

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena-Poly[(*E*)-4,4'-(ethene-1,2-diyl)-dipyridinium [[bis(thiocyanato- κN)-ferrate(II)]-di- μ -thiocyanato- $\kappa^2 N$:S; $\kappa^2 S$:N]]

Susanne Wöhlert,* Mario Wriedt, Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24098 Kiel, Germany
Correspondence e-mail: swoehlert@ac.uni-kiel.de

Received 3 September 2010; accepted 9 September 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.029; wR factor = 0.068; data-to-parameter ratio = 19.2.

In the title compound, $\{(C_{12}H_{12}N_2)[Fe(NCS)_4]\}_n$, each Fe^{II} cation is coordinated by four N-bonded and two S-bonded thiocyanate anions in an octahedral coordination mode. The asymmetric unit consists of one Fe^{II} cation, located on a center of inversion, as well as one protonated (E)-4,4'-(ethene-1,2-diyl)dipyridinium dication and two thiocyanate anions in general positions. The crystal structure consists of Fe- $(NCS)_2$ -Fe chains extending along the a axis, in which two further thiocyanate anions are only terminally bonded via nitrogen. Non-coordinating (E)-4,4'-(ethene-1,2-diyl)dipyridinium cations are found between the chains.

Related literature

For general background, see: Wriedt & Näther (2009*a*,*b*); Wriedt *et al.* (2009*a*,*b*). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

$(C_{12}H_{12}N_2)[Fe(NCS)_4]$	$V = 990.14 (6) \text{ Å}^3$
$M_r = 472.41$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 5.7360 (2) Å	$\mu = 1.20 \text{ mm}^{-1}$
b = 11.5093 (4) Å	T = 293 K
c = 15.0971 (6) Å	$0.16 \times 0.13 \times 0.09 \text{ mm}$
$\beta = 96.562 \ (3)^{\circ}$	

Data collection

 $\begin{array}{lll} \text{Stoe IPDS-2 diffractometer} & 16607 \text{ measured reflections} \\ \text{Absorption correction: numerical} & 2379 \text{ independent reflections} \\ & (X\text{-}SHAPE \text{ and } X\text{-}RED32; & 2173 \text{ reflections with } I > 2\sigma(I) \\ \text{Stoe & Cie, 2008)} & R_{\text{int}} = 0.029 \\ & T_{\text{min}} = 0.826, \ T_{\text{max}} = 0.895 \\ \end{array}$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	124 parameters
$wR(F^2) = 0.068$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\text{max}} = 0.57 \text{ e Å}^{-3}$
2379 reflections	$\Delta \rho_{\min} = -0.21 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Fe1-N11 Fe1-N1	2.1090 (16) 2.1165 (15)	Fe1-S1 ⁱ	2.6375 (5)
N11 ⁱⁱ —Fe1—N1	89.61 (7)	$N1^{ii}$ -Fe1-S1 ⁱ $N11^{ii}$ -Fe1-S1 ⁱⁱⁱ $N1^{ii}$ -Fe1-S1 ⁱⁱⁱ	87.23 (4)
N11 ⁱⁱ —Fe1—N1 ⁱⁱ	90.39 (7)		89.26 (5)
N11 ⁱⁱ —Fe1—S1 ⁱ	90.74 (5)		92.77 (4)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, -y, -z + 1; (iii) x + 1, y, z.

Data collection: *X-AREA* (Stoe & Cie, 2008); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *XCIF* in *SHELXTL*.

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr. Wolfgang Bensch for the opportunity to use his experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2228).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Wriedt, M. & Näther, C. (2009a). Dalton Trans. pp. 10192-10198.

Wriedt, M. & Näther, C. (2009b). Z. Anorg. Allg. Chem. 636, 569-575.

Wriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975-7984.

Wriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896-6903.

supporting information

Acta Cryst. (2010). E66, m1256 [doi:10.1107/S160053681003624X]

catena-Poly[(*E*)-4,4'-(ethene-1,2-diyl)dipyridinium [[bis(thiocyanato- κN)ferrate(II)]-di- μ -thiocyanato- $\kappa^2 N$:S; $\kappa^2 S$:N]

Susanne Wöhlert, Mario Wriedt, Inke Jess and Christian Näther

S1. Comment

Recently, we have shown that thermal decomposition reactions are an elegant route for the discovering and preparation of new ligand-deficient coordination polymers with defined magnetic properties (Wriedt & Näther, 2009a, 2009b; Wriedt et al., 2009a, 2009b). In our ongoing investigation on the synthesis, structures and properties of such compounds based on paramagnetic transition metal pseudo-halides and N-donor ligands, we have reacted iron(II) sulfate heptahydrate, potassium thiocyanate and *E*-1,2-di(4'-pyridyl)-ethene in water. In this reaction single crystals of the title compound were obtained, which were characterized by single crystal X-ray diffraction.

The title compound of composition $[Fe(NCS)_4]_n$ - $[E-1,2-di(4'-pyridinium)-ethene]_n$ (Fig. 1) represents an 1-D coordination polymer, in which each iron(II) cation is connected by four μ -1,3 bridging thiocyanato anions into chains that elongate in the direction of the crystallographic a-axis (Fig. 3). The octahedral coordination of each Fe cation is completed by two N-bonded thiocyanato anions. It must be noted that according to a search in the CCDC database (ConQuest Ver. 1.12 2010) such chains with transition metals are unknown (Allen, 2002).

Between the chains noncoordinating protonated (*E*)-4,4'-(ethene-1,2-diyl)dipyridinium cations are found, which are stacked in the direction of the crystallographic *a*-axis involving weak π - π -stacking interactions (Fig. 2). The FeN₄S₂ octahedron is slightly distorted with two long Fe—SCN distances of 2.6375 (5) Å and short Fe—NCS distances of 2.109 (2) and 2.116 (2) Å. The angles arround the metal atoms range between 87.23 (5) to 92.77 (5) and 180° (Tab. 1). The shortest intramolecular Fe···Fe distance amounts to 5.7360 (2) Å and the shortest intermolecular Fe···Fe distance amounts to 9.4919 (3) Å.

S2. Experimental

 $FeSO_4 \times 7$ H₂O and 1,2-di(4'-pyridyl)-ethene were obtained from Sigma Aldrich. KNCS was obtained from Alfa Aesar. 0.6 mmol (168.8 mg) $FeSO_4 \times 7$ H₂O, 1.2 mmol (118.5 mg) KNCS and 0.15 mmol (28.2 mg) 1,2-di(4'-pyridyl)-ethene were reacted with 1 mL H₂O in a closed test-tube at 120°C for three days. On cooling green block-shaped single crystals of the title compound were obtained in a mixture with unknown phases.

S3. Refinement

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with $U_{eq}(H) = 1.2 \ U_{eq}(C,N)$ of the parent atom using a riding model with C—H = 0.93 Å and N—H = 0.86 Å.

Acta Cryst. (2010). E66, m1256 Sup-1

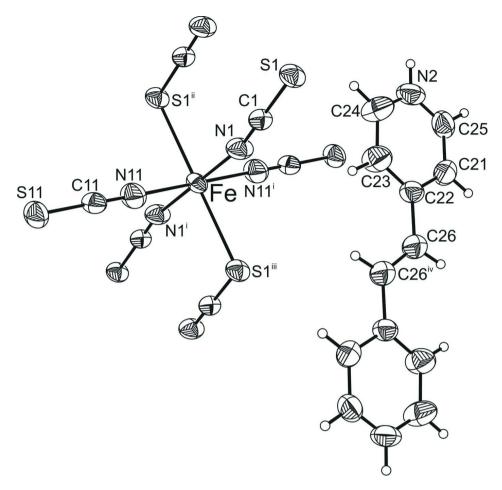
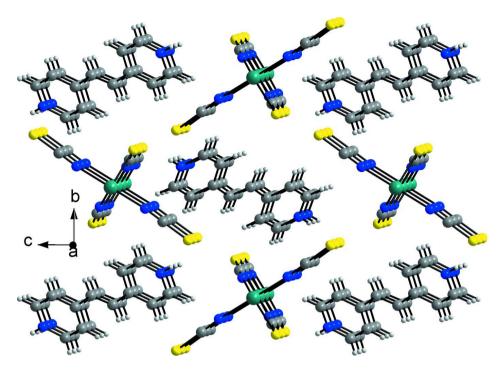



Figure 1 Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: i = -x + 1, -y + 1, -z + 1; ii = -x + 1, -y, -z + 1; iii = +x + 1, +y, +z; iv = -x + 2, -y + 1, -z + 1.

Acta Cryst. (2010). E66, m1256 sup-2

Figure 2Packing arrangement of the title compound with view approximately along the crystallographic *a*-axis.

Acta Cryst. (2010). E**66**, m1256

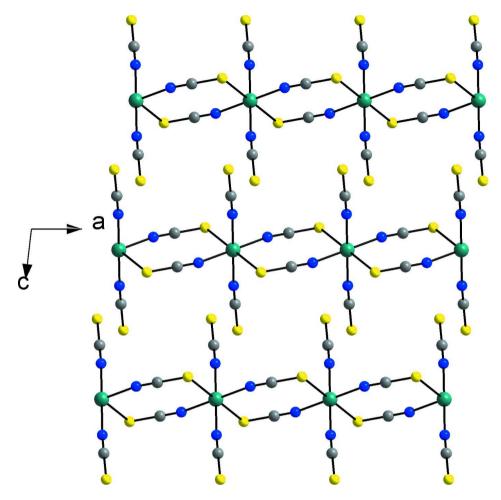


Figure 3 Packing arrangement of the title compound with view on the inorganic part $Fe(NCS)_2$ — $(NCS)_2$ — $Fe(NCS)_2$ approximately along the crystallographic b-axis. The non-coordinated organic cations were omitted for clearity.

catena-Poly[(*E*)-4,4'-(ethene-1,2-diyl)dipyridinium [[bis(thiocyanato- κN)ferrate(II)]-di- μ -thiocyanato- $\kappa^2 N$:S; $\kappa^2 S$:N]

Crystal data $(C_{12}H_{12}N_2)[Fe(NCS)_4]$ F(000) = 480 $M_r = 472.41$ $D_{\rm x} = 1.585 \; {\rm Mg \; m^{-3}}$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ybc Cell parameters from 16607 reflections a = 5.7360 (2) Å $\theta = 2 - 28^{\circ}$ $\mu = 1.20 \text{ mm}^{-1}$ b = 11.5093 (4) Å c = 15.0971 (6) Å T = 293 K $\beta = 96.562 (3)^{\circ}$ Block, green $V = 990.14 (6) \text{ Å}^3$ $0.16 \times 0.13 \times 0.09 \text{ mm}$ Z = 2

Acta Cryst. (2010). E66, m1256 Sup-4

Data collection

Stoe IPDS-2 diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

 ω scans

Absorption correction: numerical

(*X-SHAPE* and *X-RED32*; Stoe & Cie, 2008)

 $T_{\min} = 0.826, T_{\max} = 0.895$

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$

 $wR(F^2) = 0.068$

S = 1.09

2379 reflections

124 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

16607 measured reflections 2379 independent reflections 2173 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.029$

 $\theta_{\text{max}} = 28.0^{\circ}, \, \theta_{\text{min}} = 2.2^{\circ}$

 $h = -7 \rightarrow 7$

 $k = -15 \rightarrow 15$

 $l = -19 \rightarrow 19$

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0291P)^2 + 0.4228P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{\text{max}} = 0.57 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.21 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	1.0000	0.0000	0.5000	0.03128 (10)
N2	0.3720(3)	0.38242 (17)	0.30355 (13)	0.0541 (4)
H2	0.2544	0.3548	0.2697	0.065*
S1	0.26743 (7)	0.16763 (4)	0.57486 (3)	0.03779 (11)
C1	0.5284(3)	0.12116 (14)	0.55629 (11)	0.0334 (3)
N1	0.7106(3)	0.08926 (14)	0.54301 (11)	0.0430 (4)
S11	1.12064 (9)	-0.23939(5)	0.76873 (3)	0.04587 (13)
C11	1.0730 (3)	-0.15568 (16)	0.68107 (12)	0.0371 (4)
N11	1.0414 (3)	-0.09600(16)	0.61976 (11)	0.0490 (4)
C21	0.6655 (4)	0.52070 (17)	0.32949 (15)	0.0522 (5)
H21	0.7402	0.5868	0.3113	0.063*
C22	0.7421 (3)	0.46922 (17)	0.41067 (13)	0.0425 (4)
C23	0.6230 (4)	0.3727 (2)	0.43548 (15)	0.0571 (6)
H23	0.6699	0.3361	0.4895	0.069*
C24	0.4368 (4)	0.3310(2)	0.38090 (17)	0.0620 (6)
H24	0.3550	0.2664	0.3979	0.074*

Acta Cryst. (2010). E66, m1256 Sup-5

supporting information

C25	0.4812 (4)	0.47453 (19)	0.27648 (15)	0.0555 (6)	
H25	0.4323	0.5077	0.2213	0.067*	
C26	0.9479 (4)	0.52118 (18)	0.46271 (14)	0.0494 (5)	
H26	1.0085	0.5891	0.4410	0.059*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.02351 (16)	0.04009 (18)	0.03042 (17)	0.00428 (13)	0.00389 (12)	0.00449 (13)
N2	0.0395 (9)	0.0612 (11)	0.0580 (11)	-0.0001 (8)	-0.0097(8)	-0.0187 (9)
S1	0.0277(2)	0.0431(2)	0.0430(2)	0.00552 (16)	0.00590 (16)	-0.00552 (18)
C1	0.0305 (8)	0.0355 (8)	0.0338 (8)	-0.0023(6)	0.0025 (6)	-0.0036 (6)
N1	0.0276 (7)	0.0470(8)	0.0549 (9)	0.0011 (6)	0.0061 (6)	-0.0103 (7)
S11	0.0449 (3)	0.0521(3)	0.0399(2)	0.0004(2)	0.00183 (19)	0.0133(2)
C11	0.0297(8)	0.0441 (9)	0.0372 (9)	-0.0029(7)	0.0025 (6)	0.0003 (7)
N11	0.0494 (9)	0.0565 (10)	0.0395 (8)	-0.0047(8)	-0.0020(7)	0.0121 (7)
C21	0.0602 (13)	0.0386 (10)	0.0549 (12)	-0.0038(9)	-0.0060 (10)	0.0019(8)
C22	0.0389 (9)	0.0434 (10)	0.0435 (10)	-0.0004(7)	-0.0029(8)	-0.0071(8)
C23	0.0644 (14)	0.0628 (13)	0.0417 (10)	-0.0140 (11)	-0.0043 (10)	0.0063 (9)
C24	0.0612 (14)	0.0671 (14)	0.0573 (13)	-0.0247 (12)	0.0048 (11)	-0.0017 (11)
C25	0.0639 (14)	0.0466 (11)	0.0510 (12)	0.0118 (10)	-0.0146 (10)	-0.0034 (9)
C26	0.0510(11)	0.0445 (10)	0.0504(11)	-0.0050(8)	-0.0048(9)	0.0022 (8)

Geometric parameters (Å, °)

Fe1—N11	2.1090 (16)	C11—N11	1.150 (2)
Fe1—N11 ⁱ	2.1090 (16)	C21—C25	1.359 (3)
Fe1—N1	2.1165 (15)	C21—C22	1.387 (3)
Fe1—N1 ⁱ	2.1165 (15)	C21—H21	0.9300
Fe1—S1 ⁱⁱ	2.6375 (5)	C22—C23	1.378 (3)
Fe1—S1 ⁱⁱⁱ	2.6375 (5)	C22—C26	1.469 (3)
N2—C25	1.320 (3)	C23—C24	1.360 (3)
N2—C24	1.324 (3)	C23—H23	0.9300
N2—H2	0.8600	C24—H24	0.9300
S1—C1	1.6437 (17)	C25—H25	0.9300
S1—Fe1 ^{iv}	2.6375 (5)	C26—C26 ^v	1.307 (4)
C1—N1	1.147 (2)	C26—H26	0.9300
S11—C11	1.6345 (19)		
N11—Fe1—N11 ⁱ	180.0	N11—C11—S11	179.25 (19)
N11—Fe1—N1	90.39 (7)	C11—N11—Fe1	174.08 (17)
N11 ⁱ —Fe1—N1	89.61 (7)	C25—C21—C22	120.0 (2)
N11—Fe1—N1 ⁱ	89.61 (7)	C25—C21—H21	120.0
N11 ⁱ —Fe1—N1 ⁱ	90.39 (7)	C22—C21—H21	120.0
N1—Fe1—N1 ⁱ	180.0 (9)	C23—C22—C21	117.88 (18)
N11—Fe1—S1 ⁱⁱ	89.26 (5)	C23—C22—C26	125.17 (19)
N11 ⁱ —Fe1—S1 ⁱⁱ	90.74 (5)	C21—C22—C26	116.93 (19)
N1—Fe1—S1 ⁱⁱ	92.77 (4)	C24—C23—C22	120.0 (2)

Acta Cryst. (2010). E66, m1256 sup-6

supporting information

N1 ⁱ —Fe1—S1 ⁱⁱ	87.23 (4)	C24—C23—H23	120.0
N11—Fe1—S1 ⁱⁱⁱ	90.74 (5)	C22—C23—H23	120.0
N11 ⁱ —Fe1—S1 ⁱⁱⁱ	89.26 (5)	N2—C24—C23	119.9 (2)
N1—Fe1—S1 ⁱⁱⁱ	87.23 (4)	N2—C24—H24	120.1
N1 ⁱ —Fe1—S1 ⁱⁱⁱ	92.77 (4)	C23—C24—H24	120.1
S1 ⁱⁱ —Fe1—S1 ⁱⁱⁱ	180.0	N2—C25—C21	119.8 (2)
C25—N2—C24	122.48 (18)	N2—C25—H25	120.1
C25—N2—H2	118.8	C21—C25—H25	120.1
C24—N2—H2	118.8	C26 ^v —C26—C22	124.7 (3)
C1—S1—Fe1iv	100.68 (6)	C26 ^v —C26—H26	117.6
N1—C1—S1	179.60 (19)	C22—C26—H26	117.6
C1—N1—Fe1	166.29 (15)		

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) x+1, y, z; (iv) x-1, y, z; (v) -x+2, -y+1, -z+1.

Acta Cryst. (2010). E66, m1256 sup-7