metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Dichloridobis[tris(4-methoxyphenyl)phosphane]palladium(II) toluene solvate

Alfred Muller and Reinout Meijboom*

Research Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg, 2006, South Africa Correspondence e-mail: rmeijboom@uj.ac.za

Received 4 October 2010; accepted 12 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.029; wR factor = 0.074; data-to-parameter ratio = 20.4.

In the title compound, *trans*-[PdCl₂{P(4-MeOC₆H₄)₃]₂]·C₇H₈, the Pd(II) atom lies on a center of symmetry, resulting in a distorted *trans*-square planar geometry. The Pd-P and Pd-Cl bond lengths are 2.3409 (4) and 2.2981 (4) Å, respectively. An intramolecular C-H···Cl hydrogen bond occurs. In the crystal, weak C-H···O interactions are observed between the aromatic rings of adjacent molecules. The toluene solvate molecule is equally disordered over two sets of sites.

Related literature

For a review on related compounds, see: Spessard & Miessler (1996). For related compounds, see: Meijboom & Omondi (2010). For the synthesis of the starting materials, see: Drew & Doyle (1990).

Experimental

Crystal data $[PdCl_2(C_{21}H_{21}O_3P)_2] \cdot C_7H_8$ $M_r = 974.13$ Triclinic, $P\overline{1}$ a = 7.8545 (4) Å

b = 12.1231 (7) Å c = 12.4024 (8) Å $\alpha = 85.666 (2)^{\circ}$ $\beta = 78.762 (2)^{\circ}$ $\gamma = 75.919 (2)^{\circ}$ $V = 1123.03 (11) \text{ Å}^3$ Z = 1Mo K α radiation

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.844, T_{\rm max} = 0.950$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.074$ S = 1.065573 reflections 273 parameters $\mu = 0.65 \text{ mm}^{-1}$ T = 100 K $0.27 \times 0.20 \times 0.08 \text{ mm}$

19639 measured reflections 5573 independent reflections 5169 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$

4 restraints H-atom parameters constrained $\Delta \rho_{max} = 1.28 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.67 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C01 - H01B \cdots O2^{i}$ $C3 - H3A \cdots O2^{ii}$ $C36 - H36 \cdots C1$	0.98	2.36	3.327 (7)	170
	0.98	2.57	3.255 (3)	127
	0.95	2.79	3.5402 (19)	136

Symmetry codes: (i) x + 1, y - 1, z; (ii) -x, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged. The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2723).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Meijboom, R. & Omondi, B. (2010). Acta Cryst. B66. Submitted.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131– 135. New Jersey: Prentice Hall.

supporting information

Acta Cryst. (2010). E66, m1420 [https://doi.org/10.1107/S1600536810040912]

trans-Dichloridobis[tris(4-methoxyphenyl)phosphane]palladium(II) toluene solvate

Alfred Muller and Reinout Meijboom

S1. Comment

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula *trans*- $[MX_2(L)_2]$ (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound, were obtained.

 $[PdCl_2(L)_2]$ (*L* = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from $[PdCl_2(COD)]$. The title compound, *trans*- $[PdCl_2{P(4-MeOC_6H_4)_3}_2]$, crystallizes in the triclinic spacegroup $P\overline{1}$, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually *trans* orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 88.422 (15) and P—Pd—Clⁱ = 91.578 (15)°. As required by the crystallographic symmetry, the P—Pd—Pⁱ and Cl—Pd—Clⁱ angles are 180°. Some weak intermolecular interactions were observed and are reported in Table 1.

The title compound compares well with other closely related Pd^{II} complexes from the literature containing two chloro and two tertiary phosphine ligands in a *trans* geometry. The title compound, having a Pd—Cl bond length of 2.2981 (4) Å and a Pd—P bond length of 2.3409 (4) Å, fits well into the typical range for complexes of this kind. Notably the title compound crystallized as a solvated complex; these type of Pd^{II} complexes have a tendency to crystallize as solvates (Meijboom & Omondi, 2010). The solvate molecule, toluene, is found 50:50 disordered molecule.

S2. Experimental

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl₂(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). A solution of tris(4-methoxyphenyl)phosphine (0.2 mmol) in dichloromethane (2.0 cm³) was added to a solution of [PdCl₂(COD)] (0.1 mmol) in dichloromethane (3.0 cm³). Slow evaporation of the solvent gave the parent palladium compound. Recrystallization from tolunene/hexane afforded crystals of the title compound.

S3. Refinement

The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms respectively. Methyl torsion angles were refined from electron density

Figure 1

The structure (I), showing 50% probability displacement ellipsoids. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Accented lettering indicate atoms generated by symmetry (1 - x, 1 - y, 1 - z).

trans-Dichloridobis[tris(4-methoxyphenyl)phosphane]palladium(II) toluene monosolvate

Crystal data	
$[PdCl_{2}(C_{21}H_{21}O_{3}P)_{2}] \cdot C_{7}H_{8}$ $M_{r} = 974.13$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.8545 (4) Å b = 12.1231 (7) Å c = 12.4024 (8) Å a = 85.666 (2)° $\beta = 78.762$ (2)° $\gamma = 75.919$ (2)° K = 1122.03 (11) Å ³	Z = 1 F(000) = 502 $D_x = 1.44 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5142 reflections $\theta = 2.4-28.3^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 100 K Plate, yellow $0.27 \times 0.2 \times 0.08 \text{ mm}$
Data collection	
Bruker X8 APEXII 4K Kappa CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.4 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{min} = 0.844$, $T_{max} = 0.950$	19639 measured reflections 5573 independent reflections 5169 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -10 \rightarrow 10$ $k = -16 \rightarrow 16$ $l = -16 \rightarrow 16$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.074$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.06	H-atom parameters constrained
5573 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0261P)^2 + 1.197P]$
273 parameters	where $P = (F_o^2 + 2F_c^2)/3$
4 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.28 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 6 s/frame. A total of 1637 frames were collected with a frame width of 0.5° covering up to $\theta = 28.31^{\circ}$ with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pd	0.5	0.5	0.5	0.01073 (6)	
Р	0.32288 (6)	0.43533 (4)	0.65434 (4)	0.01130 (9)	
Cl	0.44125 (6)	0.67186 (4)	0.58287 (4)	0.01752 (10)	
C11	0.2359 (2)	0.31163 (15)	0.64258 (14)	0.0129 (3)	
C12	0.3519 (2)	0.20484 (15)	0.62301 (15)	0.0150 (3)	
H12	0.4766	0.1972	0.6168	0.018*	
C13	0.2882 (2)	0.10942 (15)	0.61244 (15)	0.0162 (3)	
H13	0.3689	0.0375	0.599	0.019*	
C14	0.1045 (3)	0.11999 (16)	0.62176 (16)	0.0179 (4)	
C15	-0.0126 (3)	0.22615 (16)	0.64053 (17)	0.0198 (4)	
H15	-0.1373	0.2339	0.6462	0.024*	
C16	0.0528 (2)	0.32029 (15)	0.65097 (15)	0.0159 (3)	
H16	-0.0282	0.3922	0.6641	0.019*	
C21	0.1254 (2)	0.54510 (14)	0.70174 (14)	0.0124 (3)	
C22	0.0282 (2)	0.60449 (16)	0.62413 (15)	0.0161 (3)	
H22	0.0638	0.5836	0.5493	0.019*	
C23	-0.1195 (2)	0.69346 (15)	0.65361 (15)	0.0163 (3)	
H23	-0.187	0.7315	0.6002	0.02*	
C24	-0.1672 (2)	0.72600 (15)	0.76289 (15)	0.0159 (3)	
C25	-0.0732 (3)	0.66642 (16)	0.84167 (15)	0.0180 (4)	
H25	-0.1083	0.6878	0.9163	0.022*	
C26	0.0716 (2)	0.57583 (15)	0.81157 (15)	0.0151 (3)	

	0.10.10		0.0670	0.010#	
H26	0.1343	0.5347	0.8658	0.018*	
C31	0.4441 (2)	0.39989 (15)	0.76733 (14)	0.0131 (3)	
C32	0.3972 (3)	0.32619 (17)	0.85375 (15)	0.0186 (4)	
H32	0.3015	0.2914	0.8524	0.022*	
C33	0.4873 (3)	0.30242 (17)	0.94193 (16)	0.0194 (4)	
H33	0.4539	0.2516	0.9999	0.023*	
C34	0.6271 (2)	0.35369 (16)	0.94457 (15)	0.0169 (4)	
C35	0.6740 (3)	0.42844 (16)	0.85931 (15)	0.0180 (4)	
H35	0.7683	0.4642	0.8614	0.022*	
C36	0.5843 (2)	0.45100 (16)	0.77175 (15)	0.0161 (3)	
H36	0.6181	0.5018	0.7139	0.019*	
C1	0.1436 (3)	-0.07965 (17)	0.6040 (2)	0.0291 (5)	
H1A	0.2311	-0.082	0.5355	0.044*	
H1B	0.0727	-0.1355	0.602	0.044*	
H1C	0.206	-0.0977	0.6665	0.044*	
01	0.0278 (2)	0.03200 (12)	0.61544 (14)	0.0259 (3)	
C2	-0.3886 (3)	0.88867 (18)	0.72033 (18)	0.0257 (4)	
H2A	-0.3003	0.9208	0.6689	0.039*	
H2B	-0.4815	0.9505	0.7574	0.039*	
H2C	-0.4428	0.8442	0.6799	0.039*	
02	-0.30260 (18)	0.81656 (12)	0.80035 (12)	0.0217 (3)	
C3	0.6746 (3)	0.2635 (2)	1.11707 (17)	0.0274 (5)	
H3A	0.5497	0.2941	1.1507	0.041*	
H3B	0.7509	0.2604	1.1716	0.041*	
H3C	0.6883	0.1867	1.0916	0.041*	
03	0.7257 (2)	0.33564 (13)	1.02543 (11)	0.0231 (3)	
C01	0.7355 (9)	-0.0476 (6)	1.0145 (5)	0.0481 (14)*	0.5
H01A	0.7192	-0.1018	1.0762	0.072*	0.5
H01B	0.734	-0.0824	0.946	0.072*	0.5
H01C	0.6386	0.0211	1.0261	0.072*	0.5
C02	0.9034 (10)	-0.0180 (6)	1.0076 (6)	0.0624 (18)*	0.5
C03	0.9981 (10)	-0.0566 (5)	1.0829 (5)	0.0409 (14)*	0.5
H03	0.9624	-0.1095	1.1379	0.049*	0.5
C04	1.1548 (11)	-0.0191 (6)	1.0822 (6)	0.0619 (18)*	0.5
H04	1.2331	-0.0426	1.1334	0.074*	0.5
C05	1,1757 (14)	0.0568 (8)	0.9956 (8)	0.074 (2)*	0.5
H05	1.2674	0.0949	0.9974	0.088*	0.5
C06	1 0987 (9)	0.0869(6)	0.9139 (6)	0.0521 (15)*	0.5
H06	1.1435	0.1327	0.8548	0.063*	0.5
C07	0.9368 (10)	0.0471 (5)	0.9159 (5)	0.0410 (14)*	0.5
H07	0.865	0.0644	0.8607	0.049*	0.5
1107	0.000	0.001	0.0007	0.072	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Pd	0.01295 (9)	0.00955 (9)	0.00981 (9)	-0.00301 (6)	-0.00176 (6)	-0.00060 (6)
Р	0.0125 (2)	0.0109 (2)	0.0107 (2)	-0.00299 (16)	-0.00240 (15)	0.00014 (15)
Cl	0.0238 (2)	0.0120 (2)	0.0163 (2)	-0.00615 (16)	0.00094 (16)	-0.00323 (15)

Acta Cryst. (2010). E**66**, m1420

C11	0.0160 (8)	0.0127 (8)	0.0108 (7)	-0.0056 (6)	-0.0026 (6)	0.0017 (6)
C12	0.0149 (8)	0.0147 (8)	0.0157 (8)	-0.0044 (7)	-0.0034 (6)	0.0012 (6)
C13	0.0194 (9)	0.0117 (8)	0.0172 (8)	-0.0027 (7)	-0.0046 (7)	0.0009 (6)
C14	0.0232 (9)	0.0140 (8)	0.0196 (9)	-0.0072 (7)	-0.0086 (7)	0.0018 (7)
C15	0.0156 (9)	0.0180 (9)	0.0278 (10)	-0.0054 (7)	-0.0070 (7)	-0.0003 (7)
C16	0.0155 (8)	0.0136 (8)	0.0186 (9)	-0.0020(7)	-0.0046 (7)	-0.0010 (7)
C21	0.0119 (8)	0.0110 (8)	0.0148 (8)	-0.0034 (6)	-0.0029 (6)	0.0002 (6)
C22	0.0189 (9)	0.0165 (9)	0.0132 (8)	-0.0034 (7)	-0.0042 (7)	-0.0008 (6)
C23	0.0173 (9)	0.0148 (8)	0.0172 (8)	-0.0023 (7)	-0.0073 (7)	0.0017 (7)
C24	0.0126 (8)	0.0145 (8)	0.0208 (9)	-0.0033 (6)	-0.0028 (7)	-0.0022 (7)
C25	0.0173 (9)	0.0212 (9)	0.0147 (8)	-0.0021 (7)	-0.0025 (7)	-0.0039 (7)
C26	0.0153 (8)	0.0161 (8)	0.0141 (8)	-0.0023 (7)	-0.0045 (6)	-0.0003 (6)
C31	0.0134 (8)	0.0138 (8)	0.0115 (8)	-0.0016 (6)	-0.0033 (6)	-0.0005 (6)
C32	0.0196 (9)	0.0223 (9)	0.0173 (9)	-0.0108 (7)	-0.0056 (7)	0.0043 (7)
C33	0.0233 (10)	0.0206 (9)	0.0174 (9)	-0.0104 (8)	-0.0067 (7)	0.0049 (7)
C34	0.0180 (9)	0.0192 (9)	0.0147 (8)	-0.0041 (7)	-0.0055 (7)	-0.0014 (7)
C35	0.0172 (9)	0.0210 (9)	0.0185 (9)	-0.0088 (7)	-0.0054 (7)	0.0012 (7)
C36	0.0166 (8)	0.0170 (9)	0.0150 (8)	-0.0052 (7)	-0.0032 (7)	0.0024 (7)
C1	0.0310 (11)	0.0126 (9)	0.0482 (14)	-0.0063 (8)	-0.0169 (10)	0.0006 (9)
01	0.0244 (7)	0.0132 (7)	0.0448 (9)	-0.0067 (6)	-0.0144 (7)	-0.0006 (6)
C2	0.0239 (10)	0.0197 (10)	0.0302 (11)	0.0043 (8)	-0.0088 (8)	-0.0007 (8)
O2	0.0191 (7)	0.0194 (7)	0.0228 (7)	0.0045 (5)	-0.0052 (5)	-0.0033 (5)
C3	0.0359 (12)	0.0337 (12)	0.0201 (10)	-0.0178 (10)	-0.0149 (9)	0.0094 (8)
O3	0.0266 (7)	0.0310 (8)	0.0178 (7)	-0.0141 (6)	-0.0122 (6)	0.0064 (6)

Geometric parameters (Å, °)

Pd—Cl	2.2981 (4)	С33—Н33	0.95
Pd—Cl ⁱ	2.2981 (4)	C34—O3	1.356 (2)
Pd—P ⁱ	2.3409 (4)	C34—C35	1.393 (3)
Pd—P	2.3409 (4)	C35—C36	1.382 (3)
P—C21	1.8112 (17)	С35—Н35	0.95
P—C31	1.8124 (18)	С36—Н36	0.95
P—C11	1.8185 (18)	C1—O1	1.435 (2)
C11—C12	1.397 (2)	C1—H1A	0.98
C11—C16	1.400 (2)	C1—H1B	0.98
C12—C13	1.391 (2)	C1—H1C	0.98
С12—Н12	0.95	C2—O2	1.431 (2)
C13—C14	1.399 (3)	C2—H2A	0.98
С13—Н13	0.95	C2—H2B	0.98
C14—O1	1.360 (2)	C2—H2C	0.98
C14—C15	1.394 (3)	C3—O3	1.435 (2)
C15—C16	1.384 (3)	С3—НЗА	0.98
С15—Н15	0.95	С3—Н3В	0.98
С16—Н16	0.95	С3—НЗС	0.98
C21—C22	1.394 (2)	C01—C02	1.434 (10)
C21—C26	1.396 (2)	C01—H01A	0.98
C22—C23	1.389 (3)	C01—H01B	0.98

supporting information

C22—H22	0.95	C01—H01C	0.98
C23—C24	1.394 (3)	C02—C03	1.296 (10)
C23—H23	0.95	C02—C07	1.353 (10)
C24—O2	1.367 (2)	C03—C04	1.410 (10)
C24—C25	1.391 (3)	С03—Н03	0.95
C25—C26	1.389 (2)	C04—C05	1.372 (12)
С25—Н25	0.95	С04—Н04	0.95
C26—H26	0.95	C05—C06	1.265 (11)
C31—C32	1.394 (2)	С05—Н05	0.95
C31—C36	1.400 (3)	C06—C07	1.462 (9)
C_{32} C_{33}	1 391 (3)	C06—H06	0.95
C32—H32	0.95	C07—H07	0.95
C_{33} C_{34}	1 393 (3)		0.90
055 054	1.595 (5)		
Cl—Pd—Cl ⁱ	180	С34—С33—Н33	120.3
Cl—Pd—P ⁱ	91.578 (15)	03-C34-C35	115.85 (17)
$Cl^i Pd P^i$	88 422 (15)	03-034-033	12453(17)
Cl—Pd—P	88 422 (15)	C_{35} C_{34} C_{33}	119.62 (17)
Cl^{i} Pd P	91 578 (15)	$C_{36} = C_{35} = C_{34}$	120.49(17)
P ⁱ PdP	18000(2)	C36—C35—H35	119.8
C_{21} P C_{31}	106.00(2) 106.76(8)	C_{34} C_{35} H_{35}	119.8
$C_{21} = P_{-}C_{11}$	103.93 (8)	C_{35} C_{36} C_{31}	120.74(17)
C_{31} P C_{11}	105.02 (8)	$C_{35} = C_{36} = H_{36}$	119.6
C_{21} P_{-} P_{d}	110.78 (6)	C_{31} C_{36} H_{36}	119.6
$C_{21} - P_{1} - P_{1}$	110.78 (0)	$O_1 C_1 H_1 \land$	109.5
$C_{11} = P_{11}$	118.06 (6)	$O_1 = C_1 = H_1 R$	109.5
$C_{11} = 1 = 10$	118.90(0) 118.07(16)		109.5
C_{12} C_{11} P	110.07(10) 120.20(14)	$\Pi A - C I - \Pi B$	109.5
C12 - C11 - F	120.39(14) 121.52(12)		109.5
C10-C11-P	121.55(15) 121.28(17)	HIA—CI—HIC	109.5
	121.28 (17)	HIB—CI—HIC	109.5
C13—C12—H12	119.4		117.21 (16)
CII—CI2—HI2	119.4	02-02-H2A	109.5
C12 - C13 - C14	119.65 (17)	02-02-H2B	109.5
C12—C13—H13	120.2	$H_2A = C_2 = H_2B$	109.5
C14—C13—H13	120.2	02-C2-H2C	109.5
01 - C14 - C15	115.85 (17)	H2A—C2—H2C	109.5
01	124.46 (17)	H2B—C2—H2C	109.5
C15—C14—C13	119.68 (17)	C24—O2—C2	117.50 (15)
C16—C15—C14	120.00 (18)	03—C3—H3A	109.5
C16—C15—H15	120	O3—C3—H3B	109.5
C14—C15—H15	120	НЗА—СЗ—НЗВ	109.5
C15—C16—C11	121.33 (17)	O3—C3—H3C	109.5
C15—C16—H16	119.3	НЗА—СЗ—НЗС	109.5
C11—C16—H16	119.3	H3B—C3—H3C	109.5
C22—C21—C26	118.89 (16)	C34—O3—C3	117.05 (15)
C22—C21—P	118.30 (13)	C02—C01—H01A	109.5
C26—C21—P	122.75 (14)	C02—C01—H01B	109.5
C23—C22—C21	121.52 (17)	H01A-C01-H01B	109.5

C23—C22—H22	119.2	C02—C01—H01C	109.5
C21—C22—H22	119.2	H01A—C01—H01C	109.5
C22—C23—C24	118.83 (17)	H01B—C01—H01C	109.5
С22—С23—Н23	120.6	C03—C02—C07	130.7 (7)
С24—С23—Н23	120.6	C03—C02—C01	119.1 (7)
O2—C24—C25	115.53 (16)	C07—C02—C01	110.2 (7)
O2—C24—C23	124.16 (17)	C02—C03—C04	119.2 (7)
C25—C24—C23	120.30 (17)	С02—С03—Н03	120.4
C26—C25—C24	120.24 (17)	С04—С03—Н03	120.4
С26—С25—Н25	119.9	C05—C04—C03	108.9 (8)
C24—C25—H25	119.9	С05—С04—Н04	125.5
C25—C26—C21	120.14 (17)	С03—С04—Н04	125.5
C25—C26—H26	119.9	C06—C05—C04	133.6 (10)
$C_{21} = C_{26} = H_{26}$	119.9	C06-C05-H05	113.2
C_{32} C_{31} C_{36}	118 22 (16)	C04-C05-H05	113.2
$C_{32} = C_{31} = P$	121.90(14)	$C_{05} = C_{06} = C_{07}$	116.0 (8)
$C_{32} = C_{31} = 1$	121.90(14) 110.82(13)	$C_{05} = C_{06} = C_{07}$	110.0 (0)
$C_{30} = C_{31} = C_{31}$	119.02(13) 121.47(17)	C07 = C06 = H06	122
$C_{33} = C_{32} = C_{31}$	121.47 (17)	C02 C07 C06	122
$C_{33} = C_{32} = H_{32}$	119.5	$C_{02} = C_{07} = C_{00}$	110.4 (7)
$C_{31} = C_{32} = C_{34}$	119.5	C02 - C07 - H07	124.8
$C_{32} = C_{33} = C_{34}$	119.40 (17)	C00-C0/-H0/	124.8
С32—С33—Н33	120.3		
Cl—Pd—P—C21	40.71 (6)	C23—C24—C25—C26	1.6 (3)
Cl^{i} —Pd—P—C21	-139.29 (6)	C24—C25—C26—C21	0.9 (3)
Cl—Pd—P—C31	-77.43 (6)	C22—C21—C26—C25	-1.9 (3)
Cl^{i} —Pd—P—C31	102.57 (6)	P—C21—C26—C25	175.13 (14)
Cl—Pd—P—C11	160.99 (7)	C21—P—C31—C32	81.11 (16)
Cl ⁱ —Pd—P—C11	-19.01 (7)	C11—P—C31—C32	-28.83 (17)
C21—P—C11—C12	-170.72 (14)	Pd—P—C31—C32	-158.32 (14)
C31—P—C11—C12	-58.74 (16)	C21—P—C31—C36	-96.04 (15)
Pd—P—C11—C12	65.57 (16)	C11—P—C31—C36	154.02 (14)
C21—P—C11—C16	10.31 (17)	Pd—P—C31—C36	24.53 (16)
C31—P—C11—C16	122.28 (15)	C36—C31—C32—C33	-0.7 (3)
Pd—P—C11—C16	-113.40 (14)	P-C31-C32-C33	-177.86 (15)
C16—C11—C12—C13	-0.2 (3)	C31—C32—C33—C34	0.4 (3)
P-C11-C12-C13	-179.23 (14)	C32—C33—C34—O3	-179.07 (18)
C11—C12—C13—C14	-0.1 (3)	C32—C33—C34—C35	0.4 (3)
C12—C13—C14—O1	-178.36(18)	O3—C34—C35—C36	178.74 (17)
C12—C13—C14—C15	0.6 (3)	C33—C34—C35—C36	-0.7(3)
01-C14-C15-C16	178 38 (18)	C_{34} C_{35} C_{36} C_{31}	04(3)
C_{13} C_{14} C_{15} C_{16}	-0.6(3)	C_{32} C_{31} C_{36} C_{35}	0.4(3)
C_{14} C_{15} C_{16} C_{11}	0.0(3)	$P = C_{31} = C_{36} = C_{35}$	17754(14)
$C_{12} = C_{13} = C_{16} = C_{15}$	0.3(3)	$1 - c_{31} - c_{30} - c_{33}$	-17570(19)
D C11 C16 C15	170 15 (15)	$C_{13} = C_{14} = O_{1} = C_{1}$	175.70(19)
1 - C11 - C10 - C13 $C21 - D - C21 - C22$	1/9.13(13) 166.77(14)	$C_{13} - C_{14} - O_{1} - C_{1}$	3.3(3)
$C_{11} = r - C_{21} - C_{22}$	100.//(14)	$C_{23} = C_{24} = 0_{2} = C_{2}$	1/2.30(17)
C11 - P - C21 - C22	-82.53(15)	$C_{23} - C_{24} - O_{2} - C_{2}$	-6.5 (3)
Pd—P—C21—C22	46.36 (15)	C35—C34—O3—C3	176.95 (18)

supporting information

C31—P—C21—C26 C11—P—C21—C26 Pd—P—C21—C26 C26—C21—C22—C23 P—C21—C22—C23 C21—C22—C23—C24 C22—C23—C24—O2 C22—C23—C24—O2	-10.31 (17) 100.39 (16) -130.73 (14) 0.4 (3) -176.82 (14) 2.2 (3) 175.75 (17) -3.2 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.6 (3) 7.9 (11) -174.1 (6) 0.4 (9) -9.8 (14) 10.3 (14) -7.4 (10) 174.4 (5)
02—C24—C25—C26	-177.36 (17)	C05—C06—C07—C02	-1.1 (9)
02—C24—C25—C26	-177.36 (17)	C05—C06—C07—C02	-1.1 (9)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C01—H01 <i>B</i> ···O2 ⁱⁱ	0.98	2.36	3.327 (7)	170
C3—H3 <i>A</i> ···O2 ⁱⁱⁱ	0.98	2.57	3.255 (3)	127
C36—H36…Cl	0.95	2.79	3.5402 (19)	136

Symmetry codes: (ii) *x*+1, *y*-1, *z*; (iii) -*x*, -*y*+1, -*z*+2.