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.93 (3)	1.93 (3)	2.829 (2)	162 (2)
N2—H2A····N3	0.86	2.03	2.873 (2)	168
N4—H4A…O1 ⁱⁱⁱ	0.86	1.99	2.855 (2)	179

Symmetry code: (iii) x, y, z+1.