Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[$\mu-N, N, N^{\prime}, N^{\prime}$-Tetrakis(2-pyridylmethyl)-butane-1,4-diamine]bis[dichloridocopper(II)] trihydrate

Mark Bartholomä, \ddagger Hoi Cheung and Jon Zubieta*
Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA Correspondence e-mail: jazubiet@syr.edu

Received 29 July 2010; accepted 26 August 2010

Key indicators: single-crystal X-ray study; $T=90 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; H-atom completeness 85%; disorder in solvent or counterion; R factor $=0.053 ; w R$ factor $=$ 0.125 ; data-to-parameter ratio $=18.7$.

The title dinuclear copper complex, $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{6}\right)\right]$-$3 \mathrm{H}_{2} \mathrm{O}$, is located on a crystallographic inversion center. The unique $\mathrm{Cu}^{\mathrm{II}}$ ion is coordinated in a slightly distorted squarepyramidal environment in which the N atoms of the dipicolylamine group and a chloride ligand form the basal plane. The apical position is occupied by a second chloride atom. While the $\mathrm{Cu}-\mathrm{N}$ distances of the pyridine N atoms are the same within expermental error, the $\mathrm{Cu}-\mathrm{N}$ distance to the tertiary N atom is slightly elongated. The apical $\mathrm{Cu}-\mathrm{Cl}$ distance is elongated due to typical Jahn-Teller distortion. One of the water O atoms was refined as disordered over two sites with occupancies 0.734 (17):0.266 (17) and another with half occupancy. H atoms for the disordered solvent atoms were not included in the refinement.

Related literature

For crystallographic data of tetrakis(pyridin-2-yl-methyl)-alkyl-diamines, see: Fujihara et al. (2004); Mambanda et al. (2007). For the superoxide dismutase activity of iron complexes, see: Tamura et al. (2000). For dinuclear Pt complexes of similar ligands, see: Ertürk et al. (2007). For the use of the dipicolylamine moiety for binding of the $M(\mathrm{CO})_{3}$ core ($M=\mathrm{Re},{ }^{99 m} \mathrm{Tc}$), see: Bartholomä et al. (2009). For crystal structures closely related to the title compound, see: Bartholomä et al. (2010a,b,c,d).

[^0]

Experimental

Crystal data
$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{6}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$V=1574.44(13) \AA^{3}$
$M_{r}=775.52$
$Z=2$
Monoclinic, $P 2_{1} / c$
Mo $K \alpha$ radiation
$a=11.4403$ (5) \AA
$b=10.0230$ (5) A
$\mu=1.73 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
$c=14.2943(7) \AA \quad 0.26 \times 0.18 \times 0.14 \mathrm{~mm}$
$\beta=106.143(1)^{\circ}$
Data collection
Bruker APEX CCD diffractometer
15464 measured reflections Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.662, T_{\text {max }}=0.794$
3906 independent reflections 3746 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053 \quad 209$ parameters
$w R\left(F^{2}\right)=0.125$
$S=1.25 \quad \Delta \rho_{\max }=0.76 \mathrm{e} \AA^{-3}$
3906 reflections
$\Delta \rho_{\min }=-0.49 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected bond lengths (Å).

$\mathrm{Cu} 1-\mathrm{N} 2$	$2.011(3)$	$\mathrm{Cu} 1-\mathrm{Cl} 2$	$2.2532(8)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.016(3)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.5612(10)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.064(3)$		

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported by funding from Syracuse University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5107).

References

Bartholomä, M., Cheung, H., Darling, K. \& Zubieta, J. (2010d). Acta Cryst. E66. m1201-m1202.
Bartholomä, M., Cheung, H. \& Zubieta, J. (2010a). Acta Cryst. E66, m1195m1196.
Bartholomä, M., Cheung, H. \& Zubieta, J. (2010b). Acta Cryst. E66, m1197.
Bartholomä, M., Cheung, H. \& Zubieta, J. (2010c). Acta Cryst. E66, m1198.

metal-organic compounds

Bartholomä, M., Valliant, J., Maresca, K. P., Babich, J. \& Zubieta, J. (2009). Chem. Commun. 5, 473-604.
Brandenburg, K. \& Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2002). SMARTand SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Ertürk, H., Hofmann, A., Puchta, R. \& van Eldik, R. (2007). Dalton Trans. pp. 2295-2301

Fujihara, T., Saito, M. \& Nagasawa, A. (2004). Acta Cryst. E60, o1126-o1128. Mambanda, A., Jaganyi, D. \& Munro, O. Q. (2007). Acta Cryst. C63, o6760680.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tamura, M., Urano, Y., Kikuchi, K., Higuchi, T., Hirobe, M. \& Nagano, T. (2000). J. Organomet. Chem. 611, 586-592.

supporting information

[$\mu-N, N, N^{\prime}, N^{\prime}$-Tetrakis(2-pyridylmethyl)butane-1,4-diamine]bis[dichloridocopper(II)] trihydrate

Mark Bartholomä, Hoi Cheung and Jon Zubieta

S1. Comment

The described ligand has been used as starting material for hydrothermal synthesis of metal-organic transition $\mathrm{metal} / \mathrm{molybdateoxide}$ frameworks in the principal author's laboratory (Bartholomä, unpublished results). The dipicolylamine moiety has originally been developed in our laboratory as metal chelating entity for binding of the $M(\mathrm{CO})_{3}$ core (M $\left.=\mathrm{Re},{ }^{, 9 m} \mathrm{Tc}\right)$ for radiopharmaceutical purposes. However, a different coordination mode has been observed for the $M(\mathrm{CO})_{3}$ core in which the dipicolylamine metal chelate is coordinated in a facial manner (Bartholomä, 2009).
The title complex was prepared as part of a series with different cadmium and copper salts to study the coordination properties of the ligand with these metals without the interaction of metaloxide clusters (Bartholomä, 2010a,b). The use of copper bromide as metal salt gave a structurally comparable complex with a square pyramidal coordination sphere of both copper atoms (Bartholomä, 2010c). The $\mathrm{Cu}-\mathrm{N}_{\mathrm{py}}$ distances were determined to 2.015 (6) \AA and 2.019 (5) \AA, and the $\mathrm{Cu}-\mathrm{N}_{\text {tert }}$ distance is 2.053 (5) \AA. The extension of the spacer between the two dipicolylamine moieties in the case of $N^{l}, N^{l}, N^{5}, N^{5}$-tetrakis(pyridin-2-ylmethyl)pentane-1,5-diamine with copper chloride also resulted in a structurally similar complex with $\mathrm{Cu}-\mathrm{N}_{\mathrm{py}}$ distances of 1.986 (4) \AA and 1.996 (4) \AA, and a $\mathrm{Cu}-\mathrm{N}_{\text {tert }}$ distance of 2.077 (4) \AA (Bartholomä et al., 2010d).
Crystal structures of the ligands $N^{l}, N^{l}, N^{3}, N^{3}$-tetrakis(2-pyridiniomethyl)-1,3-diaminopropane and $N^{l}, N^{l}, N^{4}, N^{4}$-tetrakis-(pyridin-2-ylmethyl)butane-1,4-diamine have been described recently (Fujihara, 2004; Mambanda, 2007). Superoxide dismutase activity of iron(II) complexes of $N^{l}, N^{l}, N^{3}, N^{3}$-tetrakis(2-pyridiniomethyl)-1,3-diaminopropane and related ligands has been investigated by Tamura et al. (2000). Studies on the thermodynamic and kinetic behaviour of the reaction of platinum(II) complexes of higher ligand homologues with chloride have been performed by Ertürk et al. (2007).

S2. Experimental

$\boldsymbol{N}^{l}, \boldsymbol{N}^{l}, \boldsymbol{N}^{4}, \boldsymbol{N}^{4}$-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine. An amount of $1.00 \mathrm{~g}(11.34 \mathrm{mmol})$ 1,4-diaminobutane was dissolved in 30 ml anhydrous dichloroethane under an inert atmosphere (argon) followed by the addition of 4.55 ml (47.65 mmol) pyridine-2-carboxaldehyde. The mixture was stirred for 15 min at r.t. and then cooled with an ice bath prior to the portionwise addition of $14.43 \mathrm{~g}(68.06 \mathrm{mmol})$ sodium triacetoxyborohydride (gas evolution, exothermic reaction). The reaction was stirred overnight allowing the temperature slowly to rise to room temperature. The reaction was quenched by the dropwise addition of saturated sodium bicarbonate solution and stirring was continued until the gas evolution ceased. The mixture was separated and the organic layer was further washed with saturated sodium bicarbonate solution, water and brine. The organic phase was dried with anhydrous sodium sulfate, filtered and the solvent removed under reduced pressure. The crude reaction mixture was then purified by silica gel column chromatography starting with chloroform and increasing gradient to chloroform:methanol 10:1 ($v / v)$. Yield: $4.02 \mathrm{~g}(78 \%) .{ }^{1}{ }^{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.40$
$(\mathrm{m}, 4 \mathrm{H}), 7.51(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=7.81 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 8 \mathrm{H}), 2.39(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~m}, 4 \mathrm{H})$ p.p.m..
Synthesis of metal complex. To 2 ml of an aqueous solution of copper chloride, two equivalents ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) of $N^{l}, N^{l}, N^{4}, N^{4}$-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine in 2 ml methanol were added followed by the addition of 2 $\mathrm{ml} N, N$-dimethylformamide. Single crystals were obtained after a week by slow evaporation of the solvents at room temperature.

S3. Refinement

All the $C-\mathrm{H}$ atoms were placed in idealized positions and refined in a riding-model approximation with $C-\mathrm{H}_{\text {aryl }}=0.95$, $C-\mathrm{H}_{\text {methyl }}=0.98$ and $C-\mathrm{H}_{\text {methylene }}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$ and $1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {methylenearyl }}\right)$. The water H atoms were not included in the refinement.

Figure 1

The molecular structure of the title complex. The displacement ellipsoids are drawn at 50% probability level. Solvent water and hydrogen atoms are omitted for clarity. Unlabeled atoms are related by the symmetry code $(-x+1,-y+1,-z+$ 1).

[$\mu-N, N, N^{\prime}, N^{\prime}$-Tetrakis(2-pyridylmethyl)butane- 1,4-diamine]bis[dichloridocopper(II)] trihydrate

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{6}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& b=10.0230(5) \AA \\
& c=14.2943(7) \AA \\
& \beta=106.143(1)^{\circ} \\
& V=1574.44(13) \AA^{3} \\
& Z=2
\end{aligned}
$$

$F(000)=796$
$D_{\mathrm{x}}=1.636 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5514 reflections
$\theta=2.5-28.2^{\circ}$

Data collection

Bruker APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 512 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.662, T_{\text {max }}=0.794$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.125$
$S=1.25$
3906 reflections
209 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \mu=1.73 \mathrm{~mm}^{-1} \\
& T=90 \mathrm{~K} \\
& \text { Block, blue } \\
& 0.26 \times 0.18 \times 0.14 \mathrm{~mm} \\
& \\
& \\
& 15464 \text { measured reflections } \\
& 3906 \text { independent reflections } \\
& 3746 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.027 \\
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=1.9^{\circ} \\
& h=-15 \rightarrow 13 \\
& k=-13 \rightarrow 12 \\
& l=-19 \rightarrow 19
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0448 P)^{2}+3.8247 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.76 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e}_{\AA^{-3}}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cu1	$0.66753(3)$	$0.34837(4)$	$0.83401(3)$	$0.01782(12)$	
C11	$0.75297(10)$	$0.11459(9)$	$0.88332(8)$	$0.0361(2)$	
C12	$0.68782(7)$	$0.45176(8)$	$0.97763(5)$	$0.01982(17)$	
O1A	$0.0560(9)$	$0.1843(9)$	$0.0017(4)$	$0.077(3)$	$0.734(17)$
O1B	$-0.0110(12)$	$0.2423(13)$	$0.0088(8)$	$0.034(4)$	$0.266(17)$
O2	$0.1966(10)$	$0.1197(11)$	$0.9798(7)$	$0.091(3)$	0.50
N1	$0.6228(2)$	$0.3205(3)$	$0.68520(19)$	$0.0180(5)$	
N2	$0.8238(2)$	$0.4118(3)$	$0.81070(19)$	$0.0191(5)$	
N3	$0.4893(2)$	$0.3059(3)$	$0.80922(19)$	$0.0173(5)$	
C1	$0.7378(3)$	$0.2849(3)$	$0.6642(2)$	$0.0226(7)$	
H1A	0.7299	0.2968	0.5940	$0.027 *$	

H1B	0.7581	0.1903	0.6813	0.027^{*}
C2	$0.8365(3)$	$0.3741(3)$	$0.7235(2)$	$0.0205(6)$
C3	$0.9347(3)$	$0.4152(4)$	$0.6916(3)$	$0.0281(7)$
H3	0.9411	0.3895	0.6292	0.034^{*}
C4	$1.0234(3)$	$0.4943(4)$	$0.7523(3)$	$0.0296(8)$
H4	1.0916	0.5235	0.7321	0.036^{*}
C5	$1.0118(3)$	$0.5302(4)$	$0.8424(3)$	$0.0259(7)$
H5	1.0723	0.5833	0.8853	0.031^{*}
C6	$0.9106(3)$	$0.4878(4)$	$0.8695(2)$	$0.0227(7)$
H6	0.9023	0.5131	0.9314	0.027^{*}
C7	$0.5324(3)$	$0.2111(3)$	$0.6684(2)$	$0.0216(7)$
H7A	0.5728	0.1257	0.6930	0.026^{*}
H7B	0.4918	0.2014	0.5979	0.026^{*}
C8	$0.4408(3)$	$0.2469(3)$	$0.7223(2)$	$0.0187(6)$
C9	$0.3169(3)$	$0.2237(3)$	$0.6863(2)$	$0.0220(6)$
H9	0.2841	0.1849	0.6239	0.026^{*}
C10	$0.2420(3)$	$0.2587(4)$	$0.7439(3)$	$0.0269(7)$
H10	0.1569	0.2427	0.7216	0.032^{*}
C11	$0.2915(3)$	$0.3166(3)$	$0.8337(3)$	$0.0237(7)$
H11	0.2415	0.3400	0.8742	0.028^{*}
C12	$0.4152(3)$	$0.3399(3)$	$0.8636(2)$	$0.0192(6)$
H12	0.4492	0.3815	0.9248	0.023^{*}
C13	$0.5697(3)$	$0.4462(3)$	$0.6335(2)$	$0.0188(6)$
H13A	0.6345	0.5146	0.6450	0.023^{*}
H13B	0.5062	0.4793	0.6626	0.023^{*}
C14	$0.5139(3)$	$0.4315(3)$	$0.5237(2)$	$0.0208(7)$
H14A	0.5712	0.3832	0.4951	0.025^{*}
H14B	0.4379	0.3787	0.5110	0.025^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Cu1	$0.0181(2)$	$0.0213(2)$	$0.0155(2)$	$-0.00268(15)$	$0.00696(14)$	$-0.00284(14)$
C 11	$0.0447(6)$	$0.0233(4)$	$0.0501(6)$	$0.0064(4)$	$0.0293(5)$	$0.0045(4)$
C 12	$0.0218(4)$	$0.0235(4)$	$0.0137(3)$	$-0.0005(3)$	$0.0042(3)$	$-0.0016(3)$
O1A	$0.085(6)$	$0.085(6)$	$0.059(4)$	$-0.025(5)$	$0.017(3)$	$-0.014(3)$
O1B	$0.035(7)$	$0.039(7)$	$0.026(5)$	$0.015(5)$	$0.003(4)$	$0.010(4)$
O2	$0.100(8)$	$0.088(7)$	$0.079(7)$	$0.005(6)$	$0.016(6)$	$0.005(5)$
N 1	$0.0201(13)$	$0.0188(13)$	$0.0173(12)$	$-0.0048(10)$	$0.0086(10)$	$-0.0066(10)$
N2	$0.0183(13)$	$0.0212(13)$	$0.0196(12)$	$0.0002(10)$	$0.0081(10)$	$0.0003(11)$
N3	$0.0184(12)$	$0.0184(13)$	$0.0155(12)$	$-0.0006(10)$	$0.0051(10)$	$0.0001(10)$
C1	$0.0272(17)$	$0.0220(16)$	$0.0229(15)$	$-0.0014(13)$	$0.0141(13)$	$-0.0046(13)$
C2	$0.0197(15)$	$0.0228(16)$	$0.0207(15)$	$0.0024(12)$	$0.0084(12)$	$0.0004(12)$
C3	$0.0267(18)$	$0.0318(19)$	$0.0307(18)$	$0.0006(15)$	$0.0162(14)$	$-0.0020(15)$
C4	$0.0191(17)$	$0.033(2)$	$0.040(2)$	$0.0004(14)$	$0.0135(15)$	$0.0052(16)$
C5	$0.0160(15)$	$0.0293(18)$	$0.0290(17)$	$-0.0005(13)$	$0.0005(13)$	$0.0060(14)$
C6	$0.0205(16)$	$0.0254(17)$	$0.0204(15)$	$-0.0004(13)$	$0.0026(12)$	$0.0019(13)$
C7	$0.0270(17)$	$0.0206(16)$	$0.0197(15)$	$-0.0077(13)$	$0.0108(12)$	$-0.0062(12)$

C8	$0.0236(16)$	$0.0159(14)$	$0.0179(14)$	$-0.0023(12)$	$0.0076(12)$	$0.0007(11)$
C9	$0.0236(16)$	$0.0202(16)$	$0.0202(14)$	$-0.0041(12)$	$0.0031(12)$	$-0.0040(12)$
C10	$0.0175(15)$	$0.0249(17)$	$0.0376(19)$	$-0.0023(13)$	$0.0063(14)$	$-0.0069(15)$
C11	$0.0232(16)$	$0.0215(16)$	$0.0287(17)$	$0.0008(13)$	$0.0109(13)$	$-0.0030(13)$
C12	$0.0228(16)$	$0.0177(15)$	$0.0175(14)$	$0.0000(12)$	$0.0063(12)$	$0.0004(11)$
C13	$0.0228(15)$	$0.0186(15)$	$0.0171(14)$	$-0.0040(12)$	$0.0095(12)$	$-0.0033(11)$
C14	$0.0253(16)$	$0.0242(17)$	$0.0130(13)$	$-0.0068(13)$	$0.0056(12)$	$-0.0053(12)$

Geometric parameters ($\left.\AA,{ }^{\circ}{ }^{\circ}\right)$

Cu1-N2	2.011 (3)	C5-C6	1.386 (5)
Cu1-N3	2.016 (3)	C5-H5	0.9500
$\mathrm{Cu} 1-\mathrm{N} 1$	2.064 (3)	C6-H6	0.9500
$\mathrm{Cu}-\mathrm{Cl} 2$	2.2532 (8)	C7-C8	1.506 (4)
$\mathrm{Cu} 1-\mathrm{Cl} 1$	2.5612 (10)	C7-H7A	0.9900
N1-C1	1.473 (4)	C7-H7B	0.9900
N1-C7	1.480 (4)	C8-C9	1.387 (5)
N1-C13	1.501 (4)	C9-C10	1.389 (5)
N2-C6	1.345 (4)	C9—H9	0.9500
N2-C2	1.348 (4)	C10-C11	1.379 (5)
N3-C12	1.344 (4)	C10-H10	0.9500
N3-C8	1.348 (4)	C11-C12	1.379 (5)
C1-C2	1.504 (5)	C11-H11	0.9500
C1-H1A	0.9900	C12-H12	0.9500
C1-H1B	0.9900	C13-C14	1.527 (4)
C2-C3	1.388 (5)	C13-H13A	0.9900
C3-C4	1.387 (5)	C13-H13B	0.9900
C3-H3	0.9500	C14-C14	1.526 (7)
C4-C5	1.378 (5)	C14-H14A	0.9900
C4-H4	0.9500	C14-H14B	0.9900
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 3$	160.10 (11)	C4-C5-H5	120.5
N2-Cu1-N1	81.33 (11)	C6-C5-H5	120.5
N3-Cu1-N1	80.87 (11)	N2-C6-C5	121.9 (3)
N2-Cu1-Cl2	97.73 (8)	N2-C6-H6	119.1
N3-Cu1-Cl2	95.75 (8)	C5-C6-H6	119.1
N1-Cu1-Cl2	159.16 (8)	N1-C7-C8	107.1 (3)
N2-Cu1-Cl1	92.63 (8)	N1-C7-H7A	110.3
N3-Cu1-Cl1	98.35 (8)	C8-C7-H7A	110.3
N1-Cu1-Cl1	97.23 (8)	N1-C7-H7B	110.3
$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	103.61 (3)	C8-C7-H7B	110.3
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	114.3 (3)	H7A-C7-H7B	108.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 13$	111.4 (2)	N3-C8-C9	122.1 (3)
C7-N1-C13	111.9 (3)	N3-C8-C7	114.2 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	105.3 (2)	C9-C8-C7	123.7 (3)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Cu} 1$	103.27 (19)	C8-C9-C10	118.3 (3)
C13-N1-Cu1	110.15 (18)	C8-C9-H9	120.9
C6-N2-C2	119.1 (3)	C10-C9-H9	120.9

C6-N2-Cu1	127.7 (2)
C2-N2-Cu1	113.2 (2)
C12-N3-C8	118.7 (3)
C12-N3-Cu1	128.0 (2)
C8-N3-Cu1	113.0 (2)
N1-C1-C2	108.3 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.0
N1-C1-H1B	110.0
C2-C1-H1B	110.0
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.4
N2-C2-C3	121.7 (3)
N2-C2-C1	115.5 (3)
C3-C2-C1	122.7 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	118.8 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.6
C2-C3-H3	120.6
C5-C4-C3	119.4 (3)
C5-C4-H4	120.3
C3-C4-H4	120.3
C4-C5-C6	119.1 (3)
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	32.6 (2)
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	-156.3 (2)
$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	121.5 (2)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	-59.0 (2)
N2-Cu1-N1-C7	152.7 (2)
N3-Cu1-N1-C7	-36.2 (2)
$\mathrm{C} 2-\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 7$	-118.3 (2)
$\mathrm{Cl1}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 7$	61.1 (2)
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 13$	-87.6 (2)
N3-Cu1-N1-C13	83.5 (2)
$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 13$	1.3 (4)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 13$	-179.20 (18)
N3-Cu1-N2-C6	134.7 (3)
N1-Cu1-N2-C6	161.4 (3)
$\mathrm{C} 2-\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 6$	2.5 (3)
$\mathrm{Cl1}-\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 6$	-101.6 (3)
N3-Cu1-N2-C2	-43.1 (5)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 2$	-16.4 (2)
$\mathrm{C} 2-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 2$	-175.3 (2)
$\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 2$	80.5 (2)
N2-Cu1-N3-C12	-129.5 (3)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 12$	-156.2 (3)
$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 12$	3.0 (3)
$\mathrm{Cl1}-\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 12$	107.7 (3)
N2-Cu1-N3-C8	44.0 (4)
N1-Cu1-N3-C8	17.2 (2)

C11-C10-C9	119.8 (3)
C11-C10-H10	120.1
C9-C10-H10	120.1
C12-C11-C10	118.7 (3)
C12-C11-H11	120.7
C10-C11-H11	120.7
N3-C12-C11	122.4 (3)
N3-C12-H12	118.8
C11-C12-H12	118.8
N1-C13-C14	114.9 (3)
N1-C13-H13A	108.5
C14-C13-H13A	108.5
N1-C13-H13B	108.5
C14-C13-H13B	108.5
H13A-C13-H13B	107.5
C14-C14-C13	110.2 (3)
C14- $\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	109.6
C13-C14-H14A	109.6
C14- $\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	109.6
C13-C14-H14B	109.6
H14A-C14-H14B	108.1
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	175.9 (3)
C6-N2-C2-C1	177.7 (3)
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	-4.3 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	32.3 (4)
N1-C1-C2-C3	-147.9 (3)
N2-C2-C3-C4	1.6 (5)
C1-C2-C3-C4	-178.1 (3)
C2-C3-C4-C5	-0.1 (6)
C3-C4-C5-C6	-0.9 (5)
C2-N2-C6-C5	1.0 (5)
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	-176.7 (3)
C4-C5-C6-N2	0.5 (5)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	162.1 (3)
C13-N1-C7-C8	-70.1 (3)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	48.3 (3)
C12-N3-C8-C9	1.8 (5)
$\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 9$	-172.4 (3)
C12-N3-C8-C7	-179.0 (3)
$\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7$	6.9 (3)
N1-C7-C8-N3	-38.3 (4)
N1-C7-C8-C9	140.9 (3)
N3-C8-C9-C10	-2.2 (5)
C7-C8-C9-C10	178.6 (3)
C8-C9-C10-C11	0.9 (5)
C9-C10-C11-C12	0.8 (5)
C8-N3-C12-C11	0.0 (5)

supporting information

$\mathrm{C} 12-\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 8$	$176.5(2)$
$\mathrm{C} 11-\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 8$	$-78.8(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-154.9(3)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$77.0(3)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-42.4(3)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$-2.1(5)$

$\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 11$	$173.2(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 3$	$-1.3(5)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$73.2(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$-56.1(3)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$-170.4(2)$
$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 14$	$-168.8(3)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

[^0]: \ddagger Current address: Harvard Medical School, Children’s Hospital Boston, Department of Radiology, 300 Longwood Ave, Enders 4, Boston, MA 02115, USA.

